cgraph.c 79.6 KB
Newer Older
1
/* Callgraph handling code.
2
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3
   Free Software Foundation, Inc.
4 5 6 7 8 9
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21

22
/*  This file contains basic routines manipulating call graph
Mike Stump committed
23

24 25 26 27 28 29 30
The callgraph:

    The call-graph is data structure designed for intra-procedural optimization
    but it is also used in non-unit-at-a-time compilation to allow easier code
    sharing.

    The call-graph consist of nodes and edges represented via linked lists.
31
    Each function (external or not) corresponds to the unique node.
32 33

    The mapping from declarations to call-graph nodes is done using hash table
34 35
    based on DECL_UID.  The call-graph nodes are created lazily using
    cgraph_node function when called for unknown declaration.
36

37 38 39 40 41 42 43 44 45 46
    The callgraph at the moment does not represent all indirect calls or calls
    from other compilation units.  Flag NEEDED is set for each node that may be
    accessed in such an invisible way and it shall be considered an entry point
    to the callgraph.

    On the other hand, the callgraph currently does contain some edges for
    indirect calls with unknown callees which can be accessed through
    indirect_calls field of a node.  It should be noted however that at the
    moment only calls which are potential candidates for indirect inlining are
    added there.
47

48
    Interprocedural information:
49

50
      Callgraph is place to store data needed for interprocedural optimization.
51
      All data structures are divided into three components: local_info that
52
      is produced while analyzing the function, global_info that is result
53
      of global walking of the callgraph on the end of compilation and
54 55 56
      rtl_info used by RTL backend to propagate data from already compiled
      functions to their callers.

57 58 59
      Moreover, each node has a uid which can be used to keep information in
      on-the-side arrays.  UIDs are reused and therefore reasonably dense.

60 61 62 63
    Inlining plans:

      The function inlining information is decided in advance and maintained
      in the callgraph as so called inline plan.
64
      For each inlined call, the callee's node is cloned to represent the
65
      new function copy produced by inliner.
66 67 68
      Each inlined call gets a unique corresponding clone node of the callee
      and the data structure is updated while inlining is performed, so
      the clones are eliminated and their callee edges redirected to the
Mike Stump committed
69
      caller.
70 71

      Each edge has "inline_failed" field.  When the field is set to NULL,
72
      the call will be inlined.  When it is non-NULL it contains a reason
73
      why inlining wasn't performed.  */
74

75 76 77 78 79
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
Jan Hubicka committed
80
#include "tree-inline.h"
81 82 83 84 85 86 87
#include "langhooks.h"
#include "hashtab.h"
#include "toplev.h"
#include "flags.h"
#include "ggc.h"
#include "debug.h"
#include "target.h"
Jan Hubicka committed
88
#include "basic-block.h"
89
#include "cgraph.h"
90
#include "output.h"
91
#include "intl.h"
92
#include "gimple.h"
93
#include "tree-dump.h"
94
#include "tree-flow.h"
95
#include "value-prof.h"
96
#include "except.h"
Joseph Myers committed
97
#include "diagnostic-core.h"
98
#include "rtl.h"
99
#include "ipa-utils.h"
100
#include "lto-streamer.h"
101

102 103 104 105
static void cgraph_node_remove_callers (struct cgraph_node *node);
static inline void cgraph_edge_remove_caller (struct cgraph_edge *e);
static inline void cgraph_edge_remove_callee (struct cgraph_edge *e);

106
/* Hash table used to convert declarations into nodes.  */
107
static GTY((param_is (struct cgraph_node))) htab_t cgraph_hash;
108 109
/* Hash table used to convert assembler names into nodes.  */
static GTY((param_is (struct cgraph_node))) htab_t assembler_name_hash;
110 111

/* The linked list of cgraph nodes.  */
112
struct cgraph_node *cgraph_nodes;
113

114 115 116
/* Queue of cgraph nodes scheduled to be lowered.  */
struct cgraph_node *cgraph_nodes_queue;

117
/* Queue of cgraph nodes scheduled to be added into cgraph.  This is a
118
   secondary queue used during optimization to accommodate passes that
119
   may generate new functions that need to be optimized and expanded.  */
120
struct cgraph_node *cgraph_new_nodes;
Diego Novillo committed
121

122
/* Number of nodes in existence.  */
123
int cgraph_n_nodes;
124

125 126 127
/* Maximal uid used in cgraph nodes.  */
int cgraph_max_uid;

128 129 130
/* Maximal uid used in cgraph edges.  */
int cgraph_edge_max_uid;

131 132 133
/* Maximal pid used for profiling */
int cgraph_max_pid;

Jan Hubicka committed
134 135 136
/* Set when whole unit has been analyzed so we can access global info.  */
bool cgraph_global_info_ready = false;

137 138 139
/* What state callgraph is in right now.  */
enum cgraph_state cgraph_state = CGRAPH_STATE_CONSTRUCTION;

Jan Hubicka committed
140 141 142
/* Set when the cgraph is fully build and the basic flags are computed.  */
bool cgraph_function_flags_ready = false;

143 144 145 146 147 148 149 150 151 152 153
/* Linked list of cgraph asm nodes.  */
struct cgraph_asm_node *cgraph_asm_nodes;

/* Last node in cgraph_asm_nodes.  */
static GTY(()) struct cgraph_asm_node *cgraph_asm_last_node;

/* The order index of the next cgraph node to be created.  This is
   used so that we can sort the cgraph nodes in order by when we saw
   them, to support -fno-toplevel-reorder.  */
int cgraph_order;

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/* List of hooks trigerred on cgraph_edge events.  */
struct cgraph_edge_hook_list {
  cgraph_edge_hook hook;
  void *data;
  struct cgraph_edge_hook_list *next;
};

/* List of hooks trigerred on cgraph_node events.  */
struct cgraph_node_hook_list {
  cgraph_node_hook hook;
  void *data;
  struct cgraph_node_hook_list *next;
};

/* List of hooks trigerred on events involving two cgraph_edges.  */
struct cgraph_2edge_hook_list {
  cgraph_2edge_hook hook;
  void *data;
  struct cgraph_2edge_hook_list *next;
};

/* List of hooks trigerred on events involving two cgraph_nodes.  */
struct cgraph_2node_hook_list {
  cgraph_2node_hook hook;
  void *data;
  struct cgraph_2node_hook_list *next;
};

/* List of hooks triggered when an edge is removed.  */
struct cgraph_edge_hook_list *first_cgraph_edge_removal_hook;
/* List of hooks triggered when a node is removed.  */
struct cgraph_node_hook_list *first_cgraph_node_removal_hook;
/* List of hooks triggered when an edge is duplicated.  */
struct cgraph_2edge_hook_list *first_cgraph_edge_duplicated_hook;
/* List of hooks triggered when a node is duplicated.  */
struct cgraph_2node_hook_list *first_cgraph_node_duplicated_hook;
190 191
/* List of hooks triggered when an function is inserted.  */
struct cgraph_node_hook_list *first_cgraph_function_insertion_hook;
192

193 194 195
/* Head of a linked list of unused (freed) call graph nodes.
   Do not GTY((delete)) this list so UIDs gets reliably recycled.  */
static GTY(()) struct cgraph_node *free_nodes;
196 197 198 199
/* Head of a linked list of unused (freed) call graph edges.
   Do not GTY((delete)) this list so UIDs gets reliably recycled.  */
static GTY(()) struct cgraph_edge *free_edges;

200 201 202
/* Macros to access the next item in the list of free cgraph nodes and
   edges. */
#define NEXT_FREE_NODE(NODE) (NODE)->next
203
#define NEXT_FREE_EDGE(EDGE) (EDGE)->prev_caller
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

/* Register HOOK to be called with DATA on each removed edge.  */
struct cgraph_edge_hook_list *
cgraph_add_edge_removal_hook (cgraph_edge_hook hook, void *data)
{
  struct cgraph_edge_hook_list *entry;
  struct cgraph_edge_hook_list **ptr = &first_cgraph_edge_removal_hook;

  entry = (struct cgraph_edge_hook_list *) xmalloc (sizeof (*entry));
  entry->hook = hook;
  entry->data = data;
  entry->next = NULL;
  while (*ptr)
    ptr = &(*ptr)->next;
  *ptr = entry;
  return entry;
}

/* Remove ENTRY from the list of hooks called on removing edges.  */
void
cgraph_remove_edge_removal_hook (struct cgraph_edge_hook_list *entry)
{
  struct cgraph_edge_hook_list **ptr = &first_cgraph_edge_removal_hook;

  while (*ptr != entry)
    ptr = &(*ptr)->next;
  *ptr = entry->next;
231
  free (entry);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
}

/* Call all edge removal hooks.  */
static void
cgraph_call_edge_removal_hooks (struct cgraph_edge *e)
{
  struct cgraph_edge_hook_list *entry = first_cgraph_edge_removal_hook;
  while (entry)
  {
    entry->hook (e, entry->data);
    entry = entry->next;
  }
}

/* Register HOOK to be called with DATA on each removed node.  */
struct cgraph_node_hook_list *
cgraph_add_node_removal_hook (cgraph_node_hook hook, void *data)
{
  struct cgraph_node_hook_list *entry;
  struct cgraph_node_hook_list **ptr = &first_cgraph_node_removal_hook;

  entry = (struct cgraph_node_hook_list *) xmalloc (sizeof (*entry));
  entry->hook = hook;
  entry->data = data;
  entry->next = NULL;
  while (*ptr)
    ptr = &(*ptr)->next;
  *ptr = entry;
  return entry;
}

/* Remove ENTRY from the list of hooks called on removing nodes.  */
void
cgraph_remove_node_removal_hook (struct cgraph_node_hook_list *entry)
{
  struct cgraph_node_hook_list **ptr = &first_cgraph_node_removal_hook;

  while (*ptr != entry)
    ptr = &(*ptr)->next;
  *ptr = entry->next;
272
  free (entry);
273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

/* Call all node removal hooks.  */
static void
cgraph_call_node_removal_hooks (struct cgraph_node *node)
{
  struct cgraph_node_hook_list *entry = first_cgraph_node_removal_hook;
  while (entry)
  {
    entry->hook (node, entry->data);
    entry = entry->next;
  }
}

287
/* Register HOOK to be called with DATA on each inserted node.  */
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
struct cgraph_node_hook_list *
cgraph_add_function_insertion_hook (cgraph_node_hook hook, void *data)
{
  struct cgraph_node_hook_list *entry;
  struct cgraph_node_hook_list **ptr = &first_cgraph_function_insertion_hook;

  entry = (struct cgraph_node_hook_list *) xmalloc (sizeof (*entry));
  entry->hook = hook;
  entry->data = data;
  entry->next = NULL;
  while (*ptr)
    ptr = &(*ptr)->next;
  *ptr = entry;
  return entry;
}

304
/* Remove ENTRY from the list of hooks called on inserted nodes.  */
305 306 307 308 309 310 311 312
void
cgraph_remove_function_insertion_hook (struct cgraph_node_hook_list *entry)
{
  struct cgraph_node_hook_list **ptr = &first_cgraph_function_insertion_hook;

  while (*ptr != entry)
    ptr = &(*ptr)->next;
  *ptr = entry->next;
313
  free (entry);
314 315
}

316
/* Call all node insertion hooks.  */
317 318 319 320 321 322 323 324 325 326 327
void
cgraph_call_function_insertion_hooks (struct cgraph_node *node)
{
  struct cgraph_node_hook_list *entry = first_cgraph_function_insertion_hook;
  while (entry)
  {
    entry->hook (node, entry->data);
    entry = entry->next;
  }
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/* Register HOOK to be called with DATA on each duplicated edge.  */
struct cgraph_2edge_hook_list *
cgraph_add_edge_duplication_hook (cgraph_2edge_hook hook, void *data)
{
  struct cgraph_2edge_hook_list *entry;
  struct cgraph_2edge_hook_list **ptr = &first_cgraph_edge_duplicated_hook;

  entry = (struct cgraph_2edge_hook_list *) xmalloc (sizeof (*entry));
  entry->hook = hook;
  entry->data = data;
  entry->next = NULL;
  while (*ptr)
    ptr = &(*ptr)->next;
  *ptr = entry;
  return entry;
}

/* Remove ENTRY from the list of hooks called on duplicating edges.  */
void
cgraph_remove_edge_duplication_hook (struct cgraph_2edge_hook_list *entry)
{
  struct cgraph_2edge_hook_list **ptr = &first_cgraph_edge_duplicated_hook;

  while (*ptr != entry)
    ptr = &(*ptr)->next;
  *ptr = entry->next;
354
  free (entry);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

