TreeMap.java 90.1 KB
Newer Older
Tom Tromey committed
1 2
/* TreeMap.java -- a class providing a basic Red-Black Tree data structure,
   mapping Object --> Object
3
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006  Free Software Foundation, Inc.
Tom Tromey committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.util;

42 43
import gnu.java.lang.CPStringBuilder;

Tom Tromey committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

/**
 * This class provides a red-black tree implementation of the SortedMap
 * interface.  Elements in the Map will be sorted by either a user-provided
 * Comparator object, or by the natural ordering of the keys.
 *
 * The algorithms are adopted from Corman, Leiserson, and Rivest's
 * <i>Introduction to Algorithms.</i>  TreeMap guarantees O(log n)
 * insertion and deletion of elements.  That being said, there is a large
 * enough constant coefficient in front of that "log n" (overhead involved
 * in keeping the tree balanced), that TreeMap may not be the best choice
 * for small collections. If something is already sorted, you may want to
 * just use a LinkedHashMap to maintain the order while providing O(1) access.
 *
 * TreeMap is a part of the JDK1.2 Collections API.  Null keys are allowed
 * only if a Comparator is used which can deal with them; natural ordering
 * cannot cope with null.  Null values are always allowed. Note that the
 * ordering must be <i>consistent with equals</i> to correctly implement
 * the Map interface. If this condition is violated, the map is still
 * well-behaved, but you may have suprising results when comparing it to
 * other maps.<p>
 *
 * This implementation is not synchronized. If you need to share this between
 * multiple threads, do something like:<br>
 * <code>SortedMap m
 *       = Collections.synchronizedSortedMap(new TreeMap(...));</code><p>
 *
 * The iterators are <i>fail-fast</i>, meaning that any structural
 * modification, except for <code>remove()</code> called on the iterator
 * itself, cause the iterator to throw a
 * <code>ConcurrentModificationException</code> rather than exhibit
 * non-deterministic behavior.
 *
 * @author Jon Zeppieri
 * @author Bryce McKinlay
 * @author Eric Blake (ebb9@email.byu.edu)
84
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
Tom Tromey committed
85 86 87 88 89 90 91 92 93
 * @see Map
 * @see HashMap
 * @see Hashtable
 * @see LinkedHashMap
 * @see Comparable
 * @see Comparator
 * @see Collection
 * @see Collections#synchronizedSortedMap(SortedMap)
 * @since 1.2
94
 * @status updated to 1.6
Tom Tromey committed
95
 */
96
public class TreeMap<K, V> extends AbstractMap<K, V>
97
  implements NavigableMap<K, V>, Cloneable, Serializable
Tom Tromey committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
{
  // Implementation note:
  // A red-black tree is a binary search tree with the additional properties
  // that all paths to a leaf node visit the same number of black nodes,
  // and no red node has red children. To avoid some null-pointer checks,
  // we use the special node nil which is always black, has no relatives,
  // and has key and value of null (but is not equal to a mapping of null).

  /**
   * Compatible with JDK 1.2.
   */
  private static final long serialVersionUID = 919286545866124006L;

  /**
   * Color status of a node. Package visible for use by nested classes.
   */
  static final int RED = -1,
                   BLACK = 1;

  /**
   * Sentinal node, used to avoid null checks for corner cases and make the
   * delete rebalance code simpler. The rebalance code must never assign
   * the parent, left, or right of nil, but may safely reassign the color
   * to be black. This object must never be used as a key in a TreeMap, or
   * it will break bounds checking of a SubMap.
   */
  static final Node nil = new Node(null, null, BLACK);
  static
    {
      // Nil is self-referential, so we must initialize it after creation.
      nil.parent = nil;
      nil.left = nil;
      nil.right = nil;
    }

  /**
   * The root node of this TreeMap.
   */
  private transient Node root;

  /**
   * The size of this TreeMap. Package visible for use by nested classes.
   */
  transient int size;

