dse.c 101 KB
Newer Older
1
/* RTL dead store elimination.
2
   Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10

   Contributed by Richard Sandiford <rsandifor@codesourcery.com>
   and Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12 13 14 15 16 17 18 19
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
20 21
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
22 23 24 25 26 27

#undef BASELINE

#include "config.h"
#include "system.h"
#include "coretypes.h"
28
#include "backend.h"
29 30
#include "target.h"
#include "rtl.h"
31 32
#include "tree.h"
#include "gimple.h"
33
#include "predict.h"
34
#include "df.h"
35 36 37 38 39 40
#include "tm_p.h"
#include "gimple-ssa.h"
#include "expmed.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "recog.h"
41
#include "alias.h"
42
#include "stor-layout.h"
43
#include "cfgrtl.h"
44 45
#include "cselib.h"
#include "tree-pass.h"
46
#include "explow.h"
47 48
#include "expr.h"
#include "dbgcnt.h"
49
#include "params.h"
50
#include "rtl-iter.h"
51
#include "cfgcleanup.h"
52 53

/* This file contains three techniques for performing Dead Store
H.J. Lu committed
54
   Elimination (dse).
55 56 57 58 59

   * The first technique performs dse locally on any base address.  It
   is based on the cselib which is a local value numbering technique.
   This technique is local to a basic block but deals with a fairly
   general addresses.
H.J. Lu committed
60

61 62 63 64 65
   * The second technique performs dse globally but is restricted to
   base addresses that are either constant or are relative to the
   frame_pointer.

   * The third technique, (which is only done after register allocation)
66
   processes the spill slots.  This differs from the second
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
   technique because it takes advantage of the fact that spilling is
   completely free from the effects of aliasing.

   Logically, dse is a backwards dataflow problem.  A store can be
   deleted if it if cannot be reached in the backward direction by any
   use of the value being stored.  However, the local technique uses a
   forwards scan of the basic block because cselib requires that the
   block be processed in that order.

   The pass is logically broken into 7 steps:

   0) Initialization.

   1) The local algorithm, as well as scanning the insns for the two
   global algorithms.

   2) Analysis to see if the global algs are necessary.  In the case
   of stores base on a constant address, there must be at least two
   stores to that address, to make it possible to delete some of the
   stores.  In the case of stores off of the frame or spill related
   stores, only one store to an address is necessary because those
   stores die at the end of the function.

H.J. Lu committed
90
   3) Set up the global dataflow equations based on processing the
91 92 93 94 95 96 97
   info parsed in the first step.

   4) Solve the dataflow equations.

   5) Delete the insns that the global analysis has indicated are
   unnecessary.

Joseph Myers committed
98
   6) Delete insns that store the same value as preceding store
99 100 101
   where the earlier store couldn't be eliminated.

   7) Cleanup.
102 103 104 105 106

   This step uses cselib and canon_rtx to build the largest expression
   possible for each address.  This pass is a forwards pass through
   each basic block.  From the point of view of the global technique,
   the first pass could examine a block in either direction.  The
107
   forwards ordering is to accommodate cselib.
108

109
   We make a simplifying assumption: addresses fall into four broad
110 111 112 113 114 115 116 117
   categories:

   1) base has rtx_varies_p == false, offset is constant.
   2) base has rtx_varies_p == false, offset variable.
   3) base has rtx_varies_p == true, offset constant.
   4) base has rtx_varies_p == true, offset variable.

   The local passes are able to process all 4 kinds of addresses.  The
118
   global pass only handles 1).
119 120 121 122 123

   The global problem is formulated as follows:

     A store, S1, to address A, where A is not relative to the stack
     frame, can be eliminated if all paths from S1 to the end of the
124
     function contain another store to A before a read to A.
125 126

     If the address A is relative to the stack frame, a store S2 to A
127
     can be eliminated if there are no paths from S2 that reach the
128
     end of the function that read A before another store to A.  In
129
     this case S2 can be deleted if there are paths from S2 to the
130 131 132 133 134 135 136 137 138 139
     end of the function that have no reads or writes to A.  This
     second case allows stores to the stack frame to be deleted that
     would otherwise die when the function returns.  This cannot be
     done if stores_off_frame_dead_at_return is not true.  See the doc
     for that variable for when this variable is false.

     The global problem is formulated as a backwards set union
     dataflow problem where the stores are the gens and reads are the
     kills.  Set union problems are rare and require some special
     handling given our representation of bitmaps.  A straightforward
140
     implementation requires a lot of bitmaps filled with 1s.
141 142 143
     These are expensive and cumbersome in our bitmap formulation so
     care has been taken to avoid large vectors filled with 1s.  See
     the comments in bb_info and in the dataflow confluence functions
H.J. Lu committed
144
     for details.
145 146

   There are two places for further enhancements to this algorithm:
H.J. Lu committed
147

148 149 150 151 152 153 154
   1) The original dse which was embedded in a pass called flow also
   did local address forwarding.  For example in

   A <- r100
   ... <- A

   flow would replace the right hand side of the second insn with a
155
   reference to r100.  Most of the information is available to add this
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
   to this pass.  It has not done it because it is a lot of work in
   the case that either r100 is assigned to between the first and
   second insn and/or the second insn is a load of part of the value
   stored by the first insn.

   insn 5 in gcc.c-torture/compile/990203-1.c simple case.
   insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
   insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
   insn 44 in gcc.c-torture/execute/20010910-1.c simple case.

   2) The cleaning up of spill code is quite profitable.  It currently
   depends on reading tea leaves and chicken entrails left by reload.
   This pass depends on reload creating a singleton alias set for each
   spill slot and telling the next dse pass which of these alias sets
   are the singletons.  Rather than analyze the addresses of the
   spills, dse's spill processing just does analysis of the loads and
   stores that use those alias sets.  There are three cases where this
   falls short:

     a) Reload sometimes creates the slot for one mode of access, and
     then inserts loads and/or stores for a smaller mode.  In this
     case, the current code just punts on the slot.  The proper thing
     to do is to back out and use one bit vector position for each
     byte of the entity associated with the slot.  This depends on
     KNOWING that reload always generates the accesses for each of the
     bytes in some canonical (read that easy to understand several
     passes after reload happens) way.

     b) Reload sometimes decides that spill slot it allocated was not
     large enough for the mode and goes back and allocates more slots
     with the same mode and alias set.  The backout in this case is a
     little more graceful than (a).  In this case the slot is unmarked
     as being a spill slot and if final address comes out to be based
H.J. Lu committed
189
     off the frame pointer, the global algorithm handles this slot.
190 191 192 193

     c) For any pass that may prespill, there is currently no
     mechanism to tell the dse pass that the slot being used has the
     special properties that reload uses.  It may be that all that is
194
     required is to have those passes make the same calls that reload
195 196 197 198 199 200 201 202 203
     does, assuming that the alias sets can be manipulated in the same
     way.  */

/* There are limits to the size of constant offsets we model for the
   global problem.  There are certainly test cases, that exceed this
   limit, however, it is unlikely that there are important programs
   that really have constant offsets this size.  */
#define MAX_OFFSET (64 * 1024)

204 205 206 207 208 209 210 211 212 213 214 215 216
/* Obstack for the DSE dataflow bitmaps.  We don't want to put these
   on the default obstack because these bitmaps can grow quite large
   (~2GB for the small (!) test case of PR54146) and we'll hold on to
   all that memory until the end of the compiler run.
   As a bonus, delete_tree_live_info can destroy all the bitmaps by just
   releasing the whole obstack.  */
static bitmap_obstack dse_bitmap_obstack;

/* Obstack for other data.  As for above: Kinda nice to be able to
   throw it all away at the end in one big sweep.  */
static struct obstack dse_obstack;

/* Scratch bitmap for cselib's cselib_expand_value_rtx.  */
217
static bitmap scratch = NULL;
218

219
struct insn_info_type;
220 221

/* This structure holds information about a candidate store.  */
H.J. Lu committed
222
struct store_info
223 224 225 226 227
{

  /* False means this is a clobber.  */
  bool is_set;

228 229 230
  /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
  bool is_large;

231 232 233 234
  /* The id of the mem group of the base address.  If rtx_varies_p is
     true, this is -1.  Otherwise, it is the index into the group
     table.  */
  int group_id;
H.J. Lu committed
235

236 237 238 239 240 241
  /* This is the cselib value.  */
  cselib_val *cse_base;

  /* This canonized mem.  */
  rtx mem;

242
  /* Canonized MEM address for use by canon_true_dependence.  */
243 244 245 246
  rtx mem_addr;

  /* The offset of the first and byte before the last byte associated
     with the operation.  */
247 248 249 250 251 252 253 254 255 256 257 258 259
  HOST_WIDE_INT begin, end;

  union
    {
      /* A bitmask as wide as the number of bytes in the word that
	 contains a 1 if the byte may be needed.  The store is unused if
	 all of the bits are 0.  This is used if IS_LARGE is false.  */
      unsigned HOST_WIDE_INT small_bitmask;

      struct
	{
	  /* A bitmap with one bit per byte.  Cleared bit means the position
	     is needed.  Used if IS_LARGE is false.  */
260
	  bitmap bmap;
261

262 263 264 265 266
	  /* Number of set bits (i.e. unneeded bytes) in BITMAP.  If it is
	     equal to END - BEGIN, the whole store is unused.  */
	  int count;
	} large;
    } positions_needed;
267 268 269 270 271 272 273

  /* The next store info for this insn.  */
  struct store_info *next;

  /* The right hand side of the store.  This is used if there is a
     subsequent reload of the mems address somewhere later in the
     basic block.  */
274 275 276 277 278 279 280 281 282
  rtx rhs;

  /* If rhs is or holds a constant, this contains that constant,
     otherwise NULL.  */
  rtx const_rhs;

  /* Set if this store stores the same constant value as REDUNDANT_REASON
     insn stored.  These aren't eliminated early, because doing that
     might prevent the earlier larger store to be eliminated.  */
283
  struct insn_info_type *redundant_reason;
284 285
};

286 287 288 289 290 291 292 293 294
/* Return a bitmask with the first N low bits set.  */

static unsigned HOST_WIDE_INT
lowpart_bitmask (int n)
{
  unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
  return mask >> (HOST_BITS_PER_WIDE_INT - n);
}

295
static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
296

297
static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
298 299 300

/* This structure holds information about a load.  These are only
   built for rtx bases.  */
301
struct read_info_type
302 303 304 305 306 307 308 309 310 311 312 313 314
{
  /* The id of the mem group of the base address.  */
  int group_id;

  /* The offset of the first and byte after the last byte associated
     with the operation.  If begin == end == 0, the read did not have
     a constant offset.  */
  int begin, end;

  /* The mem being read.  */
  rtx mem;

  /* The next read_info for this insn.  */
315
  struct read_info_type *next;
316
};
317
typedef struct read_info_type *read_info_t;
318

319
static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
320 321 322

/* One of these records is created for each insn.  */

323
struct insn_info_type
324 325 326 327 328 329 330 331 332 333 334 335 336
{
  /* Set true if the insn contains a store but the insn itself cannot
     be deleted.  This is set if the insn is a parallel and there is
     more than one non dead output or if the insn is in some way
     volatile.  */
  bool cannot_delete;

  /* This field is only used by the global algorithm.  It is set true
     if the insn contains any read of mem except for a (1).  This is
     also set if the insn is a call or has a clobber mem.  If the insn
     contains a wild read, the use_rec will be null.  */
  bool wild_read;

337 338 339 340 341
  /* This is true only for CALL instructions which could potentially read
     any non-frame memory location. This field is used by the global
     algorithm.  */
  bool non_frame_wild_read;

342 343
  /* This field is only used for the processing of const functions.
     These functions cannot read memory, but they can read the stack
344 345 346 347 348 349 350 351 352 353 354 355 356
     because that is where they may get their parms.  We need to be
     this conservative because, like the store motion pass, we don't
     consider CALL_INSN_FUNCTION_USAGE when processing call insns.
     Moreover, we need to distinguish two cases:
     1. Before reload (register elimination), the stores related to
	outgoing arguments are stack pointer based and thus deemed
	of non-constant base in this pass.  This requires special
	handling but also means that the frame pointer based stores
	need not be killed upon encountering a const function call.
     2. After reload, the stores related to outgoing arguments can be
	either stack pointer or hard frame pointer based.  This means
	that we have no other choice than also killing all the frame
	pointer based stores upon encountering a const function call.
357 358 359 360 361
     This field is set after reload for const function calls and before
     reload for const tail function calls on targets where arg pointer
     is the frame pointer.  Having this set is less severe than a wild
     read, it just means that all the frame related stores are killed
     rather than all the stores.  */
362 363 364 365
  bool frame_read;

  /* This field is only used for the processing of const functions.
     It is set if the insn may contain a stack pointer based store.  */
366
  bool stack_pointer_based;
367 368 369 370 371 372 373

  /* This is true if any of the sets within the store contains a
     cselib base.  Such stores can only be deleted by the local
     algorithm.  */
  bool contains_cselib_groups;

  /* The insn. */
David Malcolm committed
374
  rtx_insn *insn;
375 376 377 378 379

  /* The list of mem sets or mem clobbers that are contained in this
     insn.  If the insn is deletable, it contains only one mem set.
     But it could also contain clobbers.  Insns that contain more than
     one mem set are not deletable, but each of those mems are here in
380
     order to provide info to delete other insns.  */
381
  store_info *store_rec;
382 383 384 385 386 387 388

  /* The linked list of mem uses in this insn.  Only the reads from
     rtx bases are listed here.  The reads to cselib bases are
     completely processed during the first scan and so are never
     created.  */
  read_info_t read_rec;