/* Call all edge duplication hooks.  */
static void
cgraph_call_edge_duplication_hooks (struct cgraph_edge *cs1,
				    struct cgraph_edge *cs2)
{
  struct cgraph_2edge_hook_list *entry = first_cgraph_edge_duplicated_hook;
  while (entry)
  {
    entry->hook (cs1, cs2, entry->data);
    entry = entry->next;
  }
}

/* Register HOOK to be called with DATA on each duplicated node.  */
struct cgraph_2node_hook_list *
cgraph_add_node_duplication_hook (cgraph_2node_hook hook, void *data)
{
  struct cgraph_2node_hook_list *entry;
  struct cgraph_2node_hook_list **ptr = &first_cgraph_node_duplicated_hook;

  entry = (struct cgraph_2node_hook_list *) xmalloc (sizeof (*entry));
  entry->hook = hook;
  entry->data = data;
  entry->next = NULL;
  while (*ptr)
    ptr = &(*ptr)->next;
  *ptr = entry;
  return entry;
}

/* Remove ENTRY from the list of hooks called on duplicating nodes.  */
void
cgraph_remove_node_duplication_hook (struct cgraph_2node_hook_list *entry)
{
  struct cgraph_2node_hook_list **ptr = &first_cgraph_node_duplicated_hook;

  while (*ptr != entry)
    ptr = &(*ptr)->next;
  *ptr = entry->next;
396
  free (entry);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

/* Call all node duplication hooks.  */
static void
cgraph_call_node_duplication_hooks (struct cgraph_node *node1,
				    struct cgraph_node *node2)
{
  struct cgraph_2node_hook_list *entry = first_cgraph_node_duplicated_hook;
  while (entry)
  {
    entry->hook (node1, node2, entry->data);
    entry = entry->next;
  }
}

412 413 414
/* Returns a hash code for P.  */

static hashval_t
415
hash_node (const void *p)
416
{
417
  const struct cgraph_node *n = (const struct cgraph_node *) p;
Zack Weinberg committed
418
  return (hashval_t) DECL_UID (n->decl);
419 420
}

Diego Novillo committed
421

422
/* Returns nonzero if P1 and P2 are equal.  */
423 424

static int
425
eq_node (const void *p1, const void *p2)
426
{
427 428
  const struct cgraph_node *n1 = (const struct cgraph_node *) p1;
  const struct cgraph_node *n2 = (const struct cgraph_node *) p2;
Zack Weinberg committed
429
  return DECL_UID (n1->decl) == DECL_UID (n2->decl);
430 431
}

432
/* Allocate new callgraph node.  */
433

434 435
static inline struct cgraph_node *
cgraph_allocate_node (void)
436 437 438
{
  struct cgraph_node *node;

439 440 441 442 443 444 445
  if (free_nodes)
    {
      node = free_nodes;
      free_nodes = NEXT_FREE_NODE (node);
    }
  else
    {
446
      node = ggc_alloc_cleared_cgraph_node ();
447 448 449
      node->uid = cgraph_max_uid++;
    }

450 451 452 453 454 455 456 457 458 459
  return node;
}

/* Allocate new callgraph node and insert it into basic data structures.  */

static struct cgraph_node *
cgraph_create_node (void)
{
  struct cgraph_node *node = cgraph_allocate_node ();

460
  node->next = cgraph_nodes;
461
  node->pid = -1;
462
  node->order = cgraph_order++;
463 464 465
  if (cgraph_nodes)
    cgraph_nodes->previous = node;
  node->previous = NULL;
466
  node->global.estimated_growth = INT_MIN;
467
  node->frequency = NODE_FREQUENCY_NORMAL;
468
  ipa_empty_ref_list (&node->ref_list);
469 470 471 472 473
  cgraph_nodes = node;
  cgraph_n_nodes++;
  return node;
}

474
/* Return cgraph node assigned to DECL.  Create new one when needed.  */
475

476
struct cgraph_node *
477
cgraph_node (tree decl)
478
{
Zack Weinberg committed
479
  struct cgraph_node key, *node, **slot;
480

481
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
482

483
  if (!cgraph_hash)
484
    cgraph_hash = htab_create_ggc (10, hash_node, eq_node, NULL);
485

Zack Weinberg committed
486 487 488 489
  key.decl = decl;

  slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, &key, INSERT);

490
  if (*slot)
491 492
    {
      node = *slot;
493 494
      if (node->same_body_alias)
	node = node->same_body;
495 496
      return node;
    }
497 498

  node = cgraph_create_node ();
499 500
  node->decl = decl;
  *slot = node;
501
  if (DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL)
502 503 504 505 506
    {
      node->origin = cgraph_node (DECL_CONTEXT (decl));
      node->next_nested = node->origin->nested;
      node->origin->nested = node;
    }
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  if (assembler_name_hash)
    {
      void **aslot;
      tree name = DECL_ASSEMBLER_NAME (decl);

      aslot = htab_find_slot_with_hash (assembler_name_hash, name,
					decl_assembler_name_hash (name),
					INSERT);
      /* We can have multiple declarations with same assembler name. For C++
	 it is __builtin_strlen and strlen, for instance.  Do we need to
	 record them all?  Original implementation marked just first one
	 so lets hope for the best.  */
      if (*aslot == NULL)
	*aslot = node;
    }
522 523 524
  return node;
}

525
/* Mark ALIAS as an alias to DECL.  */
526

527 528
static struct cgraph_node *
cgraph_same_body_alias_1 (tree alias, tree decl)
529 530 531 532 533 534 535 536 537 538 539 540 541
{
  struct cgraph_node key, *alias_node, *decl_node, **slot;

  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
  gcc_assert (TREE_CODE (alias) == FUNCTION_DECL);
  decl_node = cgraph_node (decl);

  key.decl = alias;

  slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, &key, INSERT);

  /* If the cgraph_node has been already created, fail.  */
  if (*slot)
542
    return NULL;
543 544 545 546 547 548 549 550 551

  alias_node = cgraph_allocate_node ();
  alias_node->decl = alias;
  alias_node->same_body_alias = 1;
  alias_node->same_body = decl_node;
  alias_node->previous = NULL;
  if (decl_node->same_body)
    decl_node->same_body->previous = alias_node;
  alias_node->next = decl_node->same_body;
552
  alias_node->thunk.alias = decl;
553 554
  decl_node->same_body = alias_node;
  *slot = alias_node;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  return alias_node;
}

/* Attempt to mark ALIAS as an alias to DECL.  Return TRUE if successful.
   Same body aliases are output whenever the body of DECL is output,
   and cgraph_node (ALIAS) transparently returns cgraph_node (DECL).   */

bool
cgraph_same_body_alias (tree alias, tree decl)
{
#ifndef ASM_OUTPUT_DEF
  /* If aliases aren't supported by the assembler, fail.  */
  return false;
#endif

  /*gcc_assert (!assembler_name_hash);*/

  return cgraph_same_body_alias_1 (alias, decl) != NULL;
}

void
cgraph_add_thunk (tree alias, tree decl, bool this_adjusting,
		  HOST_WIDE_INT fixed_offset, HOST_WIDE_INT virtual_value,
		  tree virtual_offset,
		  tree real_alias)
{
  struct cgraph_node *node = cgraph_get_node (alias);

  if (node)
    {
      gcc_assert (node->local.finalized);
      gcc_assert (!node->same_body);
      cgraph_remove_node (node);
    }
  
  node = cgraph_same_body_alias_1 (alias, decl);
  gcc_assert (node);
#ifdef ENABLE_CHECKING
  gcc_assert (!virtual_offset
  	      || tree_int_cst_equal (virtual_offset, size_int (virtual_value)));
#endif
  node->thunk.fixed_offset = fixed_offset;
  node->thunk.this_adjusting = this_adjusting;
  node->thunk.virtual_value = virtual_value;
  node->thunk.virtual_offset_p = virtual_offset != NULL;
  node->thunk.alias = real_alias;
  node->thunk.thunk_p = true;
602 603
}

604 605 606 607
/* Returns the cgraph node assigned to DECL or NULL if no cgraph node
   is assigned.  */

struct cgraph_node *
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
cgraph_get_node_or_alias (tree decl)
{
  struct cgraph_node key, *node = NULL, **slot;

  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);

  if (!cgraph_hash)
    return NULL;

  key.decl = decl;

  slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, &key,
						 NO_INSERT);

  if (slot && *slot)
    node = *slot;
  return node;
}

/* Returns the cgraph node assigned to DECL or NULL if no cgraph node
   is assigned.  */

struct cgraph_node *
631 632 633 634 635 636 637
cgraph_get_node (tree decl)
{
  struct cgraph_node key, *node = NULL, **slot;

  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);

  if (!cgraph_hash)
638
    return NULL;
639 640 641 642 643 644 645

  key.decl = decl;

  slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, &key,
						 NO_INSERT);

  if (slot && *slot)
646 647 648 649 650
    {
      node = *slot;
      if (node->same_body_alias)
	node = node->same_body;
    }
651 652 653
  return node;
}

654 655 656 657 658 659 660 661 662 663 664 665 666
/* Insert already constructed node into hashtable.  */

void
cgraph_insert_node_to_hashtable (struct cgraph_node *node)
{
  struct cgraph_node **slot;

  slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, node, INSERT);

  gcc_assert (!*slot);
  *slot = node;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/* Returns a hash code for P.  */

static hashval_t
hash_node_by_assembler_name (const void *p)
{
  const struct cgraph_node *n = (const struct cgraph_node *) p;
  return (hashval_t) decl_assembler_name_hash (DECL_ASSEMBLER_NAME (n->decl));
}

/* Returns nonzero if P1 and P2 are equal.  */

static int
eq_assembler_name (const void *p1, const void *p2)
{
  const struct cgraph_node *n1 = (const struct cgraph_node *) p1;
  const_tree name = (const_tree)p2;
  return (decl_assembler_name_equal (n1->decl, name));
}
685 686 687 688 689 690 691 692

/* Return the cgraph node that has ASMNAME for its DECL_ASSEMBLER_NAME.
   Return NULL if there's no such node.  */

struct cgraph_node *
cgraph_node_for_asm (tree asmname)
{
  struct cgraph_node *node;
693
  void **slot;
694

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  if (!assembler_name_hash)
    {
      assembler_name_hash =
	htab_create_ggc (10, hash_node_by_assembler_name, eq_assembler_name,
			 NULL);
      for (node = cgraph_nodes; node; node = node->next)
        if (!node->global.inlined_to)
	  {
	    tree name = DECL_ASSEMBLER_NAME (node->decl);
	    slot = htab_find_slot_with_hash (assembler_name_hash, name,
					     decl_assembler_name_hash (name),
					     INSERT);
	    /* We can have multiple declarations with same assembler name. For C++
	       it is __builtin_strlen and strlen, for instance.  Do we need to
	       record them all?  Original implementation marked just first one
	       so lets hope for the best.  */
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	    if (!*slot)
	      *slot = node;
	    if (node->same_body)
	      {
		struct cgraph_node *alias;

		for (alias = node->same_body; alias; alias = alias->next)
		  {
		    hashval_t hash;
		    name = DECL_ASSEMBLER_NAME (alias->decl);
		    hash = decl_assembler_name_hash (name);
		    slot = htab_find_slot_with_hash (assembler_name_hash, name,
						     hash,  INSERT);
		    if (!*slot)
		      *slot = alias;
		  }
	      }
728 729 730 731 732 733
	  }
    }

  slot = htab_find_slot_with_hash (assembler_name_hash, asmname,
				   decl_assembler_name_hash (asmname),
				   NO_INSERT);
734

735
  if (slot)
736 737 738 739 740 741
    {
      node = (struct cgraph_node *) *slot;
      if (node->same_body_alias)
	node = node->same_body;
      return node;
    }
742 743 744
  return NULL;
}

745 746 747 748 749
/* Returns a hash value for X (which really is a die_struct).  */

static hashval_t
edge_hash (const void *x)
{
750
  return htab_hash_pointer (((const struct cgraph_edge *) x)->call_stmt);
751 752 753 754 755 756 757
}

/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */

static int
edge_eq (const void *x, const void *y)
{
758
  return ((const struct cgraph_edge *) x)->call_stmt == y;
759 760
}