  /**
   * The cache for {@link #entrySet()}.
   */
146
  private transient Set<Map.Entry<K,V>> entries;
Tom Tromey committed
147 148

  /**
149 150 151 152 153 154 155 156 157 158
   * The cache for {@link #descendingMap()}.
   */
  private transient NavigableMap<K,V> descendingMap;

  /**
   * The cache for {@link #navigableKeySet()}.
   */
  private transient NavigableSet<K> nKeys;

  /**
Tom Tromey committed
159 160 161 162 163 164 165 166 167 168 169
   * Counts the number of modifications this TreeMap has undergone, used
   * by Iterators to know when to throw ConcurrentModificationExceptions.
   * Package visible for use by nested classes.
   */
  transient int modCount;

  /**
   * This TreeMap's comparator, or null for natural ordering.
   * Package visible for use by nested classes.
   * @serial the comparator ordering this tree, or null
   */
170
  final Comparator<? super K> comparator;
Tom Tromey committed
171 172 173 174 175 176 177

  /**
   * Class to represent an entry in the tree. Holds a single key-value pair,
   * plus pointers to parent and child nodes.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
178
  private static final class Node<K, V> extends AbstractMap.SimpleEntry<K, V>
Tom Tromey committed
179 180 181 182 183 184
  {
    // All fields package visible for use by nested classes.
    /** The color of this node. */
    int color;

    /** The left child node. */
185
    Node<K, V> left = nil;
Tom Tromey committed
186
    /** The right child node. */
187
    Node<K, V> right = nil;
Tom Tromey committed
188
    /** The parent node. */
189
    Node<K, V> parent = nil;
Tom Tromey committed
190 191 192 193 194 195

    /**
     * Simple constructor.
     * @param key the key
     * @param value the value
     */
196
    Node(K key, V value, int color)
Tom Tromey committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    {
      super(key, value);
      this.color = color;
    }
  }

  /**
   * Instantiate a new TreeMap with no elements, using the keys' natural
   * ordering to sort. All entries in the map must have a key which implements
   * Comparable, and which are <i>mutually comparable</i>, otherwise map
   * operations may throw a {@link ClassCastException}. Attempts to use
   * a null key will throw a {@link NullPointerException}.
   *
   * @see Comparable
   */
  public TreeMap()
  {
    this((Comparator) null);
  }

  /**
   * Instantiate a new TreeMap with no elements, using the provided comparator
   * to sort. All entries in the map must have keys which are mutually
   * comparable by the Comparator, otherwise map operations may throw a
   * {@link ClassCastException}.
   *
   * @param c the sort order for the keys of this map, or null
   *        for the natural order
   */
226
  public TreeMap(Comparator<? super K> c)
Tom Tromey committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  {
    comparator = c;
    fabricateTree(0);
  }

  /**
   * Instantiate a new TreeMap, initializing it with all of the elements in
   * the provided Map.  The elements will be sorted using the natural
   * ordering of the keys. This algorithm runs in n*log(n) time. All entries
   * in the map must have keys which implement Comparable and are mutually
   * comparable, otherwise map operations may throw a
   * {@link ClassCastException}.
   *
   * @param map a Map, whose entries will be put into this TreeMap
   * @throws ClassCastException if the keys in the provided Map are not
   *         comparable
   * @throws NullPointerException if map is null
   * @see Comparable
   */
246
  public TreeMap(Map<? extends K, ? extends V> map)
Tom Tromey committed
247 248 249 250 251 252 253 254 255 256 257 258 259
  {
    this((Comparator) null);
    putAll(map);
  }