389 390 391 392 393 394 395
  /* The live fixed registers.  We assume only fixed registers can
     cause trouble by being clobbered from an expanded pattern;
     storing only the live fixed registers (rather than all registers)
     means less memory needs to be allocated / copied for the individual
     stores.  */
  regset fixed_regs_live;

396
  /* The prev insn in the basic block.  */
397
  struct insn_info_type * prev_insn;
398 399

  /* The linked list of insns that are in consideration for removal in
Joseph Myers committed
400
     the forwards pass through the basic block.  This pointer may be
401
     trash as it is not cleared when a wild read occurs.  The only
402
     time it is guaranteed to be correct is when the traversal starts
403
     at active_local_stores.  */
404
  struct insn_info_type * next_local_store;
405
};
406
typedef struct insn_info_type *insn_info_t;
407

408
static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
409 410

/* The linked list of stores that are under consideration in this
H.J. Lu committed
411
   basic block.  */
412
static insn_info_t active_local_stores;
413
static int active_local_stores_len;
414

415
struct dse_bb_info_type
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
  /* Pointer to the insn info for the last insn in the block.  These
     are linked so this is how all of the insns are reached.  During
     scanning this is the current insn being scanned.  */
  insn_info_t last_insn;

  /* The info for the global dataflow problem.  */


  /* This is set if the transfer function should and in the wild_read
     bitmap before applying the kill and gen sets.  That vector knocks
     out most of the bits in the bitmap and thus speeds up the
     operations.  */
  bool apply_wild_read;

431 432 433 434
  /* The following 4 bitvectors hold information about which positions
     of which stores are live or dead.  They are indexed by
     get_bitmap_index.  */

435 436
  /* The set of store positions that exist in this block before a wild read.  */
  bitmap gen;
H.J. Lu committed
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  /* The set of load positions that exist in this block above the
     same position of a store.  */
  bitmap kill;

  /* The set of stores that reach the top of the block without being
     killed by a read.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill set, this is too
     expensive.  So initially, the in set will only be created for the
     exit block and any block that contains a wild read.  */
  bitmap in;

  /* The set of stores that reach the bottom of the block from it's
     successors.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill and in set, this is
     too expensive.  So what is done is that the confluence operator
     just initializes the vector from one of the out sets of the
     successors of the block.  */
  bitmap out;
462 463 464 465

  /* The following bitvector is indexed by the reg number.  It
     contains the set of regs that are live at the current instruction
     being processed.  While it contains info for all of the
466 467
     registers, only the hard registers are actually examined.  It is used
     to assure that shift and/or add sequences that are inserted do not
Joseph Myers committed
468
     accidentally clobber live hard regs.  */
469
  bitmap regs_live;
470 471
};

472
typedef struct dse_bb_info_type *bb_info_t;
473 474

static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
475
  ("bb_info_pool");
476 477 478 479 480 481 482 483

/* Table to hold all bb_infos.  */
static bb_info_t *bb_table;

/* There is a group_info for each rtx base that is used to reference
   memory.  There are also not many of the rtx bases because they are
   very limited in scope.  */

H.J. Lu committed
484
struct group_info
485 486 487 488 489 490 491 492
{
  /* The actual base of the address.  */
  rtx rtx_base;

  /* The sequential id of the base.  This allows us to have a
     canonical ordering of these that is not based on addresses.  */
  int id;

493 494 495 496 497 498 499 500
  /* True if there are any positions that are to be processed
     globally.  */
  bool process_globally;

  /* True if the base of this group is either the frame_pointer or
     hard_frame_pointer.  */
  bool frame_related;

501 502 503
  /* A mem wrapped around the base pointer for the group in order to do
     read dependency.  It must be given BLKmode in order to encompass all
     the possible offsets from the base.  */
504
  rtx base_mem;
H.J. Lu committed
505

506 507
  /* Canonized version of base_mem's address.  */
  rtx canon_base_addr;
508 509

  /* These two sets of two bitmaps are used to keep track of how many
510
     stores are actually referencing that position from this base.  We
511
     only do this for rtx bases as this will be used to assign
512
     positions in the bitmaps for the global problem.  Bit N is set in
513 514 515 516 517 518 519 520 521 522 523 524 525 526
     store1 on the first store for offset N.  Bit N is set in store2
     for the second store to offset N.  This is all we need since we
     only care about offsets that have two or more stores for them.

     The "_n" suffix is for offsets less than 0 and the "_p" suffix is
     for 0 and greater offsets.

     There is one special case here, for stores into the stack frame,
     we will or store1 into store2 before deciding which stores look
     at globally.  This is because stores to the stack frame that have
     no other reads before the end of the function can also be
     deleted.  */
  bitmap store1_n, store1_p, store2_n, store2_p;

527 528 529 530 531
  /* These bitmaps keep track of offsets in this group escape this function.
     An offset escapes if it corresponds to a named variable whose
     addressable flag is set.  */
  bitmap escaped_n, escaped_p;

532
  /* The positions in this bitmap have the same assignments as the in,
533
     out, gen and kill bitmaps.  This bitmap is all zeros except for
534
     the positions that are occupied by stores for this group.  */
535 536 537
  bitmap group_kill;

  /* The offset_map is used to map the offsets from this base into
538
     positions in the global bitmaps.  It is only created after all of
539 540
     the all of stores have been scanned and we know which ones we
     care about.  */
H.J. Lu committed
541 542
  int *offset_map_n, *offset_map_p;
  int offset_map_size_n, offset_map_size_p;
543
};
544

545
static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
546 547 548 549 550

/* Index into the rtx_group_vec.  */
static int rtx_group_next_id;


551
static vec<group_info *> rtx_group_vec;
552 553 554 555


/* This structure holds the set of changes that are being deferred
   when removing read operation.  See replace_read.  */
H.J. Lu committed
556
struct deferred_change
557 558 559 560 561 562 563 564 565 566 567
{

  /* The mem that is being replaced.  */
  rtx *loc;

  /* The reg it is being replaced with.  */
  rtx reg;

  struct deferred_change *next;
};

568
static object_allocator<deferred_change> deferred_change_pool
569
  ("deferred_change_pool");
570

571
static deferred_change *deferred_change_list = NULL;
572

573
/* This is true except if cfun->stdarg -- i.e. we cannot do
574
   this for vararg functions because they play games with the frame.  */
575 576 577
static bool stores_off_frame_dead_at_return;

/* Counter for stats.  */
H.J. Lu committed
578 579 580
static int globally_deleted;
static int locally_deleted;

581 582
static bitmap all_blocks;

583 584 585
/* Locations that are killed by calls in the global phase.  */
static bitmap kill_on_calls;

586 587 588 589 590 591
/* The number of bits used in the global bitmaps.  */
static unsigned int current_position;

/*----------------------------------------------------------------------------
   Zeroth step.

H.J. Lu committed
592
   Initialization.
593 594 595 596 597 598
----------------------------------------------------------------------------*/


/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

599
struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
600
{
601 602
  static inline hashval_t hash (const group_info *);
  static inline bool equal (const group_info *, const group_info *);
603 604 605
};

inline bool
606 607
invariant_group_base_hasher::equal (const group_info *gi1,
				    const group_info *gi2)
608 609 610 611
{
  return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}

612
inline hashval_t
613
invariant_group_base_hasher::hash (const group_info *gi)
614 615 616 617 618
{
  int do_not_record;
  return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}

619
/* Tables of group_info structures, hashed by base value.  */
620
static hash_table<invariant_group_base_hasher> *rtx_group_table;
621

622 623 624

/* Get the GROUP for BASE.  Add a new group if it is not there.  */

625
static group_info *
626 627
get_group_info (rtx base)
{
H.J. Lu committed
628
  struct group_info tmp_gi;
629
  group_info *gi;
630
  group_info **slot;
631

632 633 634 635 636 637 638
  gcc_assert (base != NULL_RTX);

  /* Find the store_base_info structure for BASE, creating a new one
     if necessary.  */
  tmp_gi.rtx_base = base;
  slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
  gi = *slot;
639 640 641

  if (gi == NULL)
    {
642
      *slot = gi = group_info_pool.allocate ();
643 644
      gi->rtx_base = base;
      gi->id = rtx_group_next_id++;
645
      gi->base_mem = gen_rtx_MEM (BLKmode, base);
646
      gi->canon_base_addr = canon_rtx (base);
647 648 649 650 651 652 653
      gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
654
      gi->process_globally = false;
H.J. Lu committed
655
      gi->frame_related =
656 657 658 659 660
	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
      gi->offset_map_size_n = 0;
      gi->offset_map_size_p = 0;
      gi->offset_map_n = NULL;
      gi->offset_map_p = NULL;
661
      rtx_group_vec.safe_push (gi);
662 663 664 665 666 667 668 669 670 671 672 673 674 675
    }

  return gi;
}


/* Initialization of data structures.  */

static void
dse_step0 (void)
{
  locally_deleted = 0;
  globally_deleted = 0;

676 677 678 679 680
  bitmap_obstack_initialize (&dse_bitmap_obstack);
  gcc_obstack_init (&dse_obstack);

  scratch = BITMAP_ALLOC (&reg_obstack);
  kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
681 682


683
  rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
684

685
  bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
686 687
  rtx_group_next_id = 0;

688
  stores_off_frame_dead_at_return = !cfun->stdarg;
689 690 691 692 693 694 695 696 697 698

  init_alias_analysis ();
}



/*----------------------------------------------------------------------------
   First step.

   Scan all of the insns.  Any random ordering of the blocks is fine.
699
   Each block is scanned in forward order to accommodate cselib which
700 701 702 703 704
   is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/

/* Delete all of the store_info recs from INSN_INFO.  */

H.J. Lu committed
705
static void
706 707
free_store_info (insn_info_t insn_info)
{
708 709
  store_info *cur = insn_info->store_rec;
  while (cur)
710
    {
711 712 713 714 715
      store_info *next = cur->next;
      if (cur->is_large)
	BITMAP_FREE (cur->positions_needed.large.bmap);
      if (cur->cse_base)
	cse_store_info_pool.remove (cur);
716
      else
717 718
	rtx_store_info_pool.remove (cur);
      cur = next;
719 720 721 722 723 724 725
    }

  insn_info->cannot_delete = true;
  insn_info->contains_cselib_groups = false;
  insn_info->store_rec = NULL;
}

726
struct note_add_store_info
727
{
728
  rtx_insn *first, *current;
729 730
  regset fixed_regs_live;
  bool failure;
731
};
732 733 734 735 736 737 738

/* Callback for emit_inc_dec_insn_before via note_stores.
   Check if a register is clobbered which is live afterwards.  */

static void
note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
{
739
  rtx_insn *insn;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  note_add_store_info *info = (note_add_store_info *) data;

  if (!REG_P (loc))
    return;

  /* If this register is referenced by the current or an earlier insn,
     that's OK.  E.g. this applies to the register that is being incremented
     with this addition.  */
  for (insn = info->first;
       insn != NEXT_INSN (info->current);
       insn = NEXT_INSN (insn))
    if (reg_referenced_p (loc, PATTERN (insn)))
      return;

  /* If we come here, we have a clobber of a register that's only OK
     if that register is not live.  If we don't have liveness information
     available, fail now.  */
  if (!info->fixed_regs_live)
    {
759
      info->failure = true;
760 761 762
      return;
    }
  /* Now check if this is a live fixed register.  */
763 764 765 766
  unsigned int end_regno = END_REGNO (loc);
  for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
    if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
      info->failure = true;
767 768
}

769 770
/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
   SRC + SRCOFF before insn ARG.  */
771 772

static int
773 774 775
emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
			  rtx op ATTRIBUTE_UNUSED,
			  rtx dest, rtx src, rtx srcoff, void *arg)
776
{
777
  insn_info_t insn_info = (insn_info_t) arg;
778
  rtx_insn *insn = insn_info->insn, *new_insn, *cur;
779
  note_add_store_info info;
H.J. Lu committed
780

781 782
  /* We can reuse all operands without copying, because we are about
     to delete the insn that contained it.  */
783
  if (srcoff)
784 785 786 787 788 789
    {
      start_sequence ();
      emit_insn (gen_add3_insn (dest, src, srcoff));
      new_insn = get_insns ();
      end_sequence ();
    }
790
  else
791
    new_insn = gen_move_insn (dest, src);
792 793 794 795 796 797 798 799
  info.first = new_insn;
  info.fixed_regs_live = insn_info->fixed_regs_live;
  info.failure = false;
  for (cur = new_insn; cur; cur = NEXT_INSN (cur))
    {
      info.current = cur;
      note_stores (PATTERN (cur), note_add_store, &info);
    }
800

801 802 803 804 805 806
  /* If a failure was flagged above, return 1 so that for_each_inc_dec will
     return it immediately, communicating the failure to its caller.  */
  if (info.failure)
    return 1;

  emit_insn_before (new_insn, insn);
807

808
  return 0;
809 810
}

811 812 813
/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
   is there, is split into a separate insn.
   Return true on success (or if there was nothing to do), false on failure.  */
814

815 816
static bool
check_for_inc_dec_1 (insn_info_t insn_info)
817
{
David Malcolm committed
818
  rtx_insn *insn = insn_info->insn;
819 820
  rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
821 822
    return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
			     insn_info) == 0;
823
  return true;
824 825 826
}


827 828 829 830 831
/* Entry point for postreload.  If you work on reload_cse, or you need this
   anywhere else, consider if you can provide register liveness information
   and add a parameter to this function so that it can be passed down in
   insn_info.fixed_regs_live.  */
bool
David Malcolm committed
832
check_for_inc_dec (rtx_insn *insn)
833
{
834
  insn_info_type insn_info;
835 836 837 838 839 840
  rtx note;

  insn_info.insn = insn;
  insn_info.fixed_regs_live = NULL;
  note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
841 842
    return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
			     &insn_info) == 0;
843 844 845
  return true;
}