761 762 763 764 765 766 767 768 769 770 771 772 773
/* Add call graph edge E to call site hash of its caller.  */

static inline void
cgraph_add_edge_to_call_site_hash (struct cgraph_edge *e)
{
  void **slot;
  slot = htab_find_slot_with_hash (e->caller->call_site_hash,
				   e->call_stmt,
				   htab_hash_pointer (e->call_stmt),
				   INSERT);
  gcc_assert (!*slot);
  *slot = e;
}
774 775 776 777

/* Return the callgraph edge representing the GIMPLE_CALL statement
   CALL_STMT.  */

778
struct cgraph_edge *
779
cgraph_edge (struct cgraph_node *node, gimple call_stmt)
780
{
781 782 783 784
  struct cgraph_edge *e, *e2;
  int n = 0;

  if (node->call_site_hash)
785 786
    return (struct cgraph_edge *)
      htab_find_with_hash (node->call_site_hash, call_stmt,
787
      	                   htab_hash_pointer (call_stmt));
788 789 790

  /* This loop may turn out to be performance problem.  In such case adding
     hashtables into call nodes with very many edges is probably best
791
     solution.  It is not good idea to add pointer into CALL_EXPR itself
792 793
     because we want to make possible having multiple cgraph nodes representing
     different clones of the same body before the body is actually cloned.  */
794
  for (e = node->callees; e; e = e->next_callee)
795 796 797 798 799
    {
      if (e->call_stmt == call_stmt)
	break;
      n++;
    }
800

801 802 803 804 805 806 807 808
  if (!e)
    for (e = node->indirect_calls; e; e = e->next_callee)
      {
	if (e->call_stmt == call_stmt)
	  break;
	n++;
      }

809 810 811 812
  if (n > 100)
    {
      node->call_site_hash = htab_create_ggc (120, edge_hash, edge_eq, NULL);
      for (e2 = node->callees; e2; e2 = e2->next_callee)
813 814 815
	cgraph_add_edge_to_call_site_hash (e2);
      for (e2 = node->indirect_calls; e2; e2 = e2->next_callee)
	cgraph_add_edge_to_call_site_hash (e2);
816
    }
817

818 819 820
  return e;
}

821

822
/* Change field call_stmt of edge E to NEW_STMT.  */
823

824
void
825
cgraph_set_call_stmt (struct cgraph_edge *e, gimple new_stmt)
826
{
827 828
  tree decl;

829 830 831 832 833 834
  if (e->caller->call_site_hash)
    {
      htab_remove_elt_with_hash (e->caller->call_site_hash,
				 e->call_stmt,
				 htab_hash_pointer (e->call_stmt));
    }
835

836
  e->call_stmt = new_stmt;
837 838 839 840 841 842 843 844 845 846
  if (e->indirect_unknown_callee
      && (decl = gimple_call_fndecl (new_stmt)))
    {
      /* Constant propagation (and possibly also inlining?) can turn an
	 indirect call into a direct one.  */
      struct cgraph_node *new_callee = cgraph_node (decl);

      cgraph_make_edge_direct (e, new_callee);
    }

847
  push_cfun (DECL_STRUCT_FUNCTION (e->caller->decl));
848
  e->can_throw_external = stmt_can_throw_external (new_stmt);
849
  pop_cfun ();
850
  if (e->caller->call_site_hash)
851
    cgraph_add_edge_to_call_site_hash (e);
852 853
}

854 855
/* Like cgraph_set_call_stmt but walk the clone tree and update all
   clones sharing the same function body.  */
856 857 858 859 860 861 862 863 864 865

void
cgraph_set_call_stmt_including_clones (struct cgraph_node *orig,
				       gimple old_stmt, gimple new_stmt)
{
  struct cgraph_node *node;
  struct cgraph_edge *edge = cgraph_edge (orig, old_stmt);

  if (edge)
    cgraph_set_call_stmt (edge, new_stmt);
866 867 868 869

  node = orig->clones;
  if (node)
    while (node != orig)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
      {
	struct cgraph_edge *edge = cgraph_edge (node, old_stmt);
	if (edge)
	  cgraph_set_call_stmt (edge, new_stmt);
	if (node->clones)
	  node = node->clones;
	else if (node->next_sibling_clone)
	  node = node->next_sibling_clone;
	else
	  {
	    while (node != orig && !node->next_sibling_clone)
	      node = node->clone_of;
	    if (node != orig)
	      node = node->next_sibling_clone;
	  }
      }
}

/* Like cgraph_create_edge walk the clone tree and update all clones sharing
889 890
   same function body.  If clones already have edge for OLD_STMT; only
   update the edge same way as cgraph_set_call_stmt_including_clones does.
H.J. Lu committed
891

892
   TODO: COUNT and LOOP_DEPTH should be properly distributed based on relative
893
   frequencies of the clones.  */
894 895

void
896 897
cgraph_create_edge_including_clones (struct cgraph_node *orig,
				     struct cgraph_node *callee,
898
				     gimple old_stmt,
899 900
				     gimple stmt, gcov_type count,
				     int freq, int loop_depth,
901 902 903
				     cgraph_inline_failed_t reason)
{
  struct cgraph_node *node;
904
  struct cgraph_edge *edge;
905

906
  if (!cgraph_edge (orig, stmt))
907 908 909 910
    {
      edge = cgraph_create_edge (orig, callee, stmt, count, freq, loop_depth);
      edge->inline_failed = reason;
    }
911

912 913 914
  node = orig->clones;
  if (node)
    while (node != orig)
915
      {
916 917 918 919 920 921 922 923 924
	struct cgraph_edge *edge = cgraph_edge (node, old_stmt);

        /* It is possible that clones already contain the edge while
	   master didn't.  Either we promoted indirect call into direct
	   call in the clone or we are processing clones of unreachable
	   master where edges has been rmeoved.  */
	if (edge)
	  cgraph_set_call_stmt (edge, stmt);
	else if (!cgraph_edge (node, stmt))
925 926 927 928 929
	  {
	    edge = cgraph_create_edge (node, callee, stmt, count,
				       freq, loop_depth);
	    edge->inline_failed = reason;
	  }
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

	if (node->clones)
	  node = node->clones;
	else if (node->next_sibling_clone)
	  node = node->next_sibling_clone;
	else
	  {
	    while (node != orig && !node->next_sibling_clone)
	      node = node->clone_of;
	    if (node != orig)
	      node = node->next_sibling_clone;
	  }
      }
}

945 946 947 948 949 950 951 952
/* Give initial reasons why inlining would fail on EDGE.  This gets either
   nullified or usually overwritten by more precise reasons later.  */

static void
initialize_inline_failed (struct cgraph_edge *e)
{
  struct cgraph_node *callee = e->callee;

953 954 955
  if (e->indirect_unknown_callee)
    e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
  else if (!callee->analyzed)
956 957 958 959 960
    e->inline_failed = CIF_BODY_NOT_AVAILABLE;
  else if (callee->local.redefined_extern_inline)
    e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
  else if (!callee->local.inlinable)
    e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
961
  else if (e->call_stmt && gimple_call_cannot_inline_p (e->call_stmt))
962 963 964 965 966
    e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
  else
    e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
}

967 968 969
/* Allocate a cgraph_edge structure and fill it with data according to the
   parameters of which only CALLEE can be NULL (when creating an indirect call
   edge).  */
970

971 972 973
static struct cgraph_edge *
cgraph_create_edge_1 (struct cgraph_node *caller, struct cgraph_node *callee,
		       gimple call_stmt, gcov_type count, int freq, int nest)
974
{
975
  struct cgraph_edge *edge;
976

977 978 979 980
  /* LTO does not actually have access to the call_stmt since these
     have not been loaded yet.  */
  if (call_stmt)
    {
981
#ifdef ENABLE_CHECKING
982 983 984
      /* This is rather pricely check possibly trigerring construction of
	 call stmt hashtable.  */
      gcc_assert (!cgraph_edge (caller, call_stmt));
985 986
#endif

987 988
      gcc_assert (is_gimple_call (call_stmt));
    }
989

990 991 992 993 994 995 996
  if (free_edges)
    {
      edge = free_edges;
      free_edges = NEXT_FREE_EDGE (edge);
    }
  else
    {
997
      edge = ggc_alloc_cgraph_edge ();
998 999 1000
      edge->uid = cgraph_edge_max_uid++;
    }

1001
  edge->aux = NULL;
1002 1003
  edge->caller = caller;
  edge->callee = callee;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
  edge->prev_caller = NULL;
  edge->next_caller = NULL;
  edge->prev_callee = NULL;
  edge->next_callee = NULL;

  edge->count = count;
  gcc_assert (count >= 0);
  edge->frequency = freq;
  gcc_assert (freq >= 0);
  gcc_assert (freq <= CGRAPH_FREQ_MAX);
  edge->loop_nest = nest;

1016
  edge->call_stmt = call_stmt;
1017
  push_cfun (DECL_STRUCT_FUNCTION (caller->decl));
1018 1019
  edge->can_throw_external
    = call_stmt ? stmt_can_throw_external (call_stmt) : false;
1020
  pop_cfun ();
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
  edge->call_stmt_cannot_inline_p =
    (call_stmt ? gimple_call_cannot_inline_p (call_stmt) : false);
  if (call_stmt && caller->call_site_hash)
    cgraph_add_edge_to_call_site_hash (edge);

  edge->indirect_info = NULL;
  edge->indirect_inlining_edge = 0;

  return edge;
}

/* Create edge from CALLER to CALLEE in the cgraph.  */

struct cgraph_edge *
cgraph_create_edge (struct cgraph_node *caller, struct cgraph_node *callee,
		    gimple call_stmt, gcov_type count, int freq, int nest)
{
  struct cgraph_edge *edge = cgraph_create_edge_1 (caller, callee, call_stmt,
						   count, freq, nest);

  edge->indirect_unknown_callee = 0;
  initialize_inline_failed (edge);

1044
  edge->next_caller = callee->callers;
1045 1046
  if (callee->callers)
    callee->callers->prev_caller = edge;
1047
  edge->next_callee = caller->callees;
1048 1049
  if (caller->callees)
    caller->callees->prev_callee = edge;
1050 1051
  caller->callees = edge;
  callee->callers = edge;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
  return edge;
}


/* Create an indirect edge with a yet-undetermined callee where the call
   statement destination is a formal parameter of the caller with index
   PARAM_INDEX. */

struct cgraph_edge *
cgraph_create_indirect_edge (struct cgraph_node *caller, gimple call_stmt,
1063
			     int ecf_flags,
1064 1065 1066 1067 1068 1069
			     gcov_type count, int freq, int nest)
{
  struct cgraph_edge *edge = cgraph_create_edge_1 (caller, NULL, call_stmt,
						   count, freq, nest);

  edge->indirect_unknown_callee = 1;
1070 1071
  initialize_inline_failed (edge);

1072
  edge->indirect_info = ggc_alloc_cleared_cgraph_indirect_call_info ();
1073
  edge->indirect_info->param_index = -1;
1074
  edge->indirect_info->ecf_flags = ecf_flags;
1075 1076 1077 1078 1079 1080

  edge->next_callee = caller->indirect_calls;
  if (caller->indirect_calls)
    caller->indirect_calls->prev_callee = edge;
  caller->indirect_calls = edge;

1081 1082 1083
  return edge;
}

1084 1085 1086 1087 1088
/* Remove the edge E from the list of the callers of the callee.  */

static inline void
cgraph_edge_remove_callee (struct cgraph_edge *e)
{
1089
  gcc_assert (!e->indirect_unknown_callee);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
  if (e->prev_caller)
    e->prev_caller->next_caller = e->next_caller;
  if (e->next_caller)
    e->next_caller->prev_caller = e->prev_caller;
  if (!e->prev_caller)
    e->callee->callers = e->next_caller;
}

/* Remove the edge E from the list of the callees of the caller.  */

static inline void
cgraph_edge_remove_caller (struct cgraph_edge *e)
{
  if (e->prev_callee)
    e->prev_callee->next_callee = e->next_callee;
  if (e->next_callee)
    e->next_callee->prev_callee = e->prev_callee;
  if (!e->prev_callee)
1108 1109 1110 1111 1112 1113
    {
      if (e->indirect_unknown_callee)
	e->caller->indirect_calls = e->next_callee;
      else
	e->caller->callees = e->next_callee;
    }
1114 1115 1116 1117
  if (e->caller->call_site_hash)
    htab_remove_elt_with_hash (e->caller->call_site_hash,
			       e->call_stmt,
	  		       htab_hash_pointer (e->call_stmt));
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127
/* Put the edge onto the free list.  */

static void
cgraph_free_edge (struct cgraph_edge *e)
{
  int uid = e->uid;