  /**
   * Instantiate a new TreeMap, initializing it with all of the elements in
   * the provided SortedMap.  The elements will be sorted using the same
   * comparator as in the provided SortedMap. This runs in linear time.
   *
   * @param sm a SortedMap, whose entries will be put into this TreeMap
   * @throws NullPointerException if sm is null
   */
260
  public TreeMap(SortedMap<K, ? extends V> sm)
Tom Tromey committed
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  {
    this(sm.comparator());
    int pos = sm.size();
    Iterator itr = sm.entrySet().iterator();

    fabricateTree(pos);
    Node node = firstNode();

    while (--pos >= 0)
      {
        Map.Entry me = (Map.Entry) itr.next();
        node.key = me.getKey();
        node.value = me.getValue();
        node = successor(node);
      }
  }

  /**
   * Clears the Map so it has no keys. This is O(1).
   */
  public void clear()
  {
    if (size > 0)
      {
        modCount++;
        root = nil;
        size = 0;
      }
  }

  /**
   * Returns a shallow clone of this TreeMap. The Map itself is cloned,
   * but its contents are not.
   *
   * @return the clone
   */
  public Object clone()
  {
    TreeMap copy = null;
    try
      {
        copy = (TreeMap) super.clone();
      }
    catch (CloneNotSupportedException x)
      {
      }
    copy.entries = null;
    copy.fabricateTree(size);

    Node node = firstNode();
    Node cnode = copy.firstNode();

    while (node != nil)
      {
        cnode.key = node.key;
        cnode.value = node.value;
        node = successor(node);
        cnode = copy.successor(cnode);
      }
    return copy;
  }

  /**
   * Return the comparator used to sort this map, or null if it is by
   * natural order.
   *
   * @return the map's comparator
   */
329
  public Comparator<? super K> comparator()
Tom Tromey committed
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  {
    return comparator;
  }

  /**
   * Returns true if the map contains a mapping for the given key.
   *
   * @param key the key to look for
   * @return true if the key has a mapping
   * @throws ClassCastException if key is not comparable to map elements
   * @throws NullPointerException if key is null and the comparator is not
   *         tolerant of nulls
   */
  public boolean containsKey(Object key)
  {
345
    return getNode((K) key) != nil;
Tom Tromey committed
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  }

  /**
   * Returns true if the map contains at least one mapping to the given value.
   * This requires linear time.
   *
   * @param value the value to look for
   * @return true if the value appears in a mapping
   */
  public boolean containsValue(Object value)
  {
    Node node = firstNode();
    while (node != nil)
      {
        if (equals(value, node.value))
          return true;
        node = successor(node);
      }
    return false;
  }

  /**
   * Returns a "set view" of this TreeMap's entries. The set is backed by
   * the TreeMap, so changes in one show up in the other.  The set supports
   * element removal, but not element addition.<p>
   *
   * Note that the iterators for all three views, from keySet(), entrySet(),
   * and values(), traverse the TreeMap in sorted sequence.
   *
   * @return a set view of the entries
   * @see #keySet()
   * @see #values()
   * @see Map.Entry
   */
380
  public Set<Map.Entry<K,V>> entrySet()
Tom Tromey committed
381 382 383 384
  {
    if (entries == null)
      // Create an AbstractSet with custom implementations of those methods
      // that can be overriden easily and efficiently.
385
      entries = new NavigableEntrySet();
Tom Tromey committed
386 387 388 389 390 391 392 393 394
    return entries;
  }

  /**
   * Returns the first (lowest) key in the map.
   *
   * @return the first key
   * @throws NoSuchElementException if the map is empty
   */
395
  public K firstKey()
Tom Tromey committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  {
    if (root == nil)
      throw new NoSuchElementException();
    return firstNode().key;
  }

  /**
   * Return the value in this TreeMap associated with the supplied key,
   * or <code>null</code> if the key maps to nothing.  NOTE: Since the value
   * could also be null, you must use containsKey to see if this key
   * actually maps to something.
   *
   * @param key the key for which to fetch an associated value
   * @return what the key maps to, if present
   * @throws ClassCastException if key is not comparable to elements in the map
   * @throws NullPointerException if key is null but the comparator does not
   *         tolerate nulls
   * @see #put(Object, Object)
   * @see #containsKey(Object)
   */
416
  public V get(Object key)
Tom Tromey committed
417 418
  {
    // Exploit fact that nil.value == null.
419
    return getNode((K) key).value;
Tom Tromey committed
420 421 422 423 424 425 426 427
  }