H.J. Lu committed
846
/* Delete the insn and free all of the fields inside INSN_INFO.  */
847 848 849 850 851 852 853 854 855

static void
delete_dead_store_insn (insn_info_t insn_info)
{
  read_info_t read_info;

  if (!dbg_cnt (dse))
    return;

856 857
  if (!check_for_inc_dec_1 (insn_info))
    return;
858
  if (dump_file && (dump_flags & TDF_DETAILS))
859 860
    fprintf (dump_file, "Locally deleting insn %d\n",
	     INSN_UID (insn_info->insn));
861 862 863

  free_store_info (insn_info);
  read_info = insn_info->read_rec;
H.J. Lu committed
864

865 866 867
  while (read_info)
    {
      read_info_t next = read_info->next;
868
      read_info_type_pool.remove (read_info);
869 870 871 872 873 874 875 876 877 878 879
      read_info = next;
    }
  insn_info->read_rec = NULL;

  delete_insn (insn_info->insn);
  locally_deleted++;
  insn_info->insn = NULL;

  insn_info->wild_read = false;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/* Return whether DECL, a local variable, can possibly escape the current
   function scope.  */

static bool
local_variable_can_escape (tree decl)
{
  if (TREE_ADDRESSABLE (decl))
    return true;

  /* If this is a partitioned variable, we need to consider all the variables
     in the partition.  This is necessary because a store into one of them can
     be replaced with a store into another and this may not change the outcome
     of the escape analysis.  */
  if (cfun->gimple_df->decls_to_pointers != NULL)
    {
895
      tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
896
      if (namep)
897
	return TREE_ADDRESSABLE (*namep);
898 899 900 901 902 903 904
    }

  return false;
}

/* Return whether EXPR can possibly escape the current function scope.  */

905 906 907 908 909 910 911 912
static bool
can_escape (tree expr)
{
  tree base;
  if (!expr)
    return true;
  base = get_base_address (expr);
  if (DECL_P (base)
913 914 915 916 917
      && !may_be_aliased (base)
      && !(TREE_CODE (base) == VAR_DECL
	   && !DECL_EXTERNAL (base)
	   && !TREE_STATIC (base)
	   && local_variable_can_escape (base)))
918 919 920
    return false;
  return true;
}
921 922 923 924 925

/* Set the store* bitmaps offset_map_size* fields in GROUP based on
   OFFSET and WIDTH.  */

static void
926
set_usage_bits (group_info *group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
927
                tree expr)
928 929
{
  HOST_WIDE_INT i;
930
  bool expr_escapes = can_escape (expr);
931
  if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
932 933 934 935
    for (i=offset; i<offset+width; i++)
      {
	bitmap store1;
	bitmap store2;
936
        bitmap escaped;
937 938 939 940 941
	int ai;
	if (i < 0)
	  {
	    store1 = group->store1_n;
	    store2 = group->store2_n;
942
	    escaped = group->escaped_n;
943 944 945 946 947 948
	    ai = -i;
	  }
	else
	  {
	    store1 = group->store1_p;
	    store2 = group->store2_p;
949
	    escaped = group->escaped_p;
950 951
	    ai = i;
	  }
H.J. Lu committed
952

953
	if (!bitmap_set_bit (store1, ai))
954
	  bitmap_set_bit (store2, ai);
H.J. Lu committed
955
	else
956 957 958 959 960 961 962 963 964 965 966 967
	  {
	    if (i < 0)
	      {
		if (group->offset_map_size_n < ai)
		  group->offset_map_size_n = ai;
	      }
	    else
	      {
		if (group->offset_map_size_p < ai)
		  group->offset_map_size_p = ai;
	      }
	  }
968 969
        if (expr_escapes)
          bitmap_set_bit (escaped, ai);
970 971 972
      }
}

973 974 975 976 977 978
static void
reset_active_stores (void)
{
  active_local_stores = NULL;
  active_local_stores_len = 0;
}
979

980
/* Free all READ_REC of the LAST_INSN of BB_INFO.  */
981 982

static void
983
free_read_records (bb_info_t bb_info)
984 985 986 987 988 989
{
  insn_info_t insn_info = bb_info->last_insn;
  read_info_t *ptr = &insn_info->read_rec;
  while (*ptr)
    {
      read_info_t next = (*ptr)->next;
990 991
      read_info_type_pool.remove (*ptr);
      *ptr = next;
992
    }
993 994 995 996 997 998 999 1000
}

/* Set the BB_INFO so that the last insn is marked as a wild read.  */

static void
add_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
1001
  insn_info->wild_read = true;
1002 1003
  free_read_records (bb_info);
  reset_active_stores ();
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/* Set the BB_INFO so that the last insn is marked as a wild read of
   non-frame locations.  */

static void
add_non_frame_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info->non_frame_wild_read = true;
  free_read_records (bb_info);
  reset_active_stores ();
}
1017

1018 1019 1020
/* Return true if X is a constant or one of the registers that behave
   as a constant over the life of a function.  This is equivalent to
   !rtx_varies_p for memory addresses.  */
1021 1022 1023 1024

static bool
const_or_frame_p (rtx x)
{
1025 1026 1027 1028
  if (CONSTANT_P (x))
    return true;

  if (GET_CODE (x) == REG)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    {
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || x == pic_offset_table_rtx)
	return true;
      return false;
    }
1041

1042
  return false;
1043 1044
}

H.J. Lu committed
1045 1046
/* Take all reasonable action to put the address of MEM into the form
   that we can do analysis on.
1047 1048 1049 1050 1051 1052 1053 1054 1055

   The gold standard is to get the address into the form: address +
   OFFSET where address is something that rtx_varies_p considers a
   constant.  When we can get the address in this form, we can do
   global analysis on it.  Note that for constant bases, address is
   not actually returned, only the group_id.  The address can be
   obtained from that.

   If that fails, we try cselib to get a value we can at least use
H.J. Lu committed
1056 1057
   locally.  If that fails we return false.

1058 1059 1060 1061 1062 1063 1064 1065
   The GROUP_ID is set to -1 for cselib bases and the index of the
   group for non_varying bases.

   FOR_READ is true if this is a mem read and false if not.  */

static bool
canon_address (rtx mem,
	       int *group_id,
H.J. Lu committed
1066
	       HOST_WIDE_INT *offset,
1067 1068
	       cselib_val **base)
{
1069
  machine_mode address_mode = get_address_mode (mem);
1070 1071
  rtx mem_address = XEXP (mem, 0);
  rtx expanded_address, address;
1072 1073
  int expanded;

1074
  cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1075

1076
  if (dump_file && (dump_flags & TDF_DETAILS))
1077 1078 1079 1080 1081 1082
    {
      fprintf (dump_file, "  mem: ");
      print_inline_rtx (dump_file, mem_address, 0);
      fprintf (dump_file, "\n");
    }

1083 1084 1085 1086 1087 1088 1089 1090
  /* First see if just canon_rtx (mem_address) is const or frame,
     if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
  address = NULL_RTX;
  for (expanded = 0; expanded < 2; expanded++)
    {
      if (expanded)
	{
	  /* Use cselib to replace all of the reg references with the full
H.J. Lu committed
1091
	     expression.  This will take care of the case where we have
1092

1093 1094
	     r_x = base + offset;
	     val = *r_x;
H.J. Lu committed
1095 1096

	     by making it into
1097

1098
	     val = *(base + offset);  */
1099

1100 1101
	  expanded_address = cselib_expand_value_rtx (mem_address,
						      scratch, 5);
1102

1103 1104 1105 1106 1107 1108 1109
	  /* If this fails, just go with the address from first
	     iteration.  */
	  if (!expanded_address)
	    break;
	}
      else
	expanded_address = mem_address;
1110

1111 1112
      /* Split the address into canonical BASE + OFFSET terms.  */
      address = canon_rtx (expanded_address);
1113

1114
      *offset = 0;
1115

1116
      if (dump_file && (dump_flags & TDF_DETAILS))
1117 1118 1119 1120 1121 1122 1123
	{
	  if (expanded)
	    {
	      fprintf (dump_file, "\n   after cselib_expand address: ");
	      print_inline_rtx (dump_file, expanded_address, 0);
	      fprintf (dump_file, "\n");
	    }
1124

1125 1126 1127 1128
	  fprintf (dump_file, "\n   after canon_rtx address: ");
	  print_inline_rtx (dump_file, address, 0);
	  fprintf (dump_file, "\n");
	}
1129

1130 1131
      if (GET_CODE (address) == CONST)
	address = XEXP (address, 0);
1132

1133 1134 1135 1136 1137 1138
      if (GET_CODE (address) == PLUS
	  && CONST_INT_P (XEXP (address, 1)))
	{
	  *offset = INTVAL (XEXP (address, 1));
	  address = XEXP (address, 0);
	}
1139

1140 1141
      if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
	  && const_or_frame_p (address))
1142
	{
1143
	  group_info *group = get_group_info (address);
1144

1145
	  if (dump_file && (dump_flags & TDF_DETAILS))
1146 1147 1148 1149 1150
	    fprintf (dump_file, "  gid=%d offset=%d \n",
		     group->id, (int)*offset);
	  *base = NULL;
	  *group_id = group->id;
	  return true;
1151
	}
1152 1153
    }

1154
  *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1155 1156 1157 1158
  *group_id = -1;

  if (*base == NULL)
    {
1159
      if (dump_file && (dump_flags & TDF_DETAILS))
1160 1161
	fprintf (dump_file, " no cselib val - should be a wild read.\n");
      return false;
1162
    }
1163
  if (dump_file && (dump_flags & TDF_DETAILS))
1164 1165
    fprintf (dump_file, "  varying cselib base=%u:%u offset = %d\n",
	     (*base)->uid, (*base)->hash, (int)*offset);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  return true;
}


/* Clear the rhs field from the active_local_stores array.  */

static void
clear_rhs_from_active_local_stores (void)
{
  insn_info_t ptr = active_local_stores;

  while (ptr)
    {
1179
      store_info *store_info = ptr->store_rec;
1180 1181 1182 1183 1184
      /* Skip the clobbers.  */
      while (!store_info->is_set)
	store_info = store_info->next;

      store_info->rhs = NULL;
1185
      store_info->const_rhs = NULL;
1186 1187 1188 1189 1190 1191

      ptr = ptr->next_local_store;
    }
}


1192 1193 1194
/* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */

static inline void
1195
set_position_unneeded (store_info *s_info, int pos)
1196 1197 1198
{
  if (__builtin_expect (s_info->is_large, false))
    {
1199 1200
      if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
	s_info->positions_needed.large.count++;
1201 1202 1203 1204 1205 1206 1207 1208 1209
    }
  else
    s_info->positions_needed.small_bitmask
      &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
}

/* Mark the whole store S_INFO as unneeded.  */

static inline void
1210
set_all_positions_unneeded (store_info *s_info)
1211 1212 1213 1214 1215
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int pos, end = s_info->end - s_info->begin;
      for (pos = 0; pos < end; pos++)
1216
	bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1217 1218 1219 1220 1221 1222 1223 1224 1225
      s_info->positions_needed.large.count = end;
    }
  else
    s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
}

/* Return TRUE if any bytes from S_INFO store are needed.  */

static inline bool
1226
any_positions_needed_p (store_info *s_info)
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
{
  if (__builtin_expect (s_info->is_large, false))
    return (s_info->positions_needed.large.count
	    < s_info->end - s_info->begin);
  else
    return (s_info->positions_needed.small_bitmask
	    != (unsigned HOST_WIDE_INT) 0);
}

/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
   store are needed.  */

static inline bool
1240
all_positions_needed_p (store_info *s_info, int start, int width)
1241 1242 1243 1244 1245
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int end = start + width;
      while (start < end)
1246
	if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	  return false;
      return true;
    }
  else
    {
      unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
      return (s_info->positions_needed.small_bitmask & mask) == mask;
    }
}


1258
static rtx get_stored_val (store_info *, machine_mode, HOST_WIDE_INT,
1259 1260 1261
			   HOST_WIDE_INT, basic_block, bool);


1262 1263 1264 1265 1266 1267 1268
/* BODY is an instruction pattern that belongs to INSN.  Return 1 if
   there is a candidate store, after adding it to the appropriate
   local store group if so.  */

static int
record_store (rtx body, bb_info_t bb_info)
{
1269
  rtx mem, rhs, const_rhs, mem_addr;
1270 1271 1272
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
  insn_info_t insn_info = bb_info->last_insn;
1273
  store_info *store_info = NULL;
1274 1275
  int group_id;
  cselib_val *base = NULL;
1276
  insn_info_t ptr, last, redundant_reason;
1277 1278 1279 1280 1281
  bool store_is_unused;

  if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
    return 0;

1282 1283
  mem = SET_DEST (body);

1284 1285 1286 1287
  /* If this is not used, then this cannot be used to keep the insn
     from being deleted.  On the other hand, it does provide something
     that can be used to prove that another store is dead.  */
  store_is_unused
1288
    = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

  /* Check whether that value is a suitable memory location.  */
  if (!MEM_P (mem))
    {
      /* If the set or clobber is unused, then it does not effect our
	 ability to get rid of the entire insn.  */
      if (!store_is_unused)
	insn_info->cannot_delete = true;
      return 0;
    }