  /* Clear out the edge so we do not dangle pointers.  */
1128
  memset (e, 0, sizeof (*e));
1129 1130 1131 1132 1133
  e->uid = uid;
  NEXT_FREE_EDGE (e) = free_edges;
  free_edges = e;
}

1134
/* Remove the edge E in the cgraph.  */
1135

1136
void
1137
cgraph_remove_edge (struct cgraph_edge *e)
1138
{
1139
  /* Call all edge removal hooks.  */
1140
  cgraph_call_edge_removal_hooks (e);
1141

1142 1143 1144
  if (!e->indirect_unknown_callee)
    /* Remove from callers list of the callee.  */
    cgraph_edge_remove_callee (e);
1145 1146 1147

  /* Remove from callees list of the callers.  */
  cgraph_edge_remove_caller (e);
1148 1149 1150

  /* Put the edge onto the free list.  */
  cgraph_free_edge (e);
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/* Set callee of call graph edge E and add it to the corresponding set of
   callers. */

static void
cgraph_set_edge_callee (struct cgraph_edge *e, struct cgraph_node *n)
{
  e->prev_caller = NULL;
  if (n->callers)
    n->callers->prev_caller = e;
  e->next_caller = n->callers;
  n->callers = e;
  e->callee = n;
}

1167 1168 1169 1170 1171 1172
/* Redirect callee of E to N.  The function does not update underlying
   call expression.  */

void
cgraph_redirect_edge_callee (struct cgraph_edge *e, struct cgraph_node *n)
{
1173 1174
  /* Remove from callers list of the current callee.  */
  cgraph_edge_remove_callee (e);
1175

1176
  /* Insert to callers list of the new callee.  */
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  cgraph_set_edge_callee (e, n);
}

/* Make an indirect EDGE with an unknown callee an ordinary edge leading to
   CALLEE.  */

void
cgraph_make_edge_direct (struct cgraph_edge *edge, struct cgraph_node *callee)
{
  edge->indirect_unknown_callee = 0;

  /* Get the edge out of the indirect edge list. */
  if (edge->prev_callee)
    edge->prev_callee->next_callee = edge->next_callee;
  if (edge->next_callee)
    edge->next_callee->prev_callee = edge->prev_callee;
  if (!edge->prev_callee)
    edge->caller->indirect_calls = edge->next_callee;

  /* Put it into the normal callee list */
  edge->prev_callee = NULL;
  edge->next_callee = edge->caller->callees;
  if (edge->caller->callees)
    edge->caller->callees->prev_callee = edge;
  edge->caller->callees = edge;

  /* Insert to callers list of the new callee.  */
  cgraph_set_edge_callee (edge, callee);

  /* We need to re-determine the inlining status of the edge.  */
  initialize_inline_failed (edge);
1208 1209
}

1210 1211

/* Update or remove the corresponding cgraph edge if a GIMPLE_CALL
1212 1213
   OLD_STMT changed into NEW_STMT.  OLD_CALL is gimple_call_fndecl
   of OLD_STMT if it was previously call statement.  */
1214

1215 1216
static void
cgraph_update_edges_for_call_stmt_node (struct cgraph_node *node,
1217
					gimple old_stmt, tree old_call, gimple new_stmt)
1218
{
1219
  tree new_call = (is_gimple_call (new_stmt)) ? gimple_call_fndecl (new_stmt) : 0;
1220

1221 1222 1223 1224 1225
  /* We are seeing indirect calls, then there is nothing to update.  */
  if (!new_call && !old_call)
    return;
  /* See if we turned indirect call into direct call or folded call to one builtin
     into different bultin.  */
1226 1227 1228 1229
  if (old_call != new_call)
    {
      struct cgraph_edge *e = cgraph_edge (node, old_stmt);
      struct cgraph_edge *ne = NULL;
1230 1231 1232
      gcov_type count;
      int frequency;
      int loop_nest;
1233 1234 1235

      if (e)
	{
1236 1237 1238 1239
	  /* See if the edge is already there and has the correct callee.  It
	     might be so because of indirect inlining has already updated
	     it.  */
	  if (new_call && e->callee && e->callee->decl == new_call)
1240 1241 1242 1243 1244 1245 1246 1247
	    return;

	  /* Otherwise remove edge and create new one; we can't simply redirect
	     since function has changed, so inline plan and other information
	     attached to edge is invalid.  */
	  count = e->count;
	  frequency = e->frequency;
	  loop_nest = e->loop_nest;
1248
	  cgraph_remove_edge (e);
1249 1250 1251 1252 1253 1254 1255 1256 1257
	}
      else
	{
	  /* We are seeing new direct call; compute profile info based on BB.  */
	  basic_block bb = gimple_bb (new_stmt);
	  count = bb->count;
	  frequency = compute_call_stmt_bb_frequency (current_function_decl,
						      bb);
	  loop_nest = bb->loop_depth;
1258 1259
	}

1260 1261 1262 1263 1264 1265 1266
      if (new_call)
	{
	  ne = cgraph_create_edge (node, cgraph_node (new_call),
				   new_stmt, count, frequency,
				   loop_nest);
	  gcc_assert (ne->inline_failed);
	}
1267
    }
1268 1269 1270
  /* We only updated the call stmt; update pointer in cgraph edge..  */
  else if (old_stmt != new_stmt)
    cgraph_set_call_stmt (cgraph_edge (node, old_stmt), new_stmt);
1271 1272
}

1273
/* Update or remove the corresponding cgraph edge if a GIMPLE_CALL
1274 1275
   OLD_STMT changed into NEW_STMT.  OLD_DECL is gimple_call_fndecl
   of OLD_STMT before it was updated (updating can happen inplace).  */
1276 1277

void
1278
cgraph_update_edges_for_call_stmt (gimple old_stmt, tree old_decl, gimple new_stmt)
1279 1280 1281 1282
{
  struct cgraph_node *orig = cgraph_node (cfun->decl);
  struct cgraph_node *node;

1283
  cgraph_update_edges_for_call_stmt_node (orig, old_stmt, old_decl, new_stmt);
1284 1285 1286
  if (orig->clones)
    for (node = orig->clones; node != orig;)
      {
1287
        cgraph_update_edges_for_call_stmt_node (node, old_stmt, old_decl, new_stmt);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (node->clones)
	  node = node->clones;
	else if (node->next_sibling_clone)
	  node = node->next_sibling_clone;
	else
	  {
	    while (node != orig && !node->next_sibling_clone)
	      node = node->clone_of;
	    if (node != orig)
	      node = node->next_sibling_clone;
	  }
      }
}

1302

1303 1304 1305 1306 1307
/* Remove all callees from the node.  */

void
cgraph_node_remove_callees (struct cgraph_node *node)
{
1308
  struct cgraph_edge *e, *f;
1309 1310 1311 1312

  /* It is sufficient to remove the edges from the lists of callers of
     the callees.  The callee list of the node can be zapped with one
     assignment.  */
1313
  for (e = node->callees; e; e = f)
1314
    {
1315
      f = e->next_callee;
1316
      cgraph_call_edge_removal_hooks (e);
1317 1318
      if (!e->indirect_unknown_callee)
	cgraph_edge_remove_callee (e);
1319
      cgraph_free_edge (e);
1320
    }
1321 1322 1323 1324 1325 1326 1327 1328 1329
  for (e = node->indirect_calls; e; e = f)
    {
      f = e->next_callee;
      cgraph_call_edge_removal_hooks (e);
      if (!e->indirect_unknown_callee)
	cgraph_edge_remove_callee (e);
      cgraph_free_edge (e);
    }
  node->indirect_calls = NULL;
1330
  node->callees = NULL;
1331 1332 1333 1334 1335
  if (node->call_site_hash)
    {
      htab_delete (node->call_site_hash);
      node->call_site_hash = NULL;
    }
1336 1337 1338 1339 1340 1341 1342
}

/* Remove all callers from the node.  */

static void
cgraph_node_remove_callers (struct cgraph_node *node)
{
1343
  struct cgraph_edge *e, *f;
1344 1345 1346 1347

  /* It is sufficient to remove the edges from the lists of callees of
     the callers.  The caller list of the node can be zapped with one
     assignment.  */
1348
  for (e = node->callers; e; e = f)
1349
    {
1350
      f = e->next_caller;
1351 1352
      cgraph_call_edge_removal_hooks (e);
      cgraph_edge_remove_caller (e);
1353
      cgraph_free_edge (e);
1354
    }
1355
  node->callers = NULL;
1356 1357
}

1358 1359 1360 1361 1362
/* Release memory used to represent body of function NODE.  */

void
cgraph_release_function_body (struct cgraph_node *node)
{
1363
  if (DECL_STRUCT_FUNCTION (node->decl))
1364 1365 1366
    {
      tree old_decl = current_function_decl;
      push_cfun (DECL_STRUCT_FUNCTION (node->decl));
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
      if (cfun->gimple_df)
	{
	  current_function_decl = node->decl;
	  delete_tree_ssa ();
	  delete_tree_cfg_annotations ();
	  cfun->eh = NULL;
	  current_function_decl = old_decl;
	}
      if (cfun->cfg)
	{
	  gcc_assert (dom_computed[0] == DOM_NONE);
	  gcc_assert (dom_computed[1] == DOM_NONE);
	  clear_edges ();
	}
1381 1382 1383
      if (cfun->value_histograms)
	free_histograms ();
      gcc_assert (!current_loops);
1384
      pop_cfun();
1385 1386
      gimple_set_body (node->decl, NULL);
      VEC_free (ipa_opt_pass, heap,
1387
      		node->ipa_transforms_to_apply);
1388 1389 1390 1391
      /* Struct function hangs a lot of data that would leak if we didn't
         removed all pointers to it.   */
      ggc_free (DECL_STRUCT_FUNCTION (node->decl));
      DECL_STRUCT_FUNCTION (node->decl) = NULL;
1392 1393
    }
  DECL_SAVED_TREE (node->decl) = NULL;
1394 1395 1396 1397 1398
  /* If the node is abstract and needed, then do not clear DECL_INITIAL
     of its associated function function declaration because it's
     needed to emit debug info later.  */
  if (!node->abstract_and_needed)
    DECL_INITIAL (node->decl) = error_mark_node;
1399 1400
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/* Remove same body alias node.  */

void
cgraph_remove_same_body_alias (struct cgraph_node *node)
{
  void **slot;
  int uid = node->uid;

  gcc_assert (node->same_body_alias);
  if (node->previous)
    node->previous->next = node->next;
  else
    node->same_body->same_body = node->next;
  if (node->next)
    node->next->previous = node->previous;
  node->next = NULL;
  node->previous = NULL;
  slot = htab_find_slot (cgraph_hash, node, NO_INSERT);
  if (*slot == node)
    htab_clear_slot (cgraph_hash, slot);
  if (assembler_name_hash)
    {
      tree name = DECL_ASSEMBLER_NAME (node->decl);
      slot = htab_find_slot_with_hash (assembler_name_hash, name,
				       decl_assembler_name_hash (name),
				       NO_INSERT);
      if (slot && *slot == node)
	htab_clear_slot (assembler_name_hash, slot);
    }

  /* Clear out the node to NULL all pointers and add the node to the free
     list.  */
  memset (node, 0, sizeof(*node));
  node->uid = uid;
  NEXT_FREE_NODE (node) = free_nodes;
  free_nodes = node;
}

Jan Hubicka committed
1439 1440 1441
/* Remove the node from cgraph.  */

void
1442
cgraph_remove_node (struct cgraph_node *node)
Jan Hubicka committed
1443
{
1444
  void **slot;
1445
  bool kill_body = false;
1446
  struct cgraph_node *n;
1447
  int uid = node->uid;
1448

1449
  cgraph_call_node_removal_hooks (node);
1450 1451
  cgraph_node_remove_callers (node);
  cgraph_node_remove_callees (node);
1452 1453
  ipa_remove_all_references (&node->ref_list);
  ipa_remove_all_refering (&node->ref_list);
1454 1455
  VEC_free (ipa_opt_pass, heap,
            node->ipa_transforms_to_apply);
1456