  /**
   * Returns a view of this Map including all entries with keys less than
   * <code>toKey</code>. The returned map is backed by the original, so changes
   * in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoff. The returned map does not include
428 429 430
   * the endpoint; if you want inclusion, pass the successor element
   * or call <code>headMap(toKey, true)</code>.  This is equivalent to
   * calling <code>headMap(toKey, false)</code>.
Tom Tromey committed
431 432 433 434 435 436 437 438
   *
   * @param toKey the (exclusive) cutoff point
   * @return a view of the map less than the cutoff
   * @throws ClassCastException if <code>toKey</code> is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if toKey is null, but the comparator does not
   *         tolerate null elements
   */
439
  public SortedMap<K, V> headMap(K toKey)
Tom Tromey committed
440
  {
441 442 443 444 445 446 447 448
    return headMap(toKey, false);
  }

  /**
   * Returns a view of this Map including all entries with keys less than
   * (or equal to, if <code>inclusive</code> is true) <code>toKey</code>.
   * The returned map is backed by the original, so changes in one appear
   * in the other. The submap will throw an {@link IllegalArgumentException}
449
   * for any attempt to access or add an element beyond the specified cutoff.
450 451 452 453 454 455 456 457 458 459 460 461
   *
   * @param toKey the cutoff point
   * @param inclusive true if the cutoff point should be included.
   * @return a view of the map less than (or equal to, if <code>inclusive</code>
   *         is true) the cutoff.
   * @throws ClassCastException if <code>toKey</code> is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if toKey is null, but the comparator does not
   *         tolerate null elements
   */
  public NavigableMap<K, V> headMap(K toKey, boolean inclusive)
  {
462 463
    return new SubMap((K)(Object)nil, inclusive
                      ? successor(getNode(toKey)).key : toKey);
Tom Tromey committed
464 465 466 467 468 469 470 471 472 473 474
  }

  /**
   * Returns a "set view" of this TreeMap's keys. The set is backed by the
   * TreeMap, so changes in one show up in the other.  The set supports
   * element removal, but not element addition.
   *
   * @return a set view of the keys
   * @see #values()
   * @see #entrySet()
   */
475
  public Set<K> keySet()
Tom Tromey committed
476 477 478 479
  {
    if (keys == null)
      // Create an AbstractSet with custom implementations of those methods
      // that can be overriden easily and efficiently.
480
      keys = new KeySet();
Tom Tromey committed
481 482 483 484 485 486 487 488 489
    return keys;
  }

  /**
   * Returns the last (highest) key in the map.
   *
   * @return the last key
   * @throws NoSuchElementException if the map is empty
   */
490
  public K lastKey()
Tom Tromey committed
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  {
    if (root == nil)
      throw new NoSuchElementException("empty");
    return lastNode().key;
  }

  /**
   * Puts the supplied value into the Map, mapped by the supplied key.
   * The value may be retrieved by any object which <code>equals()</code>
   * this key. NOTE: Since the prior value could also be null, you must
   * first use containsKey if you want to see if you are replacing the
   * key's mapping.
   *
   * @param key the key used to locate the value
   * @param value the value to be stored in the Map
   * @return the prior mapping of the key, or null if there was none
   * @throws ClassCastException if key is not comparable to current map keys
   * @throws NullPointerException if key is null, but the comparator does
   *         not tolerate nulls
   * @see #get(Object)
   * @see Object#equals(Object)
   */
513
  public V put(K key, V value)
Tom Tromey committed
514
  {
515 516
    Node<K,V> current = root;
    Node<K,V> parent = nil;
Tom Tromey committed
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    int comparison = 0;

    // Find new node's parent.
    while (current != nil)
      {
        parent = current;
        comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else // Key already in tree.
          return current.setValue(value);
      }