  /* At this point we know mem is a mem. */
  if (GET_MODE (mem) == BLKmode)
    {
      if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
	{
1305
	  if (dump_file && (dump_flags & TDF_DETAILS))
1306 1307 1308
	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
	  add_wild_read (bb_info);
	  insn_info->cannot_delete = true;
1309
	  return 0;
1310
	}
1311 1312
      /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
	 as memset (addr, 0, 36);  */
1313 1314 1315
      else if (!MEM_SIZE_KNOWN_P (mem)
	       || MEM_SIZE (mem) <= 0
	       || MEM_SIZE (mem) > MAX_OFFSET
1316 1317
	       || GET_CODE (body) != SET
	       || !CONST_INT_P (SET_SRC (body)))
1318
	{
1319 1320 1321 1322 1323 1324 1325 1326
	  if (!store_is_unused)
	    {
	      /* If the set or clobber is unused, then it does not effect our
		 ability to get rid of the entire insn.  */
	      insn_info->cannot_delete = true;
	      clear_rhs_from_active_local_stores ();
	    }
	  return 0;
1327 1328 1329 1330 1331
	}
    }

  /* We can still process a volatile mem, we just cannot delete it.  */
  if (MEM_VOLATILE_P (mem))
1332
    insn_info->cannot_delete = true;
1333

1334
  if (!canon_address (mem, &group_id, &offset, &base))
1335 1336 1337 1338 1339
    {
      clear_rhs_from_active_local_stores ();
      return 0;
    }

1340
  if (GET_MODE (mem) == BLKmode)
1341
    width = MEM_SIZE (mem);
1342
  else
1343
    width = GET_MODE_SIZE (GET_MODE (mem));
1344

1345
  if (group_id >= 0)
1346 1347 1348
    {
      /* In the restrictive case where the base is a constant or the
	 frame pointer we can do global analysis.  */
H.J. Lu committed
1349

1350
      group_info *group
1351
	= rtx_group_vec[group_id];
1352
      tree expr = MEM_EXPR (mem);
H.J. Lu committed
1353

1354
      store_info = rtx_store_info_pool.allocate ();
1355
      set_usage_bits (group, offset, width, expr);
1356

1357
      if (dump_file && (dump_flags & TDF_DETAILS))
1358 1359 1360 1361 1362
	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
		 group_id, (int)offset, (int)(offset+width));
    }
  else
    {
1363
      if (may_be_sp_based_p (XEXP (mem, 0)))
1364
	insn_info->stack_pointer_based = true;
1365
      insn_info->contains_cselib_groups = true;
1366

1367
      store_info = cse_store_info_pool.allocate ();
1368 1369
      group_id = -1;

1370
      if (dump_file && (dump_flags & TDF_DETAILS))
1371 1372 1373 1374
	fprintf (dump_file, " processing cselib store [%d..%d)\n",
		 (int)offset, (int)(offset+width));
    }

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
  const_rhs = rhs = NULL_RTX;
  if (GET_CODE (body) == SET
      /* No place to keep the value after ra.  */
      && !reload_completed
      && (REG_P (SET_SRC (body))
	  || GET_CODE (SET_SRC (body)) == SUBREG
	  || CONSTANT_P (SET_SRC (body)))
      && !MEM_VOLATILE_P (mem)
      /* Sometimes the store and reload is used for truncation and
	 rounding.  */
      && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
    {
      rhs = SET_SRC (body);
      if (CONSTANT_P (rhs))
	const_rhs = rhs;
      else if (body == PATTERN (insn_info->insn))
	{
	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
	  if (tem && CONSTANT_P (XEXP (tem, 0)))
	    const_rhs = XEXP (tem, 0);
	}
      if (const_rhs == NULL_RTX && REG_P (rhs))
	{
	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);

	  if (tem && CONSTANT_P (tem))
	    const_rhs = tem;
	}
    }

1405 1406 1407 1408
  /* Check to see if this stores causes some other stores to be
     dead.  */
  ptr = active_local_stores;
  last = NULL;
1409
  redundant_reason = NULL;
1410
  mem = canon_rtx (mem);
1411 1412 1413

  if (group_id < 0)
    mem_addr = base->val_rtx;
1414 1415
  else
    {
1416 1417
      group_info *group = rtx_group_vec[group_id];
      mem_addr = group->canon_base_addr;
1418
    }
1419 1420
  if (offset)
    mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1421 1422 1423 1424

  while (ptr)
    {
      insn_info_t next = ptr->next_local_store;
1425
      struct store_info *s_info = ptr->store_rec;
1426
      bool del = true;
1427 1428

      /* Skip the clobbers. We delete the active insn if this insn
1429
	 shadows the set.  To have been put on the active list, it
1430 1431 1432 1433
	 has exactly on set. */
      while (!s_info->is_set)
	s_info = s_info->next;

1434
      if (s_info->group_id == group_id && s_info->cse_base == base)
1435 1436
	{
	  HOST_WIDE_INT i;
1437
	  if (dump_file && (dump_flags & TDF_DETAILS))
1438
	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
H.J. Lu committed
1439
		     INSN_UID (ptr->insn), s_info->group_id,
1440
		     (int)s_info->begin, (int)s_info->end);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	  /* Even if PTR won't be eliminated as unneeded, if both
	     PTR and this insn store the same constant value, we might
	     eliminate this insn instead.  */
	  if (s_info->const_rhs
	      && const_rhs
	      && offset >= s_info->begin
	      && offset + width <= s_info->end
	      && all_positions_needed_p (s_info, offset - s_info->begin,
					 width))
	    {
	      if (GET_MODE (mem) == BLKmode)
		{
		  if (GET_MODE (s_info->mem) == BLKmode
		      && s_info->const_rhs == const_rhs)
		    redundant_reason = ptr;
		}
	      else if (s_info->const_rhs == const0_rtx
		       && const_rhs == const0_rtx)
		redundant_reason = ptr;
	      else
		{
		  rtx val;
		  start_sequence ();
		  val = get_stored_val (s_info, GET_MODE (mem),
					offset, offset + width,
					BLOCK_FOR_INSN (insn_info->insn),
					true);
		  if (get_insns () != NULL)
		    val = NULL_RTX;
		  end_sequence ();
		  if (val && rtx_equal_p (val, const_rhs))
		    redundant_reason = ptr;
		}
	    }

	  for (i = MAX (offset, s_info->begin);
	       i < offset + width && i < s_info->end;
	       i++)
	    set_position_unneeded (s_info, i - s_info->begin);
1481 1482 1483 1484 1485 1486
	}
      else if (s_info->rhs)
	/* Need to see if it is possible for this store to overwrite
	   the value of store_info.  If it is, set the rhs to NULL to
	   keep it from being used to remove a load.  */
	{
1487 1488 1489
	  if (canon_output_dependence (s_info->mem, true,
				       mem, GET_MODE (mem),
				       mem_addr))
1490 1491 1492 1493
	    {
	      s_info->rhs = NULL;
	      s_info->const_rhs = NULL;
	    }
1494
	}
1495

1496 1497
      /* An insn can be deleted if every position of every one of
	 its s_infos is zero.  */
1498
      if (any_positions_needed_p (s_info))
1499
	del = false;
1500

1501
      if (del)
1502 1503
	{
	  insn_info_t insn_to_delete = ptr;
H.J. Lu committed
1504

1505
	  active_local_stores_len--;
1506 1507 1508 1509
	  if (last)
	    last->next_local_store = ptr->next_local_store;
	  else
	    active_local_stores = ptr->next_local_store;
H.J. Lu committed
1510

1511 1512
	  if (!insn_to_delete->cannot_delete)
	    delete_dead_store_insn (insn_to_delete);
1513 1514 1515
	}
      else
	last = ptr;
H.J. Lu committed
1516

1517 1518
      ptr = next;
    }
H.J. Lu committed
1519

1520 1521 1522
  /* Finish filling in the store_info.  */
  store_info->next = insn_info->store_rec;
  insn_info->store_rec = store_info;
1523 1524
  store_info->mem = mem;
  store_info->mem_addr = mem_addr;
1525
  store_info->cse_base = base;
1526 1527 1528 1529
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      store_info->is_large = true;
      store_info->positions_needed.large.count = 0;
1530
      store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1531 1532 1533 1534 1535 1536
    }
  else
    {
      store_info->is_large = false;
      store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
    }
1537 1538 1539 1540
  store_info->group_id = group_id;
  store_info->begin = offset;
  store_info->end = offset + width;
  store_info->is_set = GET_CODE (body) == SET;
1541 1542 1543
  store_info->rhs = rhs;
  store_info->const_rhs = const_rhs;
  store_info->redundant_reason = redundant_reason;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

  /* If this is a clobber, we return 0.  We will only be able to
     delete this insn if there is only one store USED store, but we
     can use the clobber to delete other stores earlier.  */
  return store_info->is_set ? 1 : 0;
}


static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
H.J. Lu committed
1555
  fprintf (dump_file, "%s insn=%d %s\n", start,
1556 1557 1558 1559 1560
	   INSN_UID (insn_info->insn),
	   insn_info->store_rec ? "has store" : "naked");
}


1561 1562 1563 1564 1565 1566 1567 1568 1569
/* If the modes are different and the value's source and target do not
   line up, we need to extract the value from lower part of the rhs of
   the store, shift it, and then put it into a form that can be shoved
   into the read_insn.  This function generates a right SHIFT of a
   value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
   shift sequence is returned or NULL if we failed to find a
   shift.  */

static rtx
1570
find_shift_sequence (int access_size,
1571
		     store_info *store_info,
1572
		     machine_mode read_mode,
1573
		     int shift, bool speed, bool require_cst)
1574
{
1575 1576
  machine_mode store_mode = GET_MODE (store_info->mem);
  machine_mode new_mode;
1577
  rtx read_reg = NULL;
1578 1579 1580 1581 1582 1583 1584 1585

  /* Some machines like the x86 have shift insns for each size of
     operand.  Other machines like the ppc or the ia-64 may only have
     shift insns that shift values within 32 or 64 bit registers.
     This loop tries to find the smallest shift insn that will right
     justify the value we want to read but is available in one insn on
     the machine.  */

1586 1587 1588 1589
  for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
					  MODE_INT);
       GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
       new_mode = GET_MODE_WIDER_MODE (new_mode))
1590
    {
1591 1592
      rtx target, new_reg, new_lhs;
      rtx_insn *shift_seq, *insn;
1593
      int cost;
1594

1595 1596 1597
      /* If a constant was stored into memory, try to simplify it here,
	 otherwise the cost of the shift might preclude this optimization
	 e.g. at -Os, even when no actual shift will be needed.  */
1598
      if (store_info->const_rhs)
1599 1600
	{
	  unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1601 1602
	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
				     store_mode, byte);
1603 1604 1605 1606 1607 1608 1609 1610 1611
	  if (ret && CONSTANT_P (ret))
	    {
	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
						     ret, GEN_INT (shift));
	      if (ret && CONSTANT_P (ret))
		{
		  byte = subreg_lowpart_offset (read_mode, new_mode);
		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
		  if (ret && CONSTANT_P (ret)
1612 1613
		      && (set_src_cost (ret, read_mode, speed)
			  <= COSTS_N_INSNS (1)))
1614 1615 1616 1617 1618
		    return ret;
		}
	    }
	}

1619 1620 1621
      if (require_cst)
	return NULL_RTX;

1622 1623 1624
      /* Try a wider mode if truncating the store mode to NEW_MODE
	 requires a real instruction.  */
      if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1625
	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1626 1627
	continue;

1628 1629 1630 1631 1632 1633
      /* Also try a wider mode if the necessary punning is either not
	 desirable or not possible.  */
      if (!CONSTANT_P (store_info->rhs)
	  && !MODES_TIEABLE_P (new_mode, store_mode))
	continue;

1634
      new_reg = gen_reg_rtx (new_mode);
1635 1636 1637 1638 1639 1640 1641 1642 1643

      start_sequence ();

      /* In theory we could also check for an ashr.  Ian Taylor knows
	 of one dsp where the cost of these two was not the same.  But
	 this really is a rare case anyway.  */
      target = expand_binop (new_mode, lshr_optab, new_reg,
			     GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);

1644 1645
      shift_seq = get_insns ();
      end_sequence ();
1646

1647 1648 1649 1650 1651 1652
      if (target != new_reg || shift_seq == NULL)
	continue;

      cost = 0;
      for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
	if (INSN_P (insn))
1653
	  cost += insn_rtx_cost (PATTERN (insn), speed);
1654 1655 1656 1657 1658

      /* The computation up to here is essentially independent
	 of the arguments and could be precomputed.  It may
	 not be worth doing so.  We could precompute if
	 worthwhile or at least cache the results.  The result
1659 1660
	 technically depends on both SHIFT and ACCESS_SIZE,
	 but in practice the answer will depend only on ACCESS_SIZE.  */
1661 1662 1663 1664

      if (cost > COSTS_N_INSNS (1))
	continue;

1665 1666 1667 1668 1669
      new_lhs = extract_low_bits (new_mode, store_mode,
				  copy_rtx (store_info->rhs));
      if (new_lhs == NULL_RTX)
	continue;

1670 1671 1672 1673
      /* We found an acceptable shift.  Generate a move to
	 take the value from the store and put it into the
	 shift pseudo, then shift it, then generate another
	 move to put in into the target of the read.  */
1674
      emit_move_insn (new_reg, new_lhs);
1675
      emit_insn (shift_seq);
1676
      read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1677
      break;
1678 1679
    }

1680
  return read_reg;
1681 1682 1683
}


1684 1685 1686 1687 1688 1689 1690 1691 1692
/* Call back for note_stores to find the hard regs set or clobbered by
   insn.  Data is a bitmap of the hardregs set so far.  */

static void
look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  bitmap regs_set = (bitmap) data;

  if (REG_P (x)
1693
      && HARD_REGISTER_P (x))
1694
    bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1695 1696
}