1457 1458 1459
  /* Incremental inlining access removed nodes stored in the postorder list.
     */
  node->needed = node->reachable = false;
1460 1461 1462
  for (n = node->nested; n; n = n->next_nested)
    n->origin = NULL;
  node->nested = NULL;
Jan Hubicka committed
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
  if (node->origin)
    {
      struct cgraph_node **node2 = &node->origin->nested;

      while (*node2 != node)
	node2 = &(*node2)->next_nested;
      *node2 = node->next_nested;
    }
  if (node->previous)
    node->previous->next = node->next;
  else
1474
    cgraph_nodes = node->next;
Jan Hubicka committed
1475 1476
  if (node->next)
    node->next->previous = node->previous;
1477 1478
  node->next = NULL;
  node->previous = NULL;
Zack Weinberg committed
1479
  slot = htab_find_slot (cgraph_hash, node, NO_INSERT);
1480 1481
  if (*slot == node)
    {
1482
      struct cgraph_node *next_inline_clone;
Mike Stump committed
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
      for (next_inline_clone = node->clones;
      	   next_inline_clone && next_inline_clone->decl != node->decl;
	   next_inline_clone = next_inline_clone->next_sibling_clone)
	;

      /* If there is inline clone of the node being removed, we need
         to put it into the position of removed node and reorganize all
	 other clones to be based on it.  */
      if (next_inline_clone)
	{
	  struct cgraph_node *n;
	  struct cgraph_node *new_clones;

	  *slot = next_inline_clone;

	  /* Unlink inline clone from the list of clones of removed node.  */
	  if (next_inline_clone->next_sibling_clone)
	    next_inline_clone->next_sibling_clone->prev_sibling_clone
	      = next_inline_clone->prev_sibling_clone;
	  if (next_inline_clone->prev_sibling_clone)
	    {
1505
	      gcc_assert (node->clones != next_inline_clone);
1506 1507 1508 1509
	      next_inline_clone->prev_sibling_clone->next_sibling_clone
	        = next_inline_clone->next_sibling_clone;
	    }
	  else
1510 1511 1512 1513
	    {
	      gcc_assert (node->clones == next_inline_clone);
	      node->clones = next_inline_clone->next_sibling_clone;
	    }
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	  new_clones = node->clones;
	  node->clones = NULL;

	  /* Copy clone info.  */
	  next_inline_clone->clone = node->clone;

	  /* Now place it into clone tree at same level at NODE.  */
	  next_inline_clone->clone_of = node->clone_of;
	  next_inline_clone->prev_sibling_clone = NULL;
	  next_inline_clone->next_sibling_clone = NULL;
	  if (node->clone_of)
	    {
1527 1528
	      if (node->clone_of->clones)
	        node->clone_of->clones->prev_sibling_clone = next_inline_clone;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	      next_inline_clone->next_sibling_clone = node->clone_of->clones;
	      node->clone_of->clones = next_inline_clone;
	    }

	  /* Merge the clone list.  */
	  if (new_clones)
	    {
	      if (!next_inline_clone->clones)
		next_inline_clone->clones = new_clones;
	      else
		{
		  n = next_inline_clone->clones;
		  while (n->next_sibling_clone)
		    n =  n->next_sibling_clone;
		  n->next_sibling_clone = new_clones;
		  new_clones->prev_sibling_clone = n;
		}
	    }

	  /* Update clone_of pointers.  */
	  n = new_clones;
	  while (n)
	    {
	      n->clone_of = next_inline_clone;
	      n = n->next_sibling_clone;
	    }
	}
1556 1557
      else
	{
Mike Stump committed
1558
	  htab_clear_slot (cgraph_hash, slot);
1559
	  kill_body = true;
1560
	}
1561

1562
    }
1563 1564 1565 1566 1567 1568 1569
  if (node->prev_sibling_clone)
    node->prev_sibling_clone->next_sibling_clone = node->next_sibling_clone;
  else if (node->clone_of)
    node->clone_of->clones = node->next_sibling_clone;
  if (node->next_sibling_clone)
    node->next_sibling_clone->prev_sibling_clone = node->prev_sibling_clone;
  if (node->clones)
1570
    {
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
      struct cgraph_node *n, *next;

      if (node->clone_of)
        {
	  for (n = node->clones; n->next_sibling_clone; n = n->next_sibling_clone)
	    n->clone_of = node->clone_of;
	  n->clone_of = node->clone_of;
	  n->next_sibling_clone = node->clone_of->clones;
	  if (node->clone_of->clones)
	    node->clone_of->clones->prev_sibling_clone = n;
	  node->clone_of->clones = node->clones;
	}
      else
        {
	  /* We are removing node with clones.  this makes clones inconsistent,
	     but assume they will be removed subsequently and just keep clone
	     tree intact.  This can happen in unreachable function removal since
	     we remove unreachable functions in random order, not by bottom-up
	     walk of clone trees.  */
	  for (n = node->clones; n; n = next)
	    {
	       next = n->next_sibling_clone;
	       n->next_sibling_clone = NULL;
	       n->prev_sibling_clone = NULL;
	       n->clone_of = NULL;
	    }
	}
1598 1599
    }

1600 1601 1602
  while (node->same_body)
    cgraph_remove_same_body_alias (node->same_body);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
  if (node->same_comdat_group)
    {
      struct cgraph_node *prev;
      for (prev = node->same_comdat_group;
	   prev->same_comdat_group != node;
	   prev = prev->same_comdat_group)
	;
      if (node->same_comdat_group == prev)
	prev->same_comdat_group = NULL;
      else
	prev->same_comdat_group = node->same_comdat_group;
      node->same_comdat_group = NULL;
    }

Mike Stump committed
1617
  /* While all the clones are removed after being proceeded, the function
1618 1619 1620 1621
     itself is kept in the cgraph even after it is compiled.  Check whether
     we are done with this body and reclaim it proactively if this is the case.
     */
  if (!kill_body && *slot)
1622
    {
1623
      struct cgraph_node *n = (struct cgraph_node *) *slot;
1624
      if (!n->clones && !n->clone_of && !n->global.inlined_to
1625
	  && (cgraph_global_info_ready
1626 1627
	      && (TREE_ASM_WRITTEN (n->decl) || DECL_EXTERNAL (n->decl)
		  || n->in_other_partition)))
1628 1629
	kill_body = true;
    }
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
  if (assembler_name_hash)
    {
      tree name = DECL_ASSEMBLER_NAME (node->decl);
      slot = htab_find_slot_with_hash (assembler_name_hash, name,
				       decl_assembler_name_hash (name),
				       NO_INSERT);
      /* Inline clones are not hashed.  */
      if (slot && *slot == node)
        htab_clear_slot (assembler_name_hash, slot);
    }
1640

1641
  if (kill_body)
1642
    cgraph_release_function_body (node);
1643
  node->decl = NULL;
1644 1645 1646 1647 1648
  if (node->call_site_hash)
    {
      htab_delete (node->call_site_hash);
      node->call_site_hash = NULL;
    }
1649
  cgraph_n_nodes--;
1650 1651 1652 1653 1654 1655 1656

  /* Clear out the node to NULL all pointers and add the node to the free
     list.  */
  memset (node, 0, sizeof(*node));
  node->uid = uid;
  NEXT_FREE_NODE (node) = free_nodes;
  free_nodes = node;
Jan Hubicka committed
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/* Remove the node from cgraph.  */

void
cgraph_remove_node_and_inline_clones (struct cgraph_node *node)
{
  struct cgraph_edge *e, *next;
  for (e = node->callees; e; e = next)
    {
      next = e->next_callee;
      if (!e->inline_failed)
        cgraph_remove_node_and_inline_clones (e->callee);
    }
  cgraph_remove_node (node);
}

1674 1675
/* Notify finalize_compilation_unit that given node is reachable.  */

1676
void
1677
cgraph_mark_reachable_node (struct cgraph_node *node)
1678
{
1679
  if (!node->reachable && node->local.finalized)
1680
    {
1681 1682 1683 1684 1685
      if (cgraph_global_info_ready)
        {
	  /* Verify that function does not appear to be needed out of blue
	     during the optimization process.  This can happen for extern
	     inlines when bodies was removed after inlining.  */
1686 1687
	  gcc_assert ((node->analyzed || node->in_other_partition
		       || DECL_EXTERNAL (node->decl)));
1688 1689 1690
	}
      else
        notice_global_symbol (node->decl);
1691
      node->reachable = 1;
1692 1693 1694

      node->next_needed = cgraph_nodes_queue;
      cgraph_nodes_queue = node;
1695 1696 1697
    }
}

1698 1699 1700 1701 1702 1703 1704
/* Likewise indicate that a node is needed, i.e. reachable via some
   external means.  */

void
cgraph_mark_needed_node (struct cgraph_node *node)
{
  node->needed = 1;
1705
  gcc_assert (!node->global.inlined_to);
1706 1707
  cgraph_mark_reachable_node (node);
}
Jan Hubicka committed
1708

1709 1710 1711 1712 1713
/* Likewise indicate that a node is having address taken.  */

void
cgraph_mark_address_taken_node (struct cgraph_node *node)
{
1714
  cgraph_mark_reachable_node (node);
1715 1716 1717
  node->address_taken = 1;
}

Jan Hubicka committed
1718 1719 1720
/* Return local info for the compiled function.  */

struct cgraph_local_info *
1721
cgraph_local_info (tree decl)
Jan Hubicka committed
1722 1723
{
  struct cgraph_node *node;
Mike Stump committed
1724

1725
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
Jan Hubicka committed
1726 1727 1728 1729 1730 1731 1732
  node = cgraph_node (decl);
  return &node->local;
}

/* Return local info for the compiled function.  */

struct cgraph_global_info *
1733
cgraph_global_info (tree decl)
Jan Hubicka committed
1734 1735
{
  struct cgraph_node *node;
Mike Stump committed
1736

1737
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL && cgraph_global_info_ready);
Jan Hubicka committed
1738 1739 1740 1741
  node = cgraph_node (decl);
  return &node->global;
}

1742 1743 1744
/* Return local info for the compiled function.  */

struct cgraph_rtl_info *
1745
cgraph_rtl_info (tree decl)
1746 1747
{
  struct cgraph_node *node;
Mike Stump committed
1748

1749
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
1750 1751 1752 1753 1754 1755 1756
  node = cgraph_node (decl);
  if (decl != current_function_decl
      && !TREE_ASM_WRITTEN (node->decl))
    return NULL;
  return &node->rtl;
}

Jan Hubicka committed
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/* Return a string describing the failure REASON.  */

const char*
cgraph_inline_failed_string (cgraph_inline_failed_t reason)
{
#undef DEFCIFCODE
#define DEFCIFCODE(code, string)	string,

  static const char *cif_string_table[CIF_N_REASONS] = {
#include "cif-code.def"
  };

  /* Signedness of an enum type is implementation defined, so cast it
     to unsigned before testing. */
  gcc_assert ((unsigned) reason < CIF_N_REASONS);
  return cif_string_table[reason];
}

1775 1776
/* Return name of the node used in debug output.  */
const char *
1777
cgraph_node_name (struct cgraph_node *node)
1778
{
1779
  return lang_hooks.decl_printable_name (node->decl, 2);
1780
}
Jan Hubicka committed
1781

1782
/* Names used to print out the availability enum.  */
1783
const char * const cgraph_availability_names[] =
1784
  {"unset", "not_available", "overwritable", "available", "local"};
1785

1786 1787 1788

/* Dump call graph node NODE to file F.  */

1789 1790 1791 1792
void
dump_cgraph_node (FILE *f, struct cgraph_node *node)
{
  struct cgraph_edge *edge;
1793 1794
  int indirect_calls_count = 0;