    // Set up new node.
    Node n = new Node(key, value, RED);
    n.parent = parent;

    // Insert node in tree.
    modCount++;
    size++;
    if (parent == nil)
      {
        // Special case inserting into an empty tree.
        root = n;
        return null;
      }
    if (comparison > 0)
      parent.right = n;
    else
      parent.left = n;

    // Rebalance after insert.
    insertFixup(n);
    return null;
  }

  /**
   * Copies all elements of the given map into this TreeMap.  If this map
   * already has a mapping for a key, the new mapping replaces the current
   * one.
   *
   * @param m the map to be added
   * @throws ClassCastException if a key in m is not comparable with keys
   *         in the map
   * @throws NullPointerException if a key in m is null, and the comparator
   *         does not tolerate nulls
   */
566
  public void putAll(Map<? extends K, ? extends V> m)
Tom Tromey committed
567 568 569 570 571
  {
    Iterator itr = m.entrySet().iterator();
    int pos = m.size();
    while (--pos >= 0)
      {
572
        Map.Entry<K,V> e = (Map.Entry<K,V>) itr.next();
Tom Tromey committed
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        put(e.getKey(), e.getValue());
      }
  }

  /**
   * Removes from the TreeMap and returns the value which is mapped by the
   * supplied key. If the key maps to nothing, then the TreeMap remains
   * unchanged, and <code>null</code> is returned. NOTE: Since the value
   * could also be null, you must use containsKey to see if you are
   * actually removing a mapping.
   *
   * @param key the key used to locate the value to remove
   * @return whatever the key mapped to, if present
   * @throws ClassCastException if key is not comparable to current map keys
   * @throws NullPointerException if key is null, but the comparator does
   *         not tolerate nulls
   */
590
  public V remove(Object key)
Tom Tromey committed
591
  {
592
    Node<K, V> n = getNode((K)key);
Tom Tromey committed
593 594 595
    if (n == nil)
      return null;
    // Note: removeNode can alter the contents of n, so save value now.
596
    V result = n.value;
Tom Tromey committed
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    removeNode(n);
    return result;
  }

  /**
   * Returns the number of key-value mappings currently in this Map.
   *
   * @return the size
   */
  public int size()
  {
    return size;
  }

  /**
   * Returns a view of this Map including all entries with keys greater or
   * equal to <code>fromKey</code> and less than <code>toKey</code> (a
   * half-open interval). The returned map is backed by the original, so
   * changes in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoffs. The returned map includes the low
   * endpoint but not the high; if you want to reverse this behavior on
619 620 621
   * either end, pass in the successor element or call
   * {@link #subMap(K,boolean,K,boolean)}.  This call is equivalent to
   * <code>subMap(fromKey, true, toKey, false)</code>.
Tom Tromey committed
622 623 624 625 626 627 628 629 630 631
   *
   * @param fromKey the (inclusive) low cutoff point
   * @param toKey the (exclusive) high cutoff point
   * @return a view of the map between the cutoffs
   * @throws ClassCastException if either cutoff is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if fromKey or toKey is null, but the
   *         comparator does not tolerate null elements
   * @throws IllegalArgumentException if fromKey is greater than toKey
   */
632
  public SortedMap<K, V> subMap(K fromKey, K toKey)
Tom Tromey committed
633
  {
634 635 636 637 638 639 640 641 642 643
    return subMap(fromKey, true, toKey, false);
  }