1697 1698 1699 1700 1701 1702
/* Helper function for replace_read and record_store.
   Attempt to return a value stored in STORE_INFO, from READ_BEGIN
   to one before READ_END bytes read in READ_MODE.  Return NULL
   if not successful.  If REQUIRE_CST is true, return always constant.  */

static rtx
1703
get_stored_val (store_info *store_info, machine_mode read_mode,
1704 1705 1706
		HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
		basic_block bb, bool require_cst)
{
1707
  machine_mode store_mode = GET_MODE (store_info->mem);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
  int shift;
  int access_size; /* In bytes.  */
  rtx read_reg;

  /* To get here the read is within the boundaries of the write so
     shift will never be negative.  Start out with the shift being in
     bytes.  */
  if (store_mode == BLKmode)
    shift = 0;
  else if (BYTES_BIG_ENDIAN)
    shift = store_info->end - read_end;
  else
    shift = read_begin - store_info->begin;

  access_size = shift + GET_MODE_SIZE (read_mode);

  /* From now on it is bits.  */
  shift *= BITS_PER_UNIT;

  if (shift)
    read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
    				    optimize_bb_for_speed_p (bb),
				    require_cst);
  else if (store_mode == BLKmode)
    {
      /* The store is a memset (addr, const_val, const_size).  */
      gcc_assert (CONST_INT_P (store_info->rhs));
      store_mode = int_mode_for_mode (read_mode);
      if (store_mode == BLKmode)
	read_reg = NULL_RTX;
      else if (store_info->rhs == const0_rtx)
	read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
      else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
	read_reg = NULL_RTX;
      else
	{
	  unsigned HOST_WIDE_INT c
	    = INTVAL (store_info->rhs)
	      & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
	  int shift = BITS_PER_UNIT;
	  while (shift < HOST_BITS_PER_WIDE_INT)
	    {
	      c |= (c << shift);
	      shift <<= 1;
	    }
1754
	  read_reg = gen_int_mode (c, store_mode);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	  read_reg = extract_low_bits (read_mode, store_mode, read_reg);
	}
    }
  else if (store_info->const_rhs
	   && (require_cst
	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->const_rhs));
  else
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->rhs));
  if (require_cst && read_reg && !CONSTANT_P (read_reg))
    read_reg = NULL_RTX;
  return read_reg;
}
1770

1771 1772 1773 1774 1775
/* Take a sequence of:
     A <- r1
     ...
     ... <- A

H.J. Lu committed
1776
   and change it into
1777 1778 1779 1780 1781
   r2 <- r1
   A <- r1
   ...
   ... <- r2

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
   or

   r3 <- extract (r1)
   r3 <- r3 >> shift
   r2 <- extract (r3)
   ... <- r2

   or

   r2 <- extract (r1)
   ... <- r2

   Depending on the alignment and the mode of the store and
   subsequent load.


   The STORE_INFO and STORE_INSN are for the store and READ_INFO
1799 1800 1801 1802
   and READ_INSN are for the read.  Return true if the replacement
   went ok.  */

static bool
1803
replace_read (store_info *store_info, insn_info_t store_insn,
1804 1805
	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
	      bitmap regs_live)
1806
{
1807 1808
  machine_mode store_mode = GET_MODE (store_info->mem);
  machine_mode read_mode = GET_MODE (read_info->mem);
1809 1810
  rtx_insn *insns, *this_insn;
  rtx read_reg;
1811
  basic_block bb;
1812

1813 1814 1815
  if (!dbg_cnt (dse))
    return false;

1816 1817 1818 1819 1820
  /* Create a sequence of instructions to set up the read register.
     This sequence goes immediately before the store and its result
     is read by the load.

     We need to keep this in perspective.  We are replacing a read
1821 1822 1823 1824
     with a sequence of insns, but the read will almost certainly be
     in cache, so it is not going to be an expensive one.  Thus, we
     are not willing to do a multi insn shift or worse a subroutine
     call to get rid of the read.  */
1825
  if (dump_file && (dump_flags & TDF_DETAILS))
1826 1827 1828 1829 1830
    fprintf (dump_file, "trying to replace %smode load in insn %d"
	     " from %smode store in insn %d\n",
	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
  start_sequence ();
1831 1832 1833 1834
  bb = BLOCK_FOR_INSN (read_insn->insn);
  read_reg = get_stored_val (store_info,
			     read_mode, read_info->begin, read_info->end,
			     bb, false);
1835
  if (read_reg == NULL_RTX)
1836
    {
1837
      end_sequence ();
1838
      if (dump_file && (dump_flags & TDF_DETAILS))
1839 1840
	fprintf (dump_file, " -- could not extract bits of stored value\n");
      return false;
1841
    }
1842 1843 1844 1845 1846
  /* Force the value into a new register so that it won't be clobbered
     between the store and the load.  */
  read_reg = copy_to_mode_reg (read_mode, read_reg);
  insns = get_insns ();
  end_sequence ();
1847

1848 1849 1850 1851 1852 1853 1854
  if (insns != NULL_RTX)
    {
      /* Now we have to scan the set of new instructions to see if the
	 sequence contains and sets of hardregs that happened to be
	 live at this point.  For instance, this can happen if one of
	 the insns sets the CC and the CC happened to be live at that
	 point.  This does occasionally happen, see PR 37922.  */
1855
      bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1856 1857 1858

      for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
H.J. Lu committed
1859

1860 1861 1862
      bitmap_and_into (regs_set, regs_live);
      if (!bitmap_empty_p (regs_set))
	{
1863
	  if (dump_file && (dump_flags & TDF_DETAILS))
1864
	    {
H.J. Lu committed
1865
	      fprintf (dump_file,
1866 1867 1868
		       "abandoning replacement because sequence clobbers live hardregs:");
	      df_print_regset (dump_file, regs_set);
	    }
H.J. Lu committed
1869

1870 1871 1872 1873 1874 1875
	  BITMAP_FREE (regs_set);
	  return false;
	}
      BITMAP_FREE (regs_set);
    }

1876
  if (validate_change (read_insn->insn, loc, read_reg, 0))
1877
    {
1878
      deferred_change *change = deferred_change_pool.allocate ();
H.J. Lu committed
1879

1880 1881 1882
      /* Insert this right before the store insn where it will be safe
	 from later insns that might change it before the read.  */
      emit_insn_before (insns, store_insn->insn);
H.J. Lu committed
1883

1884 1885
      /* And now for the kludge part: cselib croaks if you just
	 return at this point.  There are two reasons for this:
H.J. Lu committed
1886

1887 1888
	 1) Cselib has an idea of how many pseudos there are and
	 that does not include the new ones we just added.
H.J. Lu committed
1889

1890 1891 1892
	 2) Cselib does not know about the move insn we added
	 above the store_info, and there is no way to tell it
	 about it, because it has "moved on".
H.J. Lu committed
1893

1894 1895 1896
	 Problem (1) is fixable with a certain amount of engineering.
	 Problem (2) is requires starting the bb from scratch.  This
	 could be expensive.
H.J. Lu committed
1897

1898 1899 1900 1901 1902 1903 1904 1905
	 So we are just going to have to lie.  The move/extraction
	 insns are not really an issue, cselib did not see them.  But
	 the use of the new pseudo read_insn is a real problem because
	 cselib has not scanned this insn.  The way that we solve this
	 problem is that we are just going to put the mem back for now
	 and when we are finished with the block, we undo this.  We
	 keep a table of mems to get rid of.  At the end of the basic
	 block we can put them back.  */
H.J. Lu committed
1906

1907
      *loc = read_info->mem;
1908 1909 1910 1911
      change->next = deferred_change_list;
      deferred_change_list = change;
      change->loc = loc;
      change->reg = read_reg;
H.J. Lu committed
1912

1913 1914 1915
      /* Get rid of the read_info, from the point of view of the
	 rest of dse, play like this read never happened.  */
      read_insn->read_rec = read_info->next;
1916
      read_info_type_pool.remove (read_info);
1917
      if (dump_file && (dump_flags & TDF_DETAILS))
1918 1919 1920 1921 1922
	{
	  fprintf (dump_file, " -- replaced the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, "\n");
	}
1923
      return true;
1924
    }
H.J. Lu committed
1925
  else
1926
    {
1927
      if (dump_file && (dump_flags & TDF_DETAILS))
1928 1929 1930 1931 1932
	{
	  fprintf (dump_file, " -- replacing the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, " led to an invalid instruction\n");
	}
1933 1934 1935 1936
      return false;
    }
}

1937 1938
/* Check the address of MEM *LOC and kill any appropriate stores that may
   be active.  */
1939

1940 1941
static void
check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
1942
{
1943
  rtx mem = *loc, mem_addr;
1944 1945 1946
  insn_info_t insn_info;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
H.J. Lu committed
1947
  cselib_val *base = NULL;
1948 1949 1950 1951 1952 1953 1954 1955
  int group_id;
  read_info_t read_info;

  insn_info = bb_info->last_insn;

  if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
      || (MEM_VOLATILE_P (mem)))
    {
1956
      if (dump_file && (dump_flags & TDF_DETAILS))
1957 1958 1959
	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
1960
      return;
1961 1962 1963 1964 1965
    }

  /* If it is reading readonly mem, then there can be no conflict with
     another write. */
  if (MEM_READONLY_P (mem))
1966
    return;
1967

1968
  if (!canon_address (mem, &group_id, &offset, &base))
1969
    {
1970
      if (dump_file && (dump_flags & TDF_DETAILS))
1971 1972
	fprintf (dump_file, " adding wild read, canon_address failure.\n");
      add_wild_read (bb_info);
1973
      return;
1974 1975 1976 1977 1978 1979 1980
    }

  if (GET_MODE (mem) == BLKmode)
    width = -1;
  else
    width = GET_MODE_SIZE (GET_MODE (mem));

1981
  read_info = read_info_type_pool.allocate ();
1982 1983 1984 1985 1986 1987
  read_info->group_id = group_id;
  read_info->mem = mem;
  read_info->begin = offset;
  read_info->end = offset + width;
  read_info->next = insn_info->read_rec;
  insn_info->read_rec = read_info;
1988 1989
  if (group_id < 0)
    mem_addr = base->val_rtx;
1990 1991
  else
    {
1992 1993
      group_info *group = rtx_group_vec[group_id];
      mem_addr = group->canon_base_addr;
1994
    }
1995 1996
  if (offset)
    mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1997

1998
  if (group_id >= 0)
1999 2000 2001 2002 2003
    {
      /* This is the restricted case where the base is a constant or
	 the frame pointer and offset is a constant.  */
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
H.J. Lu committed
2004

2005
      if (dump_file && (dump_flags & TDF_DETAILS))
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	{
	  if (width == -1)
	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
		     group_id);
	  else
	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
		     group_id, (int)offset, (int)(offset+width));
	}

      while (i_ptr)
	{
	  bool remove = false;
2018
	  store_info *store_info = i_ptr->store_rec;
H.J. Lu committed
2019

2020 2021 2022
	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2023

2024 2025 2026 2027
	  /* There are three cases here.  */
	  if (store_info->group_id < 0)
	    /* We have a cselib store followed by a read from a
	       const base. */
H.J. Lu committed
2028 2029
	    remove
	      = canon_true_dependence (store_info->mem,
2030 2031
				       GET_MODE (store_info->mem),
				       store_info->mem_addr,
2032
				       mem, mem_addr);
H.J. Lu committed
2033

2034 2035 2036 2037 2038
	  else if (group_id == store_info->group_id)
	    {
	      /* This is a block mode load.  We may get lucky and
		 canon_true_dependence may save the day.  */
	      if (width == -1)
H.J. Lu committed
2039 2040
		remove
		  = canon_true_dependence (store_info->mem,
2041 2042
					   GET_MODE (store_info->mem),
					   store_info->mem_addr,
2043
					   mem, mem_addr);
H.J. Lu committed
2044

2045 2046
	      /* If this read is just reading back something that we just
		 stored, rewrite the read.  */
H.J. Lu committed
2047
	      else
2048 2049
		{
		  if (store_info->rhs
2050 2051 2052 2053 2054 2055 2056
		      && offset >= store_info->begin
		      && offset + width <= store_info->end
		      && all_positions_needed_p (store_info,
						 offset - store_info->begin,
						 width)
		      && replace_read (store_info, i_ptr, read_info,
				       insn_info, loc, bb_info->regs_live))
2057
		    return;
2058

2059 2060
		  /* The bases are the same, just see if the offsets
		     overlap.  */
H.J. Lu committed
2061
		  if ((offset < store_info->end)
2062 2063 2064 2065
		      && (offset + width > store_info->begin))
		    remove = true;
		}
	    }
H.J. Lu committed
2066 2067

	  /* else
2068 2069 2070
	     The else case that is missing here is that the
	     bases are constant but different.  There is nothing
	     to do here because there is no overlap.  */
H.J. Lu committed
2071

2072 2073
	  if (remove)
	    {
2074
	      if (dump_file && (dump_flags & TDF_DETAILS))
2075 2076
		dump_insn_info ("removing from active", i_ptr);

2077
	      active_local_stores_len--;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
H.J. Lu committed
2088
  else
2089 2090 2091
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
2092
      if (dump_file && (dump_flags & TDF_DETAILS))
2093 2094 2095 2096 2097 2098 2099 2100 2101
	{
	  fprintf (dump_file, " processing cselib load mem:");
	  print_inline_rtx (dump_file, mem, 0);
	  fprintf (dump_file, "\n");
	}

      while (i_ptr)
	{
	  bool remove = false;
2102
	  store_info *store_info = i_ptr->store_rec;
H.J. Lu committed
2103

