AbstractMap.java 16.3 KB
Newer Older
1
/* AbstractMap.java -- Abstract implementation of most of Map
2
   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 4 5 6 7 8 9

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */


package java.util;

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * An abstract implementation of Map to make it easier to create your own
 * implementations. In order to create an unmodifiable Map, subclass
 * AbstractMap and implement the <code>entrySet</code> (usually via an
 * AbstractSet).  To make it modifiable, also implement <code>put</code>,
 * and have <code>entrySet().iterator()</code> support <code>remove</code>.
 * <p>
 *
 * It is recommended that classes which extend this support at least the
 * no-argument constructor, and a constructor which accepts another Map.
 * Further methods in this class may be overridden if you have a more
 * efficient implementation.
 *
 * @author Original author unknown
 * @author Bryce McKinlay
 * @author Eric Blake <ebb9@email.byu.edu>
 * @see Map
 * @see Collection
 * @see HashMap
 * @see LinkedHashMap
 * @see TreeMap
 * @see WeakHashMap
 * @see IdentityHashMap
 * @since 1.2
 * @status updated to 1.4
 */
56 57
public abstract class AbstractMap implements Map
{
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  /** An "enum" of iterator types. */
  // Package visible for use by subclasses.
  static final int KEYS = 0,
                   VALUES = 1,
                   ENTRIES = 2;

  /**
   * The cache for {@link #keySet()}.
   */
  // Package visible for use by subclasses.
  Set keys;

  /**
   * The cache for {@link #values()}.
   */
  // Package visible for use by subclasses.
  Collection values;

76
  /**
77 78 79 80 81 82 83 84 85 86 87 88
   * The main constructor, for use by subclasses.
   */
  protected AbstractMap()
  {
  }

  /**
   * Remove all entries from this Map (optional operation). This default
   * implementation calls entrySet().clear(). NOTE: If the entry set does
   * not permit clearing, then this will fail, too. Subclasses often
   * override this for efficiency.  Your implementation of entrySet() should
   * not call <code>AbstractMap.clear</code> unless you want an infinite loop.
89
   *
90 91 92
   * @throws UnsupportedOperationException if <code>entrySet().clear()</code>
   *         does not support clearing.
   * @see Set#clear()
93
   */
94 95 96 97 98
  public void clear()
  {
    entrySet().clear();
  }

99
  /**
100 101 102 103 104 105 106
   * Create a shallow copy of this Map, no keys or values are copied. The
   * default implementation simply calls <code>super.clone()</code>.
   *
   * @return the shallow clone
   * @throws CloneNotSupportedException if a subclass is not Cloneable
   * @see Cloneable
   * @see Object#clone()
107
   */
108
  protected Object clone() throws CloneNotSupportedException
109
  {
110 111 112 113 114
    AbstractMap copy = (AbstractMap) super.clone();
    // Clear out the caches; they are stale.
    copy.keys = null;
    copy.values = null;
    return copy;
115 116
  }

117 118 119 120 121 122 123 124 125 126 127 128 129
  /**
   * Returns true if this contains a mapping for the given key. This
   * implementation does a linear search, O(n), over the
   * <code>entrySet()</code>, returning <code>true</code> if a match
   * is found, <code>false</code> if the iteration ends. Many subclasses
   * can implement this more efficiently.
   *
   * @param key the key to search for
   * @return true if the map contains the key
   * @throws NullPointerException if key is <code>null</code> but the map
   *         does not permit null keys
   * @see #containsValue(Object)
   */
130
  public boolean containsKey(Object key)
131
  {
132 133 134 135 136
    Iterator entries = entrySet().iterator();
    int pos = size();
    while (--pos >= 0)
      if (equals(key, ((Map.Entry) entries.next()).getKey()))
        return true;
137 138 139
    return false;
  }