1795 1796 1797
  fprintf (f, "%s/%i(%i)", cgraph_node_name (node), node->uid,
	   node->pid);
  dump_addr (f, " @", (void *)node);
1798 1799
  if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
    fprintf (f, " (asm: %s)", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
1800 1801 1802 1803
  if (node->global.inlined_to)
    fprintf (f, " (inline copy in %s/%i)",
	     cgraph_node_name (node->global.inlined_to),
	     node->global.inlined_to->uid);
1804 1805 1806 1807
  if (node->clone_of)
    fprintf (f, " (clone of %s/%i)",
	     cgraph_node_name (node->clone_of),
	     node->clone_of->uid);
1808
  if (cgraph_function_flags_ready)
Mike Stump committed
1809
    fprintf (f, " availability:%s",
1810
	     cgraph_availability_names [cgraph_function_body_availability (node)]);
1811 1812 1813 1814
  if (node->analyzed)
    fprintf (f, " analyzed");
  if (node->in_other_partition)
    fprintf (f, " in_other_partition");
1815 1816 1817
  if (node->count)
    fprintf (f, " executed "HOST_WIDEST_INT_PRINT_DEC"x",
	     (HOST_WIDEST_INT)node->count);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
  if (node->local.inline_summary.self_time)
    fprintf (f, " %i time, %i benefit", node->local.inline_summary.self_time,
    					node->local.inline_summary.time_inlining_benefit);
  if (node->global.time && node->global.time
      != node->local.inline_summary.self_time)
    fprintf (f, " (%i after inlining)", node->global.time);
  if (node->local.inline_summary.self_size)
    fprintf (f, " %i size, %i benefit", node->local.inline_summary.self_size,
    					node->local.inline_summary.size_inlining_benefit);
  if (node->global.size && node->global.size
      != node->local.inline_summary.self_size)
    fprintf (f, " (%i after inlining)", node->global.size);
1830 1831 1832
  if (node->local.inline_summary.estimated_self_stack_size)
    fprintf (f, " %i bytes stack usage", (int)node->local.inline_summary.estimated_self_stack_size);
  if (node->global.estimated_stack_size != node->local.inline_summary.estimated_self_stack_size)
1833
    fprintf (f, " %i bytes after inlining", (int)node->global.estimated_stack_size);
1834 1835 1836 1837
  if (node->origin)
    fprintf (f, " nested in: %s", cgraph_node_name (node->origin));
  if (node->needed)
    fprintf (f, " needed");
1838 1839
  if (node->address_taken)
    fprintf (f, " address_taken");
1840 1841
  else if (node->reachable)
    fprintf (f, " reachable");
1842 1843
  else if (node->reachable_from_other_partition)
    fprintf (f, " reachable_from_other_partition");
1844
  if (gimple_has_body_p (node->decl))
1845
    fprintf (f, " body");
1846 1847
  if (node->process)
    fprintf (f, " process");
1848 1849
  if (node->local.local)
    fprintf (f, " local");
1850 1851
  if (node->local.externally_visible)
    fprintf (f, " externally_visible");
1852 1853
  if (node->local.used_from_object_file)
    fprintf (f, " used_from_object_file");
1854 1855
  if (node->local.finalized)
    fprintf (f, " finalized");
1856 1857 1858 1859
  if (node->local.disregard_inline_limits)
    fprintf (f, " always_inline");
  else if (node->local.inlinable)
    fprintf (f, " inlinable");
1860 1861
  else if (node->local.versionable)
    fprintf (f, " versionable");
1862 1863
  if (node->local.redefined_extern_inline)
    fprintf (f, " redefined_extern_inline");
1864 1865 1866 1867 1868 1869 1870 1871
  if (TREE_ASM_WRITTEN (node->decl))
    fprintf (f, " asm_written");

  fprintf (f, "\n  called by: ");
  for (edge = node->callers; edge; edge = edge->next_caller)
    {
      fprintf (f, "%s/%i ", cgraph_node_name (edge->caller),
	       edge->caller->uid);
1872 1873 1874
      if (edge->count)
	fprintf (f, "("HOST_WIDEST_INT_PRINT_DEC"x) ",
		 (HOST_WIDEST_INT)edge->count);
1875 1876 1877
      if (edge->frequency)
	fprintf (f, "(%.2f per call) ",
		 edge->frequency / (double)CGRAPH_FREQ_BASE);
1878 1879
      if (!edge->inline_failed)
	fprintf(f, "(inlined) ");
1880 1881
      if (edge->indirect_inlining_edge)
	fprintf(f, "(indirect_inlining) ");
1882 1883
      if (edge->can_throw_external)
	fprintf(f, "(can throw external) ");
1884 1885 1886 1887 1888 1889 1890 1891 1892
    }

  fprintf (f, "\n  calls: ");
  for (edge = node->callees; edge; edge = edge->next_callee)
    {
      fprintf (f, "%s/%i ", cgraph_node_name (edge->callee),
	       edge->callee->uid);
      if (!edge->inline_failed)
	fprintf(f, "(inlined) ");
1893 1894
      if (edge->indirect_inlining_edge)
	fprintf(f, "(indirect_inlining) ");
1895 1896 1897
      if (edge->count)
	fprintf (f, "("HOST_WIDEST_INT_PRINT_DEC"x) ",
		 (HOST_WIDEST_INT)edge->count);
1898 1899 1900
      if (edge->frequency)
	fprintf (f, "(%.2f per call) ",
		 edge->frequency / (double)CGRAPH_FREQ_BASE);
1901 1902
      if (edge->loop_nest)
	fprintf (f, "(nested in %i loops) ", edge->loop_nest);
1903 1904
      if (edge->can_throw_external)
	fprintf(f, "(can throw external) ");
1905 1906
    }
  fprintf (f, "\n");
1907 1908 1909 1910
  fprintf (f, "  References: ");
  ipa_dump_references (f, &node->ref_list);
  fprintf (f, "  Refering this function: ");
  ipa_dump_refering (f, &node->ref_list);
1911

1912 1913 1914 1915 1916 1917
  for (edge = node->indirect_calls; edge; edge = edge->next_callee)
    indirect_calls_count++;
  if (indirect_calls_count)
    fprintf (f, "  has %i outgoing edges for indirect calls.\n",
	     indirect_calls_count);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
  if (node->same_body)
    {
      struct cgraph_node *n;
      fprintf (f, "  aliases & thunks:");
      for (n = node->same_body; n; n = n->next)
        {
          fprintf (f, " %s/%i", cgraph_node_name (n), n->uid);
	  if (n->thunk.thunk_p)
	    {
	      fprintf (f, " (thunk of %s fixed ofset %i virtual value %i has "
		       "virtual offset %i",
	      	       lang_hooks.decl_printable_name (n->thunk.alias, 2),
		       (int)n->thunk.fixed_offset,
		       (int)n->thunk.virtual_value,
		       (int)n->thunk.virtual_offset_p);
	      fprintf (f, ")");
	    }
1935 1936
	  if (DECL_ASSEMBLER_NAME_SET_P (n->decl))
	    fprintf (f, " (asm: %s)", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (n->decl)));
1937 1938 1939
	}
      fprintf (f, "\n");
    }
1940 1941
}

1942 1943 1944

/* Dump call graph node NODE to stderr.  */

1945
DEBUG_FUNCTION void
1946 1947 1948 1949 1950 1951 1952
debug_cgraph_node (struct cgraph_node *node)
{
  dump_cgraph_node (stderr, node);
}


/* Dump the callgraph to file F.  */
1953 1954

void
1955
dump_cgraph (FILE *f)
1956 1957 1958
{
  struct cgraph_node *node;

1959
  fprintf (f, "callgraph:\n\n");
1960
  for (node = cgraph_nodes; node; node = node->next)
1961
    dump_cgraph_node (f, node);
1962
}
1963

1964 1965 1966

/* Dump the call graph to stderr.  */

1967
DEBUG_FUNCTION void
1968 1969 1970 1971 1972 1973
debug_cgraph (void)
{
  dump_cgraph (stderr);
}


1974
/* Set the DECL_ASSEMBLER_NAME and update cgraph hashtables.  */
1975

1976 1977 1978
void
change_decl_assembler_name (tree decl, tree name)
{
1979 1980
  struct cgraph_node *node;
  void **slot;
1981
  if (!DECL_ASSEMBLER_NAME_SET_P (decl))
1982 1983
    SET_DECL_ASSEMBLER_NAME (decl, name);
  else
1984
    {
1985 1986
      if (name == DECL_ASSEMBLER_NAME (decl))
	return;
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
      if (assembler_name_hash
	  && TREE_CODE (decl) == FUNCTION_DECL
	  && (node = cgraph_get_node_or_alias (decl)) != NULL)
	{
	  tree old_name = DECL_ASSEMBLER_NAME (decl);
	  slot = htab_find_slot_with_hash (assembler_name_hash, old_name,
					   decl_assembler_name_hash (old_name),
					   NO_INSERT);
	  /* Inline clones are not hashed.  */
	  if (slot && *slot == node)
	    htab_clear_slot (assembler_name_hash, slot);
	}
      if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))
	  && DECL_RTL_SET_P (decl))
	warning (0, "%D renamed after being referenced in assembly", decl);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
      SET_DECL_ASSEMBLER_NAME (decl, name);
    }
  if (assembler_name_hash
      && TREE_CODE (decl) == FUNCTION_DECL
      && (node = cgraph_get_node_or_alias (decl)) != NULL)
    {
      slot = htab_find_slot_with_hash (assembler_name_hash, name,
				       decl_assembler_name_hash (name),
				       INSERT);
      gcc_assert (!*slot);
      *slot = node;
    }
2016 2017
}

2018 2019 2020 2021 2022 2023 2024
/* Add a top-level asm statement to the list.  */

struct cgraph_asm_node *
cgraph_add_asm_node (tree asm_str)
{
  struct cgraph_asm_node *node;

2025
  node = ggc_alloc_cleared_cgraph_asm_node ();
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
  node->asm_str = asm_str;
  node->order = cgraph_order++;
  node->next = NULL;
  if (cgraph_asm_nodes == NULL)
    cgraph_asm_nodes = node;
  else
    cgraph_asm_last_node->next = node;
  cgraph_asm_last_node = node;
  return node;
}

2037 2038 2039 2040 2041
/* Return true when the DECL can possibly be inlined.  */
bool
cgraph_function_possibly_inlined_p (tree decl)
{
  if (!cgraph_global_info_ready)
2042
    return !DECL_UNINLINABLE (decl);
Zack Weinberg committed
2043
  return DECL_POSSIBLY_INLINED (decl);
2044 2045 2046 2047
}

/* Create clone of E in the node N represented by CALL_EXPR the callgraph.  */
struct cgraph_edge *
2048
cgraph_clone_edge (struct cgraph_edge *e, struct cgraph_node *n,
2049 2050
		   gimple call_stmt, unsigned stmt_uid, gcov_type count_scale,
		   int freq_scale, int loop_nest, bool update_original)
2051
{
2052
  struct cgraph_edge *new_edge;
2053
  gcov_type count = e->count * count_scale / REG_BR_PROB_BASE;
2054
  gcov_type freq;
2055

2056 2057 2058 2059
  /* We do not want to ignore loop nest after frequency drops to 0.  */
  if (!freq_scale)
    freq_scale = 1;
  freq = e->frequency * (gcov_type) freq_scale / CGRAPH_FREQ_BASE;
2060 2061
  if (freq > CGRAPH_FREQ_MAX)
    freq = CGRAPH_FREQ_MAX;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

  if (e->indirect_unknown_callee)
    {
      tree decl;

      if (call_stmt && (decl = gimple_call_fndecl (call_stmt)))
	{
	  struct cgraph_node *callee = cgraph_node (decl);
	  new_edge = cgraph_create_edge (n, callee, call_stmt, count, freq,
					 e->loop_nest + loop_nest);
	}
      else
	{
2075 2076 2077
	  new_edge = cgraph_create_indirect_edge (n, call_stmt,
						  e->indirect_info->ecf_flags,
						  count, freq,
2078
						  e->loop_nest + loop_nest);
2079
	  *new_edge->indirect_info = *e->indirect_info;
2080 2081 2082 2083 2084
	}
    }
  else
    new_edge = cgraph_create_edge (n, e->callee, call_stmt, count, freq,
				   e->loop_nest + loop_nest);
2085

2086
  new_edge->inline_failed = e->inline_failed;
2087
  new_edge->indirect_inlining_edge = e->indirect_inlining_edge;
2088
  new_edge->lto_stmt_uid = stmt_uid;
2089
  if (update_original)
2090
    {
2091
      e->count -= new_edge->count;
2092 2093 2094
      if (e->count < 0)
	e->count = 0;
    }
2095 2096
  cgraph_call_edge_duplication_hooks (e, new_edge);
  return new_edge;
2097
}
2098

2099
/* Create node representing clone of N executed COUNT times.  Decrease
Mike Stump committed
2100
   the execution counts from original node too.
2101 2102
   The new clone will have decl set to DECL that may or may not be the same
   as decl of N.
2103 2104 2105 2106

   When UPDATE_ORIGINAL is true, the counts are subtracted from the original
   function's profile to reflect the fact that part of execution is handled
   by node.  */
2107
struct cgraph_node *
2108
cgraph_clone_node (struct cgraph_node *n, tree decl, gcov_type count, int freq,
2109 2110
		   int loop_nest, bool update_original,
		   VEC(cgraph_edge_p,heap) *redirect_callers)
2111
{
2112
  struct cgraph_node *new_node = cgraph_create_node ();
2113
  struct cgraph_edge *e;
2114
  gcov_type count_scale;
2115
  unsigned i;
2116