2104
	  if (dump_file && (dump_flags & TDF_DETAILS))
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	    fprintf (dump_file, " processing cselib load against insn %d\n",
		     INSN_UID (i_ptr->insn));

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;

	  /* If this read is just reading back something that we just
	     stored, rewrite the read.  */
	  if (store_info->rhs
	      && store_info->group_id == -1
	      && store_info->cse_base == base
2117
	      && width != -1
2118 2119 2120 2121 2122 2123
	      && offset >= store_info->begin
	      && offset + width <= store_info->end
	      && all_positions_needed_p (store_info,
					 offset - store_info->begin, width)
	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
			       bb_info->regs_live))
2124
	    return;
2125

2126 2127 2128 2129
	  remove = canon_true_dependence (store_info->mem,
					  GET_MODE (store_info->mem),
					  store_info->mem_addr,
					  mem, mem_addr);
H.J. Lu committed
2130

2131 2132
	  if (remove)
	    {
2133
	      if (dump_file && (dump_flags & TDF_DETAILS))
2134
		dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2135

2136
	      active_local_stores_len--;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
}

2149
/* A note_uses callback in which DATA points the INSN_INFO for
2150 2151 2152 2153 2154 2155
   as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
   true for any part of *LOC.  */

static void
check_mem_read_use (rtx *loc, void *data)
{
2156 2157 2158 2159 2160 2161 2162
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
    {
      rtx *loc = *iter;
      if (MEM_P (*loc))
	check_mem_read_rtx (loc, (bb_info_t) data);
    }
2163 2164
}

2165 2166 2167 2168 2169 2170 2171

/* Get arguments passed to CALL_INSN.  Return TRUE if successful.
   So far it only handles arguments passed in registers.  */

static bool
get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
{
2172 2173
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
2174 2175 2176
  tree arg;
  int idx;

2177 2178
  INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
  args_so_far = pack_cumulative_args (&args_so_far_v);
2179 2180 2181 2182 2183 2184

  arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
  for (idx = 0;
       arg != void_list_node && idx < nargs;
       arg = TREE_CHAIN (arg), idx++)
    {
2185
      machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2186
      rtx reg, link, tmp;
2187
      reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
      if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
	  || GET_MODE_CLASS (mode) != MODE_INT)
	return false;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
	   link;
	   link = XEXP (link, 1))
	if (GET_CODE (XEXP (link, 0)) == USE)
	  {
	    args[idx] = XEXP (XEXP (link, 0), 0);
	    if (REG_P (args[idx])
		&& REGNO (args[idx]) == REGNO (reg)
		&& (GET_MODE (args[idx]) == mode
		    || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    <= UNITS_PER_WORD)
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    > GET_MODE_SIZE (mode)))))
	      break;
	  }
      if (!link)
	return false;

      tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
      if (GET_MODE (args[idx]) != mode)
	{
	  if (!tmp || !CONST_INT_P (tmp))
	    return false;
2216
	  tmp = gen_int_mode (INTVAL (tmp), mode);
2217 2218 2219 2220
	}
      if (tmp)
	args[idx] = tmp;

2221
      targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2222 2223 2224 2225 2226 2227
    }
  if (arg != void_list_node || idx != nargs)
    return false;
  return true;
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
/* Return a bitmap of the fixed registers contained in IN.  */

static bitmap
copy_fixed_regs (const_bitmap in)
{
  bitmap ret;

  ret = ALLOC_REG_SET (NULL);
  bitmap_and (ret, in, fixed_reg_set_regset);
  return ret;
}
2239

2240 2241 2242 2243 2244
/* Apply record_store to all candidate stores in INSN.  Mark INSN
   if some part of it is not a candidate store and assigns to a
   non-register target.  */

static void
David Malcolm committed
2245
scan_insn (bb_info_t bb_info, rtx_insn *insn)
2246 2247
{
  rtx body;
2248
  insn_info_type *insn_info = insn_info_type_pool.allocate ();
2249
  int mems_found = 0;
2250
  memset (insn_info, 0, sizeof (struct insn_info_type));
2251

2252
  if (dump_file && (dump_flags & TDF_DETAILS))
2253 2254 2255 2256 2257 2258
    fprintf (dump_file, "\n**scanning insn=%d\n",
	     INSN_UID (insn));

  insn_info->prev_insn = bb_info->last_insn;
  insn_info->insn = insn;
  bb_info->last_insn = insn_info;
H.J. Lu committed
2259

2260 2261 2262 2263 2264
  if (DEBUG_INSN_P (insn))
    {
      insn_info->cannot_delete = true;
      return;
    }
2265 2266 2267 2268 2269 2270

  /* Look at all of the uses in the insn.  */
  note_uses (&PATTERN (insn), check_mem_read_use, bb_info);

  if (CALL_P (insn))
    {
2271
      bool const_call;
2272
      rtx call, sym;
2273 2274
      tree memset_call = NULL_TREE;

2275
      insn_info->cannot_delete = true;
2276

2277
      /* Const functions cannot do anything bad i.e. read memory,
2278
	 however, they can read their parameters which may have
2279 2280 2281
	 been pushed onto the stack.
	 memset and bzero don't read memory either.  */
      const_call = RTL_CONST_CALL_P (insn);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
      if (!const_call
	  && (call = get_call_rtx_from (insn))
	  && (sym = XEXP (XEXP (call, 0), 0))
	  && GET_CODE (sym) == SYMBOL_REF
	  && SYMBOL_REF_DECL (sym)
	  && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
	  && DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (sym)) == BUILT_IN_NORMAL
	  && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (sym)) == BUILT_IN_MEMSET)
	memset_call = SYMBOL_REF_DECL (sym);

2292
      if (const_call || memset_call)
2293 2294 2295 2296
	{
	  insn_info_t i_ptr = active_local_stores;
	  insn_info_t last = NULL;

2297
	  if (dump_file && (dump_flags & TDF_DETAILS))
2298 2299
	    fprintf (dump_file, "%s call %d\n",
		     const_call ? "const" : "memset", INSN_UID (insn));
2300

2301
	  /* See the head comment of the frame_read field.  */
2302 2303 2304 2305 2306 2307 2308
	  if (reload_completed
	      /* Tail calls are storing their arguments using
		 arg pointer.  If it is a frame pointer on the target,
		 even before reload we need to kill frame pointer based
		 stores.  */
	      || (SIBLING_CALL_P (insn)
		  && HARD_FRAME_POINTER_IS_ARG_POINTER))
2309 2310 2311 2312
	    insn_info->frame_read = true;

	  /* Loop over the active stores and remove those which are
	     killed by the const function call.  */
2313 2314
	  while (i_ptr)
	    {
2315 2316 2317
	      bool remove_store = false;

	      /* The stack pointer based stores are always killed.  */
2318
	      if (i_ptr->stack_pointer_based)
2319 2320 2321 2322 2323
	        remove_store = true;

	      /* If the frame is read, the frame related stores are killed.  */
	      else if (insn_info->frame_read)
		{
2324
		  store_info *store_info = i_ptr->store_rec;
2325 2326 2327 2328 2329 2330

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;

		  if (store_info->group_id >= 0
2331
		      && rtx_group_vec[store_info->group_id]->frame_related)
2332 2333 2334 2335
		    remove_store = true;
		}

	      if (remove_store)
2336
		{
2337
		  if (dump_file && (dump_flags & TDF_DETAILS))
2338
		    dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2339

2340
		  active_local_stores_len--;
2341 2342 2343 2344 2345 2346 2347
		  if (last)
		    last->next_local_store = i_ptr->next_local_store;
		  else
		    active_local_stores = i_ptr->next_local_store;
		}
	      else
		last = i_ptr;
2348

2349 2350
	      i_ptr = i_ptr->next_local_store;
	    }
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	  if (memset_call)
	    {
	      rtx args[3];
	      if (get_call_args (insn, memset_call, args, 3)
		  && CONST_INT_P (args[1])
		  && CONST_INT_P (args[2])
		  && INTVAL (args[2]) > 0)
		{
		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2361
		  set_mem_size (mem, INTVAL (args[2]));
2362
		  body = gen_rtx_SET (mem, args[1]);
2363
		  mems_found += record_store (body, bb_info);
2364
		  if (dump_file && (dump_flags & TDF_DETAILS))
2365 2366 2367
		    fprintf (dump_file, "handling memset as BLKmode store\n");
		  if (mems_found == 1)
		    {
2368 2369 2370 2371 2372 2373
		      if (active_local_stores_len++
			  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
			{
			  active_local_stores_len = 1;
			  active_local_stores = NULL;
			}
2374 2375
		      insn_info->fixed_regs_live
			= copy_fixed_regs (bb_info->regs_live);
2376 2377 2378 2379
		      insn_info->next_local_store = active_local_stores;
		      active_local_stores = insn_info;
		    }
		}
2380 2381
	      else
		clear_rhs_from_active_local_stores ();
2382
	    }
2383
	}
2384 2385 2386 2387 2388
      else if (SIBLING_CALL_P (insn) && reload_completed)
	/* Arguments for a sibling call that are pushed to memory are passed
	   using the incoming argument pointer of the current function.  After
	   reload that might be (and likely is) frame pointer based.  */
	add_wild_read (bb_info);
2389
      else
2390 2391 2392
	/* Every other call, including pure functions, may read any memory
           that is not relative to the frame.  */
        add_non_frame_wild_read (bb_info);
2393

2394 2395 2396 2397 2398 2399
      return;
    }

  /* Assuming that there are sets in these insns, we cannot delete
     them.  */
  if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2400
      || volatile_refs_p (PATTERN (insn))
2401
      || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2402 2403 2404
      || (RTX_FRAME_RELATED_P (insn))
      || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
    insn_info->cannot_delete = true;
H.J. Lu committed
2405

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
  body = PATTERN (insn);
  if (GET_CODE (body) == PARALLEL)
    {
      int i;
      for (i = 0; i < XVECLEN (body, 0); i++)
	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
    }
  else
    mems_found += record_store (body, bb_info);

2416
  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2417
    fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2418 2419
	     mems_found, insn_info->cannot_delete ? "true" : "false");

2420 2421 2422 2423 2424
  /* If we found some sets of mems, add it into the active_local_stores so
     that it can be locally deleted if found dead or used for
     replace_read and redundant constant store elimination.  Otherwise mark
     it as cannot delete.  This simplifies the processing later.  */
  if (mems_found == 1)
2425
    {
2426 2427 2428 2429 2430 2431
      if (active_local_stores_len++
	  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
	{
	  active_local_stores_len = 1;
	  active_local_stores = NULL;
	}
2432
      insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
      insn_info->next_local_store = active_local_stores;
      active_local_stores = insn_info;
    }
  else
    insn_info->cannot_delete = true;
}


/* Remove BASE from the set of active_local_stores.  This is a
   callback from cselib that is used to get rid of the stores in
   active_local_stores.  */

static void
remove_useless_values (cselib_val *base)
{
  insn_info_t insn_info = active_local_stores;
  insn_info_t last = NULL;

  while (insn_info)
    {
2453
      store_info *store_info = insn_info->store_rec;
2454
      bool del = false;
2455 2456 2457 2458 2459

      /* If ANY of the store_infos match the cselib group that is
	 being deleted, then the insn can not be deleted.  */
      while (store_info)
	{
H.J. Lu committed
2460
	  if ((store_info->group_id == -1)
2461 2462
	      && (store_info->cse_base == base))
	    {
2463
	      del = true;
2464 2465 2466 2467 2468
	      break;
	    }
	  store_info = store_info->next;
	}

2469
      if (del)
2470
	{
2471
	  active_local_stores_len--;
2472 2473 2474 2475 2476 2477 2478 2479
	  if (last)
	    last->next_local_store = insn_info->next_local_store;
	  else
	    active_local_stores = insn_info->next_local_store;
	  free_store_info (insn_info);
	}
      else
	last = insn_info;
H.J. Lu committed
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
      insn_info = insn_info->next_local_store;
    }
}


/* Do all of step 1.  */

static void
dse_step1 (void)
{
  basic_block bb;
2492
  bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
H.J. Lu committed
2493

2494
  cselib_init (0);
2495 2496 2497 2498
  all_blocks = BITMAP_ALLOC (NULL);
  bitmap_set_bit (all_blocks, ENTRY_BLOCK);
  bitmap_set_bit (all_blocks, EXIT_BLOCK);

2499
  FOR_ALL_BB_FN (bb, cfun)
2500 2501
    {
      insn_info_t ptr;
2502
      bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2503

2504
      memset (bb_info, 0, sizeof (dse_bb_info_type));
2505
      bitmap_set_bit (all_blocks, bb->index);
2506 2507 2508 2509
      bb_info->regs_live = regs_live;

      bitmap_copy (regs_live, DF_LR_IN (bb));
      df_simulate_initialize_forwards (bb, regs_live);
2510 2511 2512 2513 2514 2515

      bb_table[bb->index] = bb_info;
      cselib_discard_hook = remove_useless_values;

      if (bb->index >= NUM_FIXED_BLOCKS)
	{
David Malcolm committed
2516
	  rtx_insn *insn;
2517 2518

	  active_local_stores = NULL;
2519
	  active_local_stores_len = 0;
2520
	  cselib_clear_table ();
H.J. Lu committed
2521

2522 2523 2524 2525 2526 2527
	  /* Scan the insns.  */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		scan_insn (bb_info, insn);
	      cselib_process_insn (insn);
2528 2529
	      if (INSN_P (insn))
		df_simulate_one_insn_forwards (bb, insn, regs_live);
2530
	    }
H.J. Lu committed
2531