140 141 142 143 144 145 146 147 148 149 150 151
  /**
   * Returns true if this contains at least one mapping with the given value.
   * This implementation does a linear search, O(n), over the
   * <code>entrySet()</code>, returning <code>true</code> if a match
   * is found, <code>false</code> if the iteration ends. A match is
   * defined as <code>(value == null ? v == null : value.equals(v))</code>
   * Subclasses are unlikely to implement this more efficiently.
   *
   * @param value the value to search for
   * @return true if the map contains the value
   * @see #containsKey(Object)
   */
152
  public boolean containsValue(Object value)
153
  {
154 155 156 157 158
    Iterator entries = entrySet().iterator();
    int pos = size();
    while (--pos >= 0)
      if (equals(value, ((Map.Entry) entries.next()).getValue()))
        return true;
159
    return false;
160 161
  }

162 163 164 165 166 167 168 169 170 171 172 173 174
  /**
   * Returns a set view of the mappings in this Map.  Each element in the
   * set must be an implementation of Map.Entry.  The set is backed by
   * the map, so that changes in one show up in the other.  Modifications
   * made while an iterator is in progress cause undefined behavior.  If
   * the set supports removal, these methods must be valid:
   * <code>Iterator.remove</code>, <code>Set.remove</code>,
   * <code>removeAll</code>, <code>retainAll</code>, and <code>clear</code>.
   * Element addition is not supported via this set.
   *
   * @return the entry set
   * @see Map.Entry
   */
175 176
  public abstract Set entrySet();

177 178 179 180 181 182 183 184 185 186
  /**
   * Compares the specified object with this map for equality. Returns
   * <code>true</code> if the other object is a Map with the same mappings,
   * that is,<br>
   * <code>o instanceof Map && entrySet().equals(((Map) o).entrySet();</code>
   *
   * @param o the object to be compared
   * @return true if the object equals this map
   * @see Set#equals(Object)
   */
187
  public boolean equals(Object o)
188
  {
189 190 191
    return (o == this ||
            (o instanceof Map &&
             entrySet().equals(((Map) o).entrySet())));
192 193
  }

194 195 196 197 198 199 200 201 202 203 204 205
  /**
   * Returns the value mapped by the given key. Returns <code>null</code> if
   * there is no mapping.  However, in Maps that accept null values, you
   * must rely on <code>containsKey</code> to determine if a mapping exists.
   * This iteration takes linear time, searching entrySet().iterator() of
   * the key.  Many implementations override this method.
   *
   * @param key the key to look up
   * @return the value associated with the key, or null if key not in map
   * @throws NullPointerException if this map does not accept null keys
   * @see #containsKey(Object)
   */
206
  public Object get(Object key)
207
  {
208 209 210
    Iterator entries = entrySet().iterator();
    int pos = size();
    while (--pos >= 0)
211
      {
212 213 214
        Map.Entry entry = (Map.Entry) entries.next();
        if (equals(key, entry.getKey()))
          return entry.getValue();
215
      }
216 217 218
    return null;
  }

219 220 221 222 223 224 225 226 227
  /**
   * Returns the hash code for this map. As defined in Map, this is the sum
   * of all hashcodes for each Map.Entry object in entrySet, or basically
   * entrySet().hashCode().
   *
   * @return the hash code
   * @see Map.Entry#hashCode()
   * @see Set#hashCode()
   */
228 229
  public int hashCode()
  {
230
    return entrySet().hashCode();
231 232
  }

233 234 235 236 237 238 239
  /**
   * Returns true if the map contains no mappings. This is implemented by
   * <code>size() == 0</code>.
   *
   * @return true if the map is empty
   * @see #size()
   */
240 241 242 243 244
  public boolean isEmpty()
  {
    return size() == 0;
  }