  /**
   * Returns a view of this Map including all entries with keys greater (or
   * equal to, if <code>fromInclusive</code> is true) <code>fromKey</code> and
   * less than (or equal to, if <code>toInclusive</code> is true)
   * <code>toKey</code>. The returned map is backed by the original, so
   * changes in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
644
   * element beyond the specified cutoffs.
645 646 647 648 649 650 651 652 653 654 655 656 657
   *
   * @param fromKey the low cutoff point
   * @param fromInclusive true if the low cutoff point should be included.
   * @param toKey the high cutoff point
   * @param toInclusive true if the high cutoff point should be included.
   * @return a view of the map for the specified range.
   * @throws ClassCastException if either cutoff is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if fromKey or toKey is null, but the
   *         comparator does not tolerate null elements
   * @throws IllegalArgumentException if fromKey is greater than toKey
   */
  public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive,
658
                                   K toKey, boolean toInclusive)
659 660
  {
    return new SubMap(fromInclusive ? fromKey : successor(getNode(fromKey)).key,
661
                      toInclusive ? successor(getNode(toKey)).key : toKey);
Tom Tromey committed
662 663 664 665 666 667 668 669 670
  }

  /**
   * Returns a view of this Map including all entries with keys greater or
   * equal to <code>fromKey</code>. The returned map is backed by the
   * original, so changes in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoff. The returned map includes the
   * endpoint; if you want to exclude it, pass in the successor element.
671
   * This is equivalent to calling <code>tailMap(fromKey, true)</code>.
Tom Tromey committed
672 673 674 675 676 677 678 679
   *
   * @param fromKey the (inclusive) low cutoff point
   * @return a view of the map above the cutoff
   * @throws ClassCastException if <code>fromKey</code> is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if fromKey is null, but the comparator
   *         does not tolerate null elements
   */
680
  public SortedMap<K, V> tailMap(K fromKey)
Tom Tromey committed
681
  {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    return tailMap(fromKey, true);
  }

  /**
   * Returns a view of this Map including all entries with keys greater or
   * equal to <code>fromKey</code>. The returned map is backed by the
   * original, so changes in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoff. The returned map includes the
   * endpoint; if you want to exclude it, pass in the successor element.
   *
   * @param fromKey the low cutoff point
   * @param inclusive true if the cutoff point should be included.
   * @return a view of the map above the cutoff
   * @throws ClassCastException if <code>fromKey</code> is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if fromKey is null, but the comparator
   *         does not tolerate null elements
   */
  public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive)
  {
    return new SubMap(inclusive ? fromKey : successor(getNode(fromKey)).key,
704
                      (K)(Object)nil);
Tom Tromey committed
705 706 707 708 709 710 711 712 713 714 715 716
  }

  /**
   * Returns a "collection view" (or "bag view") of this TreeMap's values.
   * The collection is backed by the TreeMap, so changes in one show up
   * in the other.  The collection supports element removal, but not element
   * addition.
   *
   * @return a bag view of the values
   * @see #keySet()
   * @see #entrySet()
   */
717
  public Collection<V> values()
Tom Tromey committed
718 719 720 721
  {
    if (values == null)
      // We don't bother overriding many of the optional methods, as doing so
      // wouldn't provide any significant performance advantage.
722
      values = new AbstractCollection<V>()
Tom Tromey committed
723 724 725 726 727 728
      {
        public int size()
        {
          return size;
        }

729
        public Iterator<V> iterator()
Tom Tromey committed
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
        {
          return new TreeIterator(VALUES);
        }

        public void clear()
        {
          TreeMap.this.clear();
        }
      };
    return values;
  }

  /**
   * Compares two elements by the set comparator, or by natural ordering.
   * Package visible for use by nested classes.
   *
   * @param o1 the first object
   * @param o2 the second object
   * @throws ClassCastException if o1 and o2 are not mutually comparable,
   *         or are not Comparable with natural ordering
   * @throws NullPointerException if o1 or o2 is null with natural ordering
   */
752
  final int compare(K o1, K o2)
Tom Tromey committed
753 754 755 756 757 758 759 760 761 762 763 764
  {
    return (comparator == null
            ? ((Comparable) o1).compareTo(o2)
            : comparator.compare(o1, o2));
  }