2532 2533 2534 2535 2536 2537
	  /* This is something of a hack, because the global algorithm
	     is supposed to take care of the case where stores go dead
	     at the end of the function.  However, the global
	     algorithm must take a more conservative view of block
	     mode reads than the local alg does.  So to get the case
	     where you have a store to the frame followed by a non
2538
	     overlapping block more read, we look at the active local
2539 2540 2541 2542 2543
	     stores at the end of the function and delete all of the
	     frame and spill based ones.  */
	  if (stores_off_frame_dead_at_return
	      && (EDGE_COUNT (bb->succs) == 0
		  || (single_succ_p (bb)
2544
		      && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2545
		      && ! crtl->calls_eh_return)))
2546 2547 2548 2549
	    {
	      insn_info_t i_ptr = active_local_stores;
	      while (i_ptr)
		{
2550
		  store_info *store_info = i_ptr->store_rec;
2551 2552 2553 2554

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;
2555 2556 2557 2558 2559 2560
		  if (store_info->group_id >= 0)
		    {
		      group_info *group = rtx_group_vec[store_info->group_id];
		      if (group->frame_related && !i_ptr->cannot_delete)
			delete_dead_store_insn (i_ptr);
		    }
2561 2562 2563 2564 2565 2566 2567 2568 2569

		  i_ptr = i_ptr->next_local_store;
		}
	    }

	  /* Get rid of the loads that were discovered in
	     replace_read.  Cselib is finished with this block.  */
	  while (deferred_change_list)
	    {
2570
	      deferred_change *next = deferred_change_list->next;
2571 2572 2573 2574

	      /* There is no reason to validate this change.  That was
		 done earlier.  */
	      *deferred_change_list->loc = deferred_change_list->reg;
2575
	      deferred_change_pool.remove (deferred_change_list);
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	      deferred_change_list = next;
	    }

	  /* Get rid of all of the cselib based store_infos in this
	     block and mark the containing insns as not being
	     deletable.  */
	  ptr = bb_info->last_insn;
	  while (ptr)
	    {
	      if (ptr->contains_cselib_groups)
2586
		{
2587
		  store_info *s_info = ptr->store_rec;
2588 2589 2590 2591 2592 2593 2594
		  while (s_info && !s_info->is_set)
		    s_info = s_info->next;
		  if (s_info
		      && s_info->redundant_reason
		      && s_info->redundant_reason->insn
		      && !ptr->cannot_delete)
		    {
2595
		      if (dump_file && (dump_flags & TDF_DETAILS))
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
			fprintf (dump_file, "Locally deleting insn %d "
					    "because insn %d stores the "
					    "same value and couldn't be "
					    "eliminated\n",
				 INSN_UID (ptr->insn),
				 INSN_UID (s_info->redundant_reason->insn));
		      delete_dead_store_insn (ptr);
		    }
		  free_store_info (ptr);
		}
	      else
		{
2608
		  store_info *s_info;
2609 2610 2611 2612 2613

		  /* Free at least positions_needed bitmaps.  */
		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
		    if (s_info->is_large)
		      {
2614
			BITMAP_FREE (s_info->positions_needed.large.bmap);
2615 2616 2617
			s_info->is_large = false;
		      }
		}
2618 2619 2620
	      ptr = ptr->prev_insn;
	    }

2621
	  cse_store_info_pool.release ();
2622
	}
2623
      bb_info->regs_live = NULL;
2624 2625
    }

2626
  BITMAP_FREE (regs_live);
2627
  cselib_finish ();
2628
  rtx_group_table->empty ();
2629 2630 2631 2632 2633 2634 2635 2636
}


/*----------------------------------------------------------------------------
   Second step.

   Assign each byte position in the stores that we are going to
   analyze globally to a position in the bitmaps.  Returns true if
2637
   there are any bit positions assigned.
2638 2639 2640 2641 2642 2643
----------------------------------------------------------------------------*/

static void
dse_step2_init (void)
{
  unsigned int i;
2644
  group_info *group;
2645

2646
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2647 2648 2649 2650 2651 2652 2653 2654 2655
    {
      /* For all non stack related bases, we only consider a store to
	 be deletable if there are two or more stores for that
	 position.  This is because it takes one store to make the
	 other store redundant.  However, for the stores that are
	 stack related, we consider them if there is only one store
	 for the position.  We do this because the stack related
	 stores can be deleted if their is no read between them and
	 the end of the function.
H.J. Lu committed
2656

2657 2658 2659 2660 2661 2662 2663 2664 2665
	 To make this work in the current framework, we take the stack
	 related bases add all of the bits from store1 into store2.
	 This has the effect of making the eligible even if there is
	 only one store.   */

      if (stores_off_frame_dead_at_return && group->frame_related)
	{
	  bitmap_ior_into (group->store2_n, group->store1_n);
	  bitmap_ior_into (group->store2_p, group->store1_p);
2666
	  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2667
	    fprintf (dump_file, "group %d is frame related ", i);
2668 2669 2670
	}

      group->offset_map_size_n++;
2671 2672
      group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_n);
2673
      group->offset_map_size_p++;
2674 2675
      group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_p);
2676
      group->process_globally = false;
2677
      if (dump_file && (dump_flags & TDF_DETAILS))
2678
	{
H.J. Lu committed
2679
	  fprintf (dump_file, "group %d(%d+%d): ", i,
2680 2681 2682 2683 2684 2685 2686 2687 2688
		   (int)bitmap_count_bits (group->store2_n),
		   (int)bitmap_count_bits (group->store2_p));
	  bitmap_print (dump_file, group->store2_n, "n ", " ");
	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
	}
    }
}


2689
/* Init the offset tables.  */
2690 2691

static bool
2692
dse_step2 (void)
2693 2694
{
  unsigned int i;
2695
  group_info *group;
2696 2697 2698
  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;
2699
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2700 2701 2702 2703
    {
      bitmap_iterator bi;
      unsigned int j;

2704 2705
      memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
      memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2706 2707 2708 2709 2710
      bitmap_clear (group->group_kill);

      EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position);
2711 2712
          if (bitmap_bit_p (group->escaped_n, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2713 2714 2715 2716 2717
	  group->offset_map_n[j] = current_position++;
	  group->process_globally = true;
	}
      EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
	{
H.J. Lu committed
2718
	  bitmap_set_bit (group->group_kill, current_position);
2719 2720
          if (bitmap_bit_p (group->escaped_p, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	  group->offset_map_p[j] = current_position++;
	  group->process_globally = true;
	}
    }
  return current_position != 1;
}



/*----------------------------------------------------------------------------
  Third step.
H.J. Lu committed
2732

2733 2734 2735 2736 2737 2738 2739 2740
  Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/


/* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
   there, return 0.  */

static int
2741
get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
{
  if (offset < 0)
    {
      HOST_WIDE_INT offset_p = -offset;
      if (offset_p >= group_info->offset_map_size_n)
	return 0;
      return group_info->offset_map_n[offset_p];
    }
  else
    {
      if (offset >= group_info->offset_map_size_p)
	return 0;
      return group_info->offset_map_p[offset];
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
2762
static void
2763
scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2764 2765 2766 2767
{
  while (store_info)
    {
      HOST_WIDE_INT i;
2768
      group_info *group_info
2769
	= rtx_group_vec[store_info->group_id];
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
      if (group_info->process_globally)
	for (i = store_info->begin; i < store_info->end; i++)
	  {
	    int index = get_bitmap_index (group_info, i);
	    if (index != 0)
	      {
		bitmap_set_bit (gen, index);
		if (kill)
		  bitmap_clear_bit (kill, index);
	      }
	  }
      store_info = store_info->next;
    }
}


/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
2790
scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2791 2792 2793
{
  read_info_t read_info = insn_info->read_rec;
  int i;
2794
  group_info *group;
2795

2796 2797 2798
  /* If this insn reads the frame, kill all the frame related stores.  */
  if (insn_info->frame_read)
    {
2799
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2800 2801 2802 2803
	if (group->process_globally && group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
H.J. Lu committed
2804
	    bitmap_and_compl_into (gen, group->group_kill);
2805 2806
	  }
    }
2807 2808 2809 2810 2811 2812 2813
  if (insn_info->non_frame_wild_read)
    {
      /* Kill all non-frame related stores.  Kill all stores of variables that
         escape.  */
      if (kill)
        bitmap_ior_into (kill, kill_on_calls);
      bitmap_and_compl_into (gen, kill_on_calls);
2814
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2815 2816 2817 2818 2819 2820 2821
	if (group->process_globally && !group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
	    bitmap_and_compl_into (gen, group->group_kill);
	  }
    }
2822 2823
  while (read_info)
    {
2824
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	{
	  if (group->process_globally)
	    {
	      if (i == read_info->group_id)
		{
		  if (read_info->begin > read_info->end)
		    {
		      /* Begin > end for block mode reads.  */
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		  else
		    {
		      /* The groups are the same, just process the
			 offsets.  */
		      HOST_WIDE_INT j;
		      for (j = read_info->begin; j < read_info->end; j++)
			{
			  int index = get_bitmap_index (group, j);
			  if (index != 0)
			    {
			      if (kill)
				bitmap_set_bit (kill, index);
			      bitmap_clear_bit (gen, index);
			    }
			}
		    }
		}
	      else
		{
		  /* The groups are different, if the alias sets
		     conflict, clear the entire group.  We only need
		     to apply this test if the read_info is a cselib
		     read.  Anything with a constant base cannot alias
		     something else with a different constant
		     base.  */
		  if ((read_info->group_id < 0)
H.J. Lu committed
2863
		      && canon_true_dependence (group->base_mem,
2864
						GET_MODE (group->base_mem),
2865
						group->canon_base_addr,
2866
						read_info->mem, NULL_RTX))
2867 2868 2869 2870 2871 2872 2873 2874
		    {
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		}
	    }
	}
H.J. Lu committed
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
      read_info = read_info->next;
    }
}


/* Return the insn in BB_INFO before the first wild read or if there
   are no wild reads in the block, return the last insn.  */

static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info_t last_wild_read = NULL;

  while (insn_info)
    {
      if (insn_info->wild_read)
	{
	  last_wild_read = insn_info->prev_insn;
	  /* Block starts with wild read.  */
	  if (!last_wild_read)
	    return NULL;
	}

      insn_info = insn_info->prev_insn;
    }

  if (last_wild_read)
    return last_wild_read;
  else
    return bb_info->last_insn;
}


/* Scan the insns in BB_INFO starting at PTR and going to the top of
   the block in order to build the gen and kill sets for the block.
   We start at ptr which may be the last insn in the block or may be
   the first insn with a wild read.  In the latter case we are able to
   skip the rest of the block because it just does not matter:
   anything that happens is hidden by the wild read.  */

static void
2918
dse_step3_scan (basic_block bb)
2919 2920 2921 2922
{
  bb_info_t bb_info = bb_table[bb->index];
  insn_info_t insn_info;

2923
  insn_info = find_insn_before_first_wild_read (bb_info);
H.J. Lu committed
2924

2925 2926 2927 2928 2929 2930 2931
  /* In the spill case or in the no_spill case if there is no wild
     read in the block, we will need a kill set.  */
  if (insn_info == bb_info->last_insn)
    {
      if (bb_info->kill)
	bitmap_clear (bb_info->kill);
      else
2932
	bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
2933
    }
H.J. Lu committed
2934
  else
2935 2936 2937 2938 2939 2940 2941 2942 2943
    if (bb_info->kill)
      BITMAP_FREE (bb_info->kill);

  while (insn_info)
    {
      /* There may have been code deleted by the dce pass run before
	 this phase.  */
      if (insn_info->insn && INSN_P (insn_info->insn))
	{
2944 2945
	  scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
	  scan_reads (insn_info, bb_info->gen, bb_info->kill);
H.J. Lu committed
2946
	}
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

      insn_info = insn_info->prev_insn;
    }
}


/* Set the gen set of the exit block, and also any block with no
   successors that does not have a wild read.  */

static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
  /* The gen set is all 0's for the exit block except for the
     frame_pointer_group.  */
H.J. Lu committed
2961

2962 2963 2964
  if (stores_off_frame_dead_at_return)
    {
      unsigned int i;
2965
      group_info *group;
H.J. Lu committed
2966

2967
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	{
	  if (group->process_globally && group->frame_related)
	    bitmap_ior_into (bb_info->gen, group->group_kill);
	}
    }
}


/* Find all of the blocks that are not backwards reachable from the
   exit block or any block with no successors (BB).  These are the
   infinite loops or infinite self loops.  These blocks will still
   have their bits set in UNREACHABLE_BLOCKS.  */

static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
  edge e;
  edge_iterator ei;

2987
  if (bitmap_bit_p (unreachable_blocks, bb->index))
2988
    {
2989
      bitmap_clear_bit (unreachable_blocks, bb->index);
2990
      FOR_EACH_EDGE (e, ei, bb->preds)
H.J. Lu committed
2991
	{
2992
	  mark_reachable_blocks (unreachable_blocks, e->src);
H.J. Lu committed
2993
	}
2994 2995 2996 2997 2998 2999
    }
}

/* Build the transfer functions for the function.  */

static void
3000
dse_step3 ()
3001 3002
{
  basic_block bb;
3003
  sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3004 3005 3006
  sbitmap_iterator sbi;
  bitmap all_ones = NULL;
  unsigned int i;
H.J. Lu committed
3007

3008
  bitmap_ones (unreachable_blocks);
3009

3010
  FOR_ALL_BB_FN (bb, cfun)
3011 3012 3013 3014 3015
    {
      bb_info_t bb_info = bb_table[bb->index];
      if (bb_info->gen)
	bitmap_clear (bb_info->gen);
      else
3016
	bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3017 3018 3019 3020 3021 3022

      if (bb->index == ENTRY_BLOCK)
	;
      else if (bb->index == EXIT_BLOCK)
	dse_step3_exit_block_scan (bb_info);
      else
3023
	dse_step3_scan (bb);
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
      if (EDGE_COUNT (bb->succs) == 0)
	mark_reachable_blocks (unreachable_blocks, bb);

      /* If this is the second time dataflow is run, delete the old
	 sets.  */
      if (bb_info->in)
	BITMAP_FREE (bb_info->in);
      if (bb_info->out)
	BITMAP_FREE (bb_info->out);
    }

  /* For any block in an infinite loop, we must initialize the out set
     to all ones.  This could be expensive, but almost never occurs in
     practice. However, it is common in regression tests.  */
3038
  EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3039 3040 3041 3042 3043 3044 3045
    {
      if (bitmap_bit_p (all_blocks, i))
	{
	  bb_info_t bb_info = bb_table[i];
	  if (!all_ones)
	    {
	      unsigned int j;
3046
	      group_info *group;
3047

3048
	      all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3049
	      FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3050 3051 3052 3053
		bitmap_ior_into (all_ones, group->group_kill);
	    }
	  if (!bb_info->out)
	    {
3054
	      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	      bitmap_copy (bb_info->out, all_ones);
	    }
	}
    }

  if (all_ones)
    BITMAP_FREE (all_ones);
  sbitmap_free (unreachable_blocks);
}



/*----------------------------------------------------------------------------
   Fourth step.