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  /**
   * Returns a set view of this map's keys. The set is backed by the map,
   * so changes in one show up in the other. Modifications while an iteration
   * is in progress produce undefined behavior. The set supports removal
   * if entrySet() does, but does not support element addition.
   * <p>
   *
   * This implementation creates an AbstractSet, where the iterator wraps
   * the entrySet iterator, size defers to the Map's size, and contains
   * defers to the Map's containsKey. The set is created on first use, and
   * returned on subsequent uses, although since no synchronization occurs,
   * there is a slight possibility of creating two sets.
   *
   * @return a Set view of the keys
   * @see Set#iterator()
   * @see #size()
   * @see #containsKey(Object)
   * @see #values()
   */
264 265
  public Set keySet()
  {
266 267
    if (keys == null)
      keys = new AbstractSet()
268
      {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        public int size()
        {
          return AbstractMap.this.size();
        }

        public boolean contains(Object key)
        {
          return containsKey(key);
        }

        public Iterator iterator()
        {
          return new Iterator()
          {
            private final Iterator map_iterator = entrySet().iterator();

            public boolean hasNext()
            {
              return map_iterator.hasNext();
            }

            public Object next()
            {
              return ((Map.Entry) map_iterator.next()).getKey();
            }

            public void remove()
            {
              map_iterator.remove();
            }
          };
        }
      };
    return keys;
303 304
  }

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  /**
   * Associates the given key to the given value (optional operation). If the
   * map already contains the key, its value is replaced. This implementation
   * simply throws an UnsupportedOperationException. Be aware that in a map
   * that permits <code>null</code> values, a null return does not always
   * imply that the mapping was created.
   *
   * @param key the key to map
   * @param value the value to be mapped
   * @return the previous value of the key, or null if there was no mapping
   * @throws UnsupportedOperationException if the operation is not supported
   * @throws ClassCastException if the key or value is of the wrong type
   * @throws IllegalArgumentException if something about this key or value
   *         prevents it from existing in this map
   * @throws NullPointerException if the map forbids null keys or values
   * @see #containsKey(Object)
   */
322
  public Object put(Object key, Object value)
323 324 325 326
  {
    throw new UnsupportedOperationException();
  }

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  /**
   * Copies all entries of the given map to this one (optional operation). If
   * the map already contains a key, its value is replaced. This implementation
   * simply iterates over the map's entrySet(), calling <code>put</code>,
   * so it is not supported if puts are not.
   *
   * @param m the mapping to load into this map
   * @throws UnsupportedOperationException if the operation is not supported
   * @throws ClassCastException if a key or value is of the wrong type
   * @throws IllegalArgumentException if something about a key or value
   *         prevents it from existing in this map
   * @throws NullPointerException if the map forbids null keys or values, or
   *         if <code>m</code> is null.
   * @see #put(Object, Object)
   */
342
  public void putAll(Map m)
343 344
  {
    Iterator entries = m.entrySet().iterator();
345 346
    int pos = size();
    while (--pos >= 0)
347
      {
348 349
        Map.Entry entry = (Map.Entry) entries.next();
        put(entry.getKey(), entry.getValue());
350
      }
351 352
  }

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
  /**
   * Removes the mapping for this key if present (optional operation). This
   * implementation iterates over the entrySet searching for a matching
   * key, at which point it calls the iterator's <code>remove</code> method.
   * It returns the result of <code>getValue()</code> on the entry, if found,
   * or null if no entry is found. Note that maps which permit null values
   * may also return null if the key was removed.  If the entrySet does not
   * support removal, this will also fail. This is O(n), so many
   * implementations override it for efficiency.
   *
   * @param key the key to remove
   * @return the value the key mapped to, or null if not present
   * @throws UnsupportedOperationException if deletion is unsupported
   * @see Iterator#remove()
   */
368
  public Object remove(Object key)
369 370
  {
    Iterator entries = entrySet().iterator();
371 372
    int pos = size();
    while (--pos >= 0)
373
      {
374 375 376 377 378 379 380 381
        Map.Entry entry = (Map.Entry) entries.next();
        if (equals(key, entry.getKey()))
          {
            // Must get the value before we remove it from iterator.
            Object r = entry.getValue();
            entries.remove();
            return r;
          }
382
      }
383
    return null;
384 385
  }