2117
  new_node->decl = decl;
2118 2119
  new_node->origin = n->origin;
  if (new_node->origin)
2120
    {
2121 2122
      new_node->next_nested = new_node->origin->nested;
      new_node->origin->nested = new_node;
2123
    }
2124 2125
  new_node->analyzed = n->analyzed;
  new_node->local = n->local;
2126
  new_node->local.externally_visible = false;
2127
  new_node->local.used_from_object_file = false;
2128 2129
  new_node->local.local = true;
  new_node->local.vtable_method = false;
2130 2131 2132
  new_node->global = n->global;
  new_node->rtl = n->rtl;
  new_node->count = count;
2133
  new_node->frequency = n->frequency;
2134
  new_node->clone = n->clone;
2135
  new_node->clone.tree_map = 0;
2136
  if (n->count)
2137 2138 2139 2140 2141 2142
    {
      if (new_node->count > n->count)
        count_scale = REG_BR_PROB_BASE;
      else
        count_scale = new_node->count * REG_BR_PROB_BASE / n->count;
    }
2143 2144
  else
    count_scale = 0;
2145
  if (update_original)
2146 2147 2148 2149 2150
    {
      n->count -= count;
      if (n->count < 0)
	n->count = 0;
    }
2151

2152
  FOR_EACH_VEC_ELT (cgraph_edge_p, redirect_callers, i, e)
2153 2154 2155 2156 2157 2158 2159
    {
      /* Redirect calls to the old version node to point to its new
	 version.  */
      cgraph_redirect_edge_callee (e, new_node);
    }


2160
  for (e = n->callees;e; e=e->next_callee)
2161 2162
    cgraph_clone_edge (e, new_node, e->call_stmt, e->lto_stmt_uid,
		       count_scale, freq, loop_nest, update_original);
2163

2164 2165 2166
  for (e = n->indirect_calls; e; e = e->next_callee)
    cgraph_clone_edge (e, new_node, e->call_stmt, e->lto_stmt_uid,
		       count_scale, freq, loop_nest, update_original);
2167
  ipa_clone_references (new_node, NULL, &n->ref_list);
2168

2169 2170 2171 2172 2173
  new_node->next_sibling_clone = n->clones;
  if (n->clones)
    n->clones->prev_sibling_clone = new_node;
  n->clones = new_node;
  new_node->clone_of = n;
2174

2175
  cgraph_call_node_duplication_hooks (n, new_node);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
  if (n->decl != decl)
    {
      struct cgraph_node **slot;
      slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, new_node, INSERT);
      gcc_assert (!*slot);
      *slot = new_node;
      if (assembler_name_hash)
	{
	  void **aslot;
	  tree name = DECL_ASSEMBLER_NAME (decl);

	  aslot = htab_find_slot_with_hash (assembler_name_hash, name,
					    decl_assembler_name_hash (name),
					    INSERT);
	  gcc_assert (!*aslot);
	  *aslot = new_node;
	}
    }
2194
  return new_node;
2195
}
2196

2197
/* Create a new name for clone of DECL, add SUFFIX.  Returns an identifier.  */
2198 2199 2200

static GTY(()) unsigned int clone_fn_id_num;

2201 2202
tree
clone_function_name (tree decl, const char *suffix)
2203 2204 2205 2206 2207
{
  tree name = DECL_ASSEMBLER_NAME (decl);
  size_t len = IDENTIFIER_LENGTH (name);
  char *tmp_name, *prefix;

2208
  prefix = XALLOCAVEC (char, len + strlen (suffix) + 2);
2209
  memcpy (prefix, IDENTIFIER_POINTER (name), len);
2210
  strcpy (prefix + len + 1, suffix);
2211 2212 2213 2214
#ifndef NO_DOT_IN_LABEL
  prefix[len] = '.';
#elif !defined NO_DOLLAR_IN_LABEL
  prefix[len] = '$';
2215 2216
#else
  prefix[len] = '_';
2217 2218 2219 2220 2221 2222
#endif
  ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix, clone_fn_id_num++);
  return get_identifier (tmp_name);
}

/* Create callgraph node clone with new declaration.  The actual body will
H.J. Lu committed
2223
   be copied later at compilation stage.
2224 2225 2226 2227 2228 2229 2230 2231

   TODO: after merging in ipa-sra use function call notes instead of args_to_skip
   bitmap interface.
   */
struct cgraph_node *
cgraph_create_virtual_clone (struct cgraph_node *old_node,
			     VEC(cgraph_edge_p,heap) *redirect_callers,
			     VEC(ipa_replace_map_p,gc) *tree_map,
2232 2233
			     bitmap args_to_skip,
			     const char * suffix)
2234 2235 2236 2237
{
  tree old_decl = old_node->decl;
  struct cgraph_node *new_node = NULL;
  tree new_decl;
2238 2239
  size_t i;
  struct ipa_replace_map *map;
2240

2241 2242 2243 2244
#ifdef ENABLE_CHECKING
  if (!flag_wpa)
    gcc_assert  (tree_versionable_function_p (old_decl));
#endif
2245 2246 2247 2248 2249 2250 2251 2252 2253

  /* Make a new FUNCTION_DECL tree node */
  if (!args_to_skip)
    new_decl = copy_node (old_decl);
  else
    new_decl = build_function_decl_skip_args (old_decl, args_to_skip);
  DECL_STRUCT_FUNCTION (new_decl) = NULL;

  /* Generate a new name for the new version. */
2254
  DECL_NAME (new_decl) = clone_function_name (old_decl, suffix);
2255 2256 2257
  SET_DECL_ASSEMBLER_NAME (new_decl, DECL_NAME (new_decl));
  SET_DECL_RTL (new_decl, NULL);

2258
  new_node = cgraph_clone_node (old_node, new_decl, old_node->count,
2259 2260
				CGRAPH_FREQ_BASE, 0, false,
				redirect_callers);
2261 2262 2263 2264 2265 2266
  /* Update the properties.
     Make clone visible only within this translation unit.  Make sure
     that is not weak also.
     ??? We cannot use COMDAT linkage because there is no
     ABI support for this.  */
  DECL_EXTERNAL (new_node->decl) = 0;
2267 2268
  if (DECL_ONE_ONLY (old_decl))
    DECL_SECTION_NAME (new_node->decl) = NULL;
2269
  DECL_COMDAT_GROUP (new_node->decl) = 0;
2270 2271 2272 2273 2274
  TREE_PUBLIC (new_node->decl) = 0;
  DECL_COMDAT (new_node->decl) = 0;
  DECL_WEAK (new_node->decl) = 0;
  new_node->clone.tree_map = tree_map;
  new_node->clone.args_to_skip = args_to_skip;
2275
  FOR_EACH_VEC_ELT (ipa_replace_map_p, tree_map, i, map)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    {
      tree var = map->new_tree;

      STRIP_NOPS (var);
      if (TREE_CODE (var) != ADDR_EXPR)
	continue;
      var = get_base_var (var);
      if (!var)
	continue;

      /* Record references of the future statement initializing the constant
	 argument.  */
      if (TREE_CODE (var) == FUNCTION_DECL)
	ipa_record_reference (new_node, NULL, cgraph_node (var),
			      NULL, IPA_REF_ADDR, NULL);
      else if (TREE_CODE (var) == VAR_DECL)
	ipa_record_reference (new_node, NULL, NULL, varpool_node (var),
			      IPA_REF_ADDR, NULL);
    }
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
  if (!args_to_skip)
    new_node->clone.combined_args_to_skip = old_node->clone.combined_args_to_skip;
  else if (old_node->clone.combined_args_to_skip)
    {
      int newi = 0, oldi = 0;
      tree arg;
      bitmap new_args_to_skip = BITMAP_GGC_ALLOC ();
      struct cgraph_node *orig_node;
      for (orig_node = old_node; orig_node->clone_of; orig_node = orig_node->clone_of)
        ;
2305
      for (arg = DECL_ARGUMENTS (orig_node->decl); arg; arg = DECL_CHAIN (arg), oldi++)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	{
	  if (bitmap_bit_p (old_node->clone.combined_args_to_skip, oldi))
	    {
	      bitmap_set_bit (new_args_to_skip, oldi);
	      continue;
	    }
	  if (bitmap_bit_p (args_to_skip, newi))
	    bitmap_set_bit (new_args_to_skip, oldi);
	  newi++;
	}
      new_node->clone.combined_args_to_skip = new_args_to_skip;
    }
  else
    new_node->clone.combined_args_to_skip = args_to_skip;
2320
  new_node->local.externally_visible = 0;
2321
  new_node->local.used_from_object_file = 0;
2322 2323 2324 2325
  new_node->local.local = 1;
  new_node->lowered = true;
  new_node->reachable = true;

2326

2327 2328 2329
  return new_node;
}

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/* NODE is no longer nested function; update cgraph accordingly.  */
void
cgraph_unnest_node (struct cgraph_node *node)
{
  struct cgraph_node **node2 = &node->origin->nested;
  gcc_assert (node->origin);

  while (*node2 != node)
    node2 = &(*node2)->next_nested;
  *node2 = node->next_nested;
  node->origin = NULL;
}
2342 2343 2344 2345 2346 2347 2348 2349

/* Return function availability.  See cgraph.h for description of individual
   return values.  */
enum availability
cgraph_function_body_availability (struct cgraph_node *node)
{
  enum availability avail;
  gcc_assert (cgraph_function_flags_ready);
2350
  if (!node->analyzed)
2351 2352 2353
    avail = AVAIL_NOT_AVAILABLE;
  else if (node->local.local)
    avail = AVAIL_LOCAL;
2354
  else if (!node->local.externally_visible)
2355
    avail = AVAIL_AVAILABLE;
2356 2357 2358 2359 2360
  /* Inline functions are safe to be analyzed even if their sybol can
     be overwritten at runtime.  It is not meaningful to enfore any sane
     behaviour on replacing inline function by different body.  */
  else if (DECL_DECLARED_INLINE_P (node->decl))
    avail = AVAIL_AVAILABLE;
2361 2362 2363 2364 2365

  /* If the function can be overwritten, return OVERWRITABLE.  Take
     care at least of two notable extensions - the COMDAT functions
     used to share template instantiations in C++ (this is symmetric
     to code cp_cannot_inline_tree_fn and probably shall be shared and
2366
     the inlinability hooks completely eliminated).
2367 2368 2369

     ??? Does the C++ one definition rule allow us to always return
     AVAIL_AVAILABLE here?  That would be good reason to preserve this
2370 2371 2372
     bit.  */

  else if (DECL_REPLACEABLE_P (node->decl) && !DECL_EXTERNAL (node->decl))
2373 2374 2375 2376 2377 2378
    avail = AVAIL_OVERWRITABLE;
  else avail = AVAIL_AVAILABLE;

  return avail;
}

2379 2380 2381 2382 2383
/* Add the function FNDECL to the call graph.
   Unlike cgraph_finalize_function, this function is intended to be used
   by middle end and allows insertion of new function at arbitrary point
   of compilation.  The function can be either in high, low or SSA form
   GIMPLE.
2384

2385
   The function is assumed to be reachable and have address taken (so no
H.J. Lu committed
2386
   API breaking optimizations are performed on it).
2387