   Solve the bitvector equations.
----------------------------------------------------------------------------*/


/* Confluence function for blocks with no successors.  Create an out
   set from the gen set of the exit block.  This block logically has
   the exit block as a successor.  */



static void
dse_confluence_0 (basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];

  if (bb->index == EXIT_BLOCK)
    return;

  if (!bb_info->out)
    {
3090
      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3091 3092 3093 3094 3095 3096 3097 3098
      bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
    }
}

/* Propagate the information from the in set of the dest of E to the
   out set of the src of E.  If the various in or out sets are not
   there, that means they are all ones.  */

3099
static bool
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
dse_confluence_n (edge e)
{
  bb_info_t src_info = bb_table[e->src->index];
  bb_info_t dest_info = bb_table[e->dest->index];

  if (dest_info->in)
    {
      if (src_info->out)
	bitmap_and_into (src_info->out, dest_info->in);
      else
	{
3111
	  src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3112 3113 3114
	  bitmap_copy (src_info->out, dest_info->in);
	}
    }
3115
  return true;
3116 3117 3118 3119
}


/* Propagate the info from the out to the in set of BB_INDEX's basic
H.J. Lu committed
3120
   block.  There are three cases:
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

   1) The block has no kill set.  In this case the kill set is all
   ones.  It does not matter what the out set of the block is, none of
   the info can reach the top.  The only thing that reaches the top is
   the gen set and we just copy the set.

   2) There is a kill set but no out set and bb has successors.  In
   this case we just return. Eventually an out set will be created and
   it is better to wait than to create a set of ones.

   3) There is both a kill and out set.  We apply the obvious transfer
   function.
*/

static bool
dse_transfer_function (int bb_index)
{
  bb_info_t bb_info = bb_table[bb_index];

  if (bb_info->kill)
    {
      if (bb_info->out)
	{
	  /* Case 3 above.  */
	  if (bb_info->in)
H.J. Lu committed
3146
	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3147 3148 3149
					 bb_info->out, bb_info->kill);
	  else
	    {
3150
	      bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
H.J. Lu committed
3151
	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
				    bb_info->out, bb_info->kill);
	      return true;
	    }
	}
      else
	/* Case 2 above.  */
	return false;
    }
  else
    {
      /* Case 1 above.  If there is already an in set, nothing
	 happens.  */
      if (bb_info->in)
	return false;
      else
	{
3168
	  bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	  bitmap_copy (bb_info->in, bb_info->gen);
	  return true;
	}
    }
}

/* Solve the dataflow equations.  */

static void
dse_step4 (void)
{
H.J. Lu committed
3180 3181 3182
  df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
		      dse_confluence_n, dse_transfer_function,
	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3183
		      df_get_n_blocks (DF_BACKWARD));
3184
  if (dump_file && (dump_flags & TDF_DETAILS))
3185 3186 3187 3188
    {
      basic_block bb;

      fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3189
      FOR_ALL_BB_FN (bb, cfun)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	{
	  bb_info_t bb_info = bb_table[bb->index];

	  df_print_bb_index (bb, dump_file);
	  if (bb_info->in)
	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
	  else
	    fprintf (dump_file, "  in:   *MISSING*\n");
	  if (bb_info->gen)
	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
	  else
	    fprintf (dump_file, "  gen:  *MISSING*\n");
	  if (bb_info->kill)
	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
	  else
	    fprintf (dump_file, "  kill: *MISSING*\n");
	  if (bb_info->out)
	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
	  else
	    fprintf (dump_file, "  out:  *MISSING*\n\n");
	}
    }
}



/*----------------------------------------------------------------------------
   Fifth step.

3219
   Delete the stores that can only be deleted using the global information.
3220 3221 3222 3223
----------------------------------------------------------------------------*/


static void
3224
dse_step5 (void)
3225 3226
{
  basic_block bb;
3227
  FOR_EACH_BB_FN (bb, cfun)
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  if (dump_file && insn_info->insn)
	    {
	      fprintf (dump_file, "starting to process insn %d\n",
		       INSN_UID (insn_info->insn));
	      bitmap_print (dump_file, v, "  v:  ", "\n");
	    }

	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
H.J. Lu committed
3245
	  if (insn_info->insn
3246 3247 3248 3249
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
3250
	      store_info *store_info = insn_info->store_rec;
3251 3252 3253

	      /* Try to delete the current insn.  */
	      deleted = true;
H.J. Lu committed
3254

3255 3256 3257 3258
	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

3259 3260 3261 3262
	      HOST_WIDE_INT i;
	      group_info *group_info = rtx_group_vec[store_info->group_id];

	      for (i = store_info->begin; i < store_info->end; i++)
3263
		{
3264
		  int index = get_bitmap_index (group_info, i);
H.J. Lu committed
3265

3266 3267 3268
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
		  if (index == 0 || !bitmap_bit_p (v, index))
3269
		    {
3270
		      if (dump_file && (dump_flags & TDF_DETAILS))
3271 3272 3273
			fprintf (dump_file, "failing at i = %d\n", (int)i);
		      deleted = false;
		      break;
3274 3275 3276 3277
		    }
		}
	      if (deleted)
		{
3278 3279
		  if (dbg_cnt (dse)
		      && check_for_inc_dec_1 (insn_info))
3280 3281 3282 3283 3284 3285 3286 3287
		    {
		      delete_insn (insn_info->insn);
		      insn_info->insn = NULL;
		      globally_deleted++;
		    }
		}
	    }
	  /* We do want to process the local info if the insn was
3288
	     deleted.  For instance, if the insn did a wild read, we
3289
	     no longer need to trash the info.  */
H.J. Lu committed
3290
	  if (insn_info->insn
3291 3292 3293
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
3294
	      scan_stores (insn_info->store_rec, v, NULL);
3295 3296
	      if (insn_info->wild_read)
		{
3297
		  if (dump_file && (dump_flags & TDF_DETAILS))
3298 3299 3300
		    fprintf (dump_file, "wild read\n");
		  bitmap_clear (v);
		}
3301 3302
	      else if (insn_info->read_rec
                       || insn_info->non_frame_wild_read)
3303
		{
3304
		  if (dump_file && !insn_info->non_frame_wild_read)
3305
		    fprintf (dump_file, "regular read\n");
3306
                  else if (dump_file && (dump_flags & TDF_DETAILS))
3307
		    fprintf (dump_file, "non-frame wild read\n");
3308
		  scan_reads (insn_info, v, NULL);
3309 3310
		}
	    }
H.J. Lu committed
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	  insn_info = insn_info->prev_insn;
	}
    }
}



/*----------------------------------------------------------------------------
   Sixth step.

3322 3323 3324 3325 3326 3327 3328 3329 3330
   Delete stores made redundant by earlier stores (which store the same
   value) that couldn't be eliminated.
----------------------------------------------------------------------------*/

static void
dse_step6 (void)
{
  basic_block bb;

3331
  FOR_ALL_BB_FN (bb, cfun)
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;

      while (insn_info)
	{
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn
	      && INSN_P (insn_info->insn)
	      && !insn_info->cannot_delete)
	    {
3344
	      store_info *s_info = insn_info->store_rec;
3345 3346 3347 3348 3349 3350 3351 3352

	      while (s_info && !s_info->is_set)
		s_info = s_info->next;
	      if (s_info
		  && s_info->redundant_reason
		  && s_info->redundant_reason->insn
		  && INSN_P (s_info->redundant_reason->insn))
		{
David Malcolm committed
3353
		  rtx_insn *rinsn = s_info->redundant_reason->insn;
3354
		  if (dump_file && (dump_flags & TDF_DETAILS))
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
		    fprintf (dump_file, "Locally deleting insn %d "
					"because insn %d stores the "
					"same value and couldn't be "
					"eliminated\n",
					INSN_UID (insn_info->insn),
					INSN_UID (rinsn));
		  delete_dead_store_insn (insn_info);
		}
	    }
	  insn_info = insn_info->prev_insn;
	}
    }
}

/*----------------------------------------------------------------------------
   Seventh step.

H.J. Lu committed
3372
   Destroy everything left standing.
3373 3374
----------------------------------------------------------------------------*/

H.J. Lu committed
3375
static void
3376
dse_step7 (void)
3377
{
3378 3379
  bitmap_obstack_release (&dse_bitmap_obstack);
  obstack_free (&dse_obstack, NULL);
3380

3381 3382
  end_alias_analysis ();
  free (bb_table);
3383 3384
  delete rtx_group_table;
  rtx_group_table = NULL;
3385
  rtx_group_vec.release ();
3386 3387 3388
  BITMAP_FREE (all_blocks);
  BITMAP_FREE (scratch);

3389
  rtx_store_info_pool.release ();
3390 3391 3392 3393 3394
  read_info_type_pool.release ();
  insn_info_type_pool.release ();
  dse_bb_info_type_pool.release ();
  group_info_pool.release ();
  deferred_change_pool.release ();
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
}


/* -------------------------------------------------------------------------
   DSE
   ------------------------------------------------------------------------- */

/* Callback for running pass_rtl_dse.  */

static unsigned int
rest_of_handle_dse (void)
{
  df_set_flags (DF_DEFER_INSN_RESCAN);

3409 3410 3411 3412 3413
  /* Need the notes since we must track live hardregs in the forwards
     direction.  */
  df_note_add_problem ();
  df_analyze ();

3414 3415 3416
  dse_step0 ();
  dse_step1 ();
  dse_step2_init ();
3417
  if (dse_step2 ())
3418 3419 3420
    {
      df_set_flags (DF_LR_RUN_DCE);
      df_analyze ();
3421
      if (dump_file && (dump_flags & TDF_DETAILS))
3422
	fprintf (dump_file, "doing global processing\n");
3423
      dse_step3 ();
3424
      dse_step4 ();
3425
      dse_step5 ();
3426 3427
    }

3428
  dse_step6 ();
3429
  dse_step7 ();
3430 3431

  if (dump_file)
3432 3433
    fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
	     locally_deleted, globally_deleted);
3434 3435 3436 3437 3438 3439 3440 3441

  /* DSE can eliminate potentially-trapping MEMs.
     Remove any EH edges associated with them.  */
  if ((locally_deleted || globally_deleted)
      && cfun->can_throw_non_call_exceptions
      && purge_all_dead_edges ())
    cleanup_cfg (0);

3442 3443 3444
  return 0;
}

3445 3446 3447
namespace {

const pass_data pass_data_rtl_dse1 =
3448 3449 3450 3451 3452 3453 3454 3455 3456
{
  RTL_PASS, /* type */
  "dse1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_DSE1, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
3457
  TODO_df_finish, /* todo_flags_finish */
3458 3459
};

3460
class pass_rtl_dse1 : public rtl_opt_pass
3461 3462
{
public:
3463 3464
  pass_rtl_dse1 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3465 3466 3467
  {}

  /* opt_pass methods: */
3468 3469 3470 3471 3472
  virtual bool gate (function *)
    {
      return optimize > 0 && flag_dse && dbg_cnt (dse1);
    }

3473
  virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3474 3475 3476

}; // class pass_rtl_dse1

3477 3478
} // anon namespace

3479 3480 3481 3482 3483 3484
rtl_opt_pass *
make_pass_rtl_dse1 (gcc::context *ctxt)
{
  return new pass_rtl_dse1 (ctxt);
}

3485 3486 3487
namespace {

const pass_data pass_data_rtl_dse2 =
3488 3489 3490 3491 3492 3493 3494 3495 3496
{
  RTL_PASS, /* type */
  "dse2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_DSE2, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
3497
  TODO_df_finish, /* todo_flags_finish */
3498
};
3499

3500
class pass_rtl_dse2 : public rtl_opt_pass
3501 3502
{
public:
3503 3504
  pass_rtl_dse2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3505 3506 3507
  {}

  /* opt_pass methods: */
3508 3509 3510 3511 3512
  virtual bool gate (function *)
    {
      return optimize > 0 && flag_dse && dbg_cnt (dse2);
    }

3513
  virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3514 3515 3516

}; // class pass_rtl_dse2

3517 3518
} // anon namespace

3519 3520 3521 3522 3523
rtl_opt_pass *
make_pass_rtl_dse2 (gcc::context *ctxt)
{
  return new pass_rtl_dse2 (ctxt);
}