386 387 388 389 390 391 392 393
  /**
   * Returns the number of key-value mappings in the map. If there are more
   * than Integer.MAX_VALUE mappings, return Integer.MAX_VALUE. This is
   * implemented as <code>entrySet().size()</code>.
   *
   * @return the number of mappings
   * @see Set#size()
   */
394 395 396 397 398
  public int size()
  {
    return entrySet().size();
  }

399 400 401 402 403 404 405 406 407 408 409 410
  /**
   * Returns a String representation of this map. This is a listing of the
   * map entries (which are specified in Map.Entry as being
   * <code>getKey() + "=" + getValue()</code>), separated by a comma and
   * space (", "), and surrounded by braces ('{' and '}'). This implementation
   * uses a StringBuffer and iterates over the entrySet to build the String.
   * Note that this can fail with an exception if underlying keys or
   * values complete abruptly in toString().
   *
   * @return a String representation
   * @see Map.Entry#toString()
   */
411 412 413
  public String toString()
  {
    Iterator entries = entrySet().iterator();
414
    StringBuffer r = new StringBuffer("{");
415
    for (int pos = size(); pos > 0; pos--)
416
      {
417 418 419 420 421 422
        // Append the toString value of the entries rather than calling
        // getKey/getValue. This is more efficient and it matches the JDK
        // behaviour.
        r.append(entries.next());
        if (pos > 1)
          r.append(", ");
423
      }
424 425
    r.append("}");
    return r.toString();
426 427
  }

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  /**
   * Returns a collection or bag view of this map's values. The collection
   * is backed by the map, so changes in one show up in the other.
   * Modifications while an iteration is in progress produce undefined
   * behavior. The collection supports removal if entrySet() does, but
   * does not support element addition.
   * <p>
   *
   * This implementation creates an AbstractCollection, where the iterator
   * wraps the entrySet iterator, size defers to the Map's size, and contains
   * defers to the Map's containsValue. The collection is created on first
   * use, and returned on subsequent uses, although since no synchronization
   * occurs, there is a slight possibility of creating two collections.
   *
   * @return a Collection view of the values
   * @see Collection#iterator()
   * @see #size()
   * @see #containsValue(Object)
   * @see #keySet()
   */
448 449
  public Collection values()
  {
450 451
    if (values == null)
      values = new AbstractCollection()
452
      {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        public int size()
        {
          return AbstractMap.this.size();
        }

        public Iterator iterator()
        {
          return new Iterator()
          {
            private final Iterator map_iterator = entrySet().iterator();

            public boolean hasNext()
            {
              return map_iterator.hasNext();
            }

            public Object next()
            {
              return ((Map.Entry) map_iterator.next()).getValue();
            }

            public void remove()
            {
              map_iterator.remove();
            }
          };
        }
      };
    return values;
  }
483

484 485 486 487 488 489 490 491 492 493 494 495
  /**
   * Compare two objects according to Collection semantics.
   *
   * @param o1 the first object
   * @param o2 the second object
   * @return o1 == null ? o2 == null : o1.equals(o2)
   */
  // Package visible for use throughout java.util.
  // It may be inlined since it is final.
  static final boolean equals(Object o1, Object o2)
  {
    return o1 == null ? o2 == null : o1.equals(o2);
496 497
  }

498 499 500 501 502 503 504 505 506 507 508 509
  /**
   * Hash an object according to Collection semantics.
   *
   * @param o the object to hash
   * @return o1 == null ? 0 : o1.hashCode()
   */
  // Package visible for use throughout java.util.
  // It may be inlined since it is final.
  static final int hashCode(Object o)
  {
    return o == null ? 0 : o.hashCode();
  }
510
}