2388 2389
   Main work done by this function is to enqueue the function for later
   processing to avoid need the passes to be re-entrant.  */
Diego Novillo committed
2390 2391

void
2392
cgraph_add_new_function (tree fndecl, bool lowered)
Diego Novillo committed
2393
{
2394 2395 2396 2397
  struct cgraph_node *node;
  switch (cgraph_state)
    {
      case CGRAPH_STATE_CONSTRUCTION:
2398
	/* Just enqueue function to be processed at nearest occurrence.  */
2399 2400 2401 2402 2403 2404 2405 2406
	node = cgraph_node (fndecl);
	node->next_needed = cgraph_new_nodes;
	if (lowered)
	  node->lowered = true;
	cgraph_new_nodes = node;
        break;

      case CGRAPH_STATE_IPA:
2407
      case CGRAPH_STATE_IPA_SSA:
2408 2409 2410 2411 2412 2413 2414
      case CGRAPH_STATE_EXPANSION:
	/* Bring the function into finalized state and enqueue for later
	   analyzing and compilation.  */
	node = cgraph_node (fndecl);
	node->local.local = false;
	node->local.finalized = true;
	node->reachable = node->needed = true;
2415 2416 2417 2418
	if (!lowered && cgraph_state == CGRAPH_STATE_EXPANSION)
	  {
	    push_cfun (DECL_STRUCT_FUNCTION (fndecl));
	    current_function_decl = fndecl;
2419 2420
	    gimple_register_cfg_hooks ();
	    tree_lowering_passes (fndecl);
2421 2422 2423 2424 2425 2426 2427 2428 2429
	    bitmap_obstack_initialize (NULL);
	    if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (fndecl)))
	      execute_pass_list (pass_early_local_passes.pass.sub);
	    bitmap_obstack_release (NULL);
	    pop_cfun ();
	    current_function_decl = NULL;

	    lowered = true;
	  }
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	if (lowered)
	  node->lowered = true;
	node->next_needed = cgraph_new_nodes;
	cgraph_new_nodes = node;
        break;

      case CGRAPH_STATE_FINISHED:
	/* At the very end of compilation we have to do all the work up
	   to expansion.  */
	push_cfun (DECL_STRUCT_FUNCTION (fndecl));
	current_function_decl = fndecl;
2441
	gimple_register_cfg_hooks ();
2442 2443
	if (!lowered)
          tree_lowering_passes (fndecl);
2444
	bitmap_obstack_initialize (NULL);
2445
	if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (fndecl)))
2446
	  execute_pass_list (pass_early_local_passes.pass.sub);
2447
	bitmap_obstack_release (NULL);
2448 2449 2450 2451 2452
	tree_rest_of_compilation (fndecl);
	pop_cfun ();
	current_function_decl = NULL;
	break;
    }
2453 2454 2455 2456 2457 2458

  /* Set a personality if required and we already passed EH lowering.  */
  if (lowered
      && (function_needs_eh_personality (DECL_STRUCT_FUNCTION (fndecl))
	  == eh_personality_lang))
    DECL_FUNCTION_PERSONALITY (fndecl) = lang_hooks.eh_personality ();
Diego Novillo committed
2459 2460
}

2461 2462 2463 2464 2465 2466 2467
/* Return true if NODE can be made local for API change.
   Extern inline functions and C++ COMDAT functions can be made local
   at the expense of possible code size growth if function is used in multiple
   compilation units.  */
bool
cgraph_node_can_be_local_p (struct cgraph_node *node)
{
2468
  return (!node->needed && !node->address_taken
2469 2470
	  && ((DECL_COMDAT (node->decl) && !node->same_comdat_group)
	      || !node->local.externally_visible));
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481
/* Make DECL local.  FIXME: We shouldn't need to mess with rtl this early,
   but other code such as notice_global_symbol generates rtl.  */
void
cgraph_make_decl_local (tree decl)
{
  rtx rtl, symbol;

  if (TREE_CODE (decl) == VAR_DECL)
    DECL_COMMON (decl) = 0;
2482 2483 2484
  else gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);

  if (DECL_COMDAT (decl))
2485
    {
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
      /* It is possible that we are linking against library defining same COMDAT
	 function.  To avoid conflict we need to rename our local name of the
	 function just in the case WHOPR partitioning decide to make it hidden
	 to avoid cross partition references.  */
      if (flag_wpa)
	{
	  const char *old_name;

	  old_name  = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
	  if (TREE_CODE (decl) == FUNCTION_DECL)
	    {
	      struct cgraph_node *node = cgraph_get_node_or_alias (decl);
	      change_decl_assembler_name (decl,
					  clone_function_name (decl, "local"));
	      if (node->local.lto_file_data)
		lto_record_renamed_decl (node->local.lto_file_data,
					 old_name,
					 IDENTIFIER_POINTER
					   (DECL_ASSEMBLER_NAME (decl)));
	    }
	  else if (TREE_CODE (decl) == VAR_DECL)
	    {
	      struct varpool_node *vnode = varpool_get_node (decl);
	      /* change_decl_assembler_name will warn here on vtables because
		 C++ frontend still sets TREE_SYMBOL_REFERENCED on them.  */
	      SET_DECL_ASSEMBLER_NAME (decl,
				       clone_function_name (decl, "local"));
	      if (vnode->lto_file_data)
		lto_record_renamed_decl (vnode->lto_file_data,
					 old_name,
					 IDENTIFIER_POINTER
					   (DECL_ASSEMBLER_NAME (decl)));
	    }
	}
2520
      DECL_SECTION_NAME (decl) = 0;
2521 2522
      DECL_COMDAT (decl) = 0;
    }
2523 2524 2525
  DECL_COMDAT_GROUP (decl) = 0;
  DECL_WEAK (decl) = 0;
  DECL_EXTERNAL (decl) = 0;
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
  TREE_PUBLIC (decl) = 0;
  if (!DECL_RTL_SET_P (decl))
    return;

  /* Update rtl flags.  */
  make_decl_rtl (decl);

  rtl = DECL_RTL (decl);
  if (!MEM_P (rtl))
    return;

  symbol = XEXP (rtl, 0);
  if (GET_CODE (symbol) != SYMBOL_REF)
    return;

  SYMBOL_REF_WEAK (symbol) = DECL_WEAK (decl);
}

2544 2545 2546 2547 2548 2549 2550
/* Bring NODE local.  */
void
cgraph_make_node_local (struct cgraph_node *node)
{
  gcc_assert (cgraph_node_can_be_local_p (node));
  if (DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
    {
2551
      struct cgraph_node *alias;
2552 2553
      cgraph_make_decl_local (node->decl);

2554
      for (alias = node->same_body; alias; alias = alias->next)
2555 2556
	cgraph_make_decl_local (alias->decl);

2557 2558 2559 2560 2561 2562
      node->local.externally_visible = false;
      node->local.local = true;
      gcc_assert (cgraph_function_body_availability (node) == AVAIL_LOCAL);
    }
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/* Set TREE_NOTHROW on NODE's decl and on same_body aliases of NODE
   if any to NOTHROW.  */

void
cgraph_set_nothrow_flag (struct cgraph_node *node, bool nothrow)
{
  struct cgraph_node *alias;
  TREE_NOTHROW (node->decl) = nothrow;
  for (alias = node->same_body; alias; alias = alias->next)
    TREE_NOTHROW (alias->decl) = nothrow;
}

/* Set TREE_READONLY on NODE's decl and on same_body aliases of NODE
   if any to READONLY.  */

void
cgraph_set_readonly_flag (struct cgraph_node *node, bool readonly)
{
  struct cgraph_node *alias;
  TREE_READONLY (node->decl) = readonly;
  for (alias = node->same_body; alias; alias = alias->next)
    TREE_READONLY (alias->decl) = readonly;
}

/* Set DECL_PURE_P on NODE's decl and on same_body aliases of NODE
   if any to PURE.  */

void
cgraph_set_pure_flag (struct cgraph_node *node, bool pure)
{
  struct cgraph_node *alias;
  DECL_PURE_P (node->decl) = pure;
  for (alias = node->same_body; alias; alias = alias->next)
    DECL_PURE_P (alias->decl) = pure;
}

/* Set DECL_LOOPING_CONST_OR_PURE_P on NODE's decl and on
   same_body aliases of NODE if any to LOOPING_CONST_OR_PURE.  */

void
cgraph_set_looping_const_or_pure_flag (struct cgraph_node *node,
				       bool looping_const_or_pure)
{
  struct cgraph_node *alias;
  DECL_LOOPING_CONST_OR_PURE_P (node->decl) = looping_const_or_pure;
  for (alias = node->same_body; alias; alias = alias->next)
    DECL_LOOPING_CONST_OR_PURE_P (alias->decl) = looping_const_or_pure;
}

2612 2613 2614 2615 2616 2617 2618
/* See if the frequency of NODE can be updated based on frequencies of its
   callers.  */
bool
cgraph_propagate_frequency (struct cgraph_node *node)
{
  bool maybe_unlikely_executed = true, maybe_executed_once = true;
  struct cgraph_edge *edge;
2619
  if (!node->local.local)
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
    return false;
  gcc_assert (node->analyzed);
  if (node->frequency == NODE_FREQUENCY_HOT)
    return false;
  if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
    return false;
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Processing frequency %s\n", cgraph_node_name (node));
  for (edge = node->callers;
       edge && (maybe_unlikely_executed || maybe_executed_once);
       edge = edge->next_caller)
    {
      if (!edge->frequency)
	continue;
      switch (edge->caller->frequency)
        {
	case NODE_FREQUENCY_UNLIKELY_EXECUTED:
	  break;
	case NODE_FREQUENCY_EXECUTED_ONCE:
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Called by %s that is executed once\n", cgraph_node_name (node));
	  maybe_unlikely_executed = false;
	  if (edge->loop_nest)
	    {
	      maybe_executed_once = false;
	      if (dump_file && (dump_flags & TDF_DETAILS))
	        fprintf (dump_file, "  Called in loop\n");
	    }
	  break;
	case NODE_FREQUENCY_HOT:
	case NODE_FREQUENCY_NORMAL:
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Called by %s that is normal or hot\n", cgraph_node_name (node));
	  maybe_unlikely_executed = false;
	  maybe_executed_once = false;
	  break;
	}
    }
   if (maybe_unlikely_executed)
     {
       node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
       if (dump_file)
         fprintf (dump_file, "Node %s promoted to unlikely executed.\n", cgraph_node_name (node));
       return true;
     }
   if (maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
     {
       node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
       if (dump_file)
         fprintf (dump_file, "Node %s promoted to executed once.\n", cgraph_node_name (node));
       return true;
     }
   return false;
}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
/* Return true when NODE can not return or throw and thus
   it is safe to ignore its side effects for IPA analysis.  */

bool
cgraph_node_cannot_return (struct cgraph_node *node)
{
  int flags = flags_from_decl_or_type (node->decl);
  if (!flag_exceptions)
    return (flags & ECF_NORETURN) != 0;
  else
    return ((flags & (ECF_NORETURN | ECF_NOTHROW))
	     == (ECF_NORETURN | ECF_NOTHROW));
}

/* Return true when call of E can not lead to return from caller
   and thus it is safe to ignore its side effects for IPA analysis
   when computing side effects of the caller.
   FIXME: We could actually mark all edges that have no reaching
   patch to EXIT_BLOCK_PTR or throw to get better results.  */
bool
cgraph_edge_cannot_lead_to_return (struct cgraph_edge *e)
{
2697 2698
  if (cgraph_node_cannot_return (e->caller))
    return true;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
  if (e->indirect_unknown_callee)
    {
      int flags = e->indirect_info->ecf_flags;
      if (!flag_exceptions)
	return (flags & ECF_NORETURN) != 0;
      else
	return ((flags & (ECF_NORETURN | ECF_NOTHROW))
		 == (ECF_NORETURN | ECF_NOTHROW));
    }
  else
    return cgraph_node_cannot_return (e->callee);
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/* Return true when function NODE can be removed from callgraph
   if all direct calls are eliminated.  */

bool
cgraph_can_remove_if_no_direct_calls_and_refs_p (struct cgraph_node *node)
{
  /* When function is needed, we can not remove it.  */
  if (node->needed || node->reachable_from_other_partition)
    return false;
  /* Only COMDAT functions can be removed if externally visible.  */
  if (node->local.externally_visible
      && (!DECL_COMDAT (node->decl) || node->local.used_from_object_file))
    return false;
  /* Constructors and destructors are executed by the runtime, however
     we can get rid of all pure constructors and destructors.  */
  if (DECL_STATIC_CONSTRUCTOR (node->decl)
      || DECL_STATIC_DESTRUCTOR (node->decl))
    {
      int flags = flags_from_decl_or_type (node->decl);
      if (!optimize
	  || !(flags & (ECF_CONST | ECF_PURE))
	  || (flags & ECF_LOOPING_CONST_OR_PURE))
	return false;
    }
  return true;
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
/* Return true when function NODE can be excpected to be removed
   from program when direct calls in this compilation unit are removed.

   As a special case COMDAT functions are
   cgraph_can_remove_if_no_direct_calls_p while the are not
   cgraph_only_called_directly_p (it is possible they are called from other
   unit)

   This function behaves as cgraph_only_called_directly_p because eliminating
   all uses of COMDAT function does not make it neccesarily disappear from
   the program unless we are compiling whole program or we do LTO.  In this
   case we know we win since dynamic linking will not really discard the
   linkonce section.  */

bool
cgraph_will_be_removed_from_program_if_no_direct_calls (struct cgraph_node *node)
{
  if (node->local.used_from_object_file)
    return false;
  if (!in_lto_p && !flag_whole_program)
    return cgraph_only_called_directly_p (node);
  else
    return cgraph_can_remove_if_no_direct_calls_p (node);
}

2764
#include "gt-cgraph.h"