  /**
   * Maintain red-black balance after deleting a node.
   *
   * @param node the child of the node just deleted, possibly nil
   * @param parent the parent of the node just deleted, never nil
   */
765
  private void deleteFixup(Node<K,V> node, Node<K,V> parent)
Tom Tromey committed
766 767 768 769 770 771 772 773 774 775 776
  {
    // if (parent == nil)
    //   throw new InternalError();
    // If a black node has been removed, we need to rebalance to avoid
    // violating the "same number of black nodes on any path" rule. If
    // node is red, we can simply recolor it black and all is well.
    while (node != root && node.color == BLACK)
      {
        if (node == parent.left)
          {
            // Rebalance left side.
777
            Node<K,V> sibling = parent.right;
Tom Tromey committed
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            // if (sibling == nil)
            //   throw new InternalError();
            if (sibling.color == RED)
              {
                // Case 1: Sibling is red.
                // Recolor sibling and parent, and rotate parent left.
                sibling.color = BLACK;
                parent.color = RED;
                rotateLeft(parent);
                sibling = parent.right;
              }

            if (sibling.left.color == BLACK && sibling.right.color == BLACK)
              {
                // Case 2: Sibling has no red children.
                // Recolor sibling, and move to parent.
                sibling.color = RED;
                node = parent;
                parent = parent.parent;
              }
            else
              {
                if (sibling.right.color == BLACK)
                  {
                    // Case 3: Sibling has red left child.
                    // Recolor sibling and left child, rotate sibling right.
                    sibling.left.color = BLACK;
                    sibling.color = RED;
                    rotateRight(sibling);
                    sibling = parent.right;
                  }
                // Case 4: Sibling has red right child. Recolor sibling,
                // right child, and parent, and rotate parent left.
                sibling.color = parent.color;
                parent.color = BLACK;
                sibling.right.color = BLACK;
                rotateLeft(parent);
                node = root; // Finished.
              }
          }
        else
          {
            // Symmetric "mirror" of left-side case.
821
            Node<K,V> sibling = parent.left;
Tom Tromey committed
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
            // if (sibling == nil)
            //   throw new InternalError();
            if (sibling.color == RED)
              {
                // Case 1: Sibling is red.
                // Recolor sibling and parent, and rotate parent right.
                sibling.color = BLACK;
                parent.color = RED;
                rotateRight(parent);
                sibling = parent.left;
              }

            if (sibling.right.color == BLACK && sibling.left.color == BLACK)
              {
                // Case 2: Sibling has no red children.
                // Recolor sibling, and move to parent.
                sibling.color = RED;
                node = parent;
                parent = parent.parent;
              }
            else
              {
                if (sibling.left.color == BLACK)
                  {
                    // Case 3: Sibling has red right child.
                    // Recolor sibling and right child, rotate sibling left.
                    sibling.right.color = BLACK;
                    sibling.color = RED;
                    rotateLeft(sibling);
                    sibling = parent.left;
                  }
                // Case 4: Sibling has red left child. Recolor sibling,
                // left child, and parent, and rotate parent right.
                sibling.color = parent.color;
                parent.color = BLACK;
                sibling.left.color = BLACK;
                rotateRight(parent);
                node = root; // Finished.
              }
          }
      }
    node.color = BLACK;
  }

  /**
   * Construct a perfectly balanced tree consisting of n "blank" nodes. This
   * permits a tree to be generated from pre-sorted input in linear time.
   *
   * @param count the number of blank nodes, non-negative
   */
  private void fabricateTree(final int count)
  {
    if (count == 0)
      {
876 877 878
        root = nil;
        size = 0;
        return;
Tom Tromey committed
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
      }

    // We color every row of nodes black, except for the overflow nodes.
    // I believe that this is the optimal arrangement. We construct the tree
    // in place by temporarily linking each node to the next node in the row,
    // then updating those links to the children when working on the next row.

    // Make the root node.
    root = new Node(null, null, BLACK);
    size = count;
    Node row = root;
    int rowsize;

    // Fill each row that is completely full of nodes.
    for (rowsize = 2; rowsize + rowsize <= count; rowsize <<= 1)
      {
        Node parent = row;
        Node last = null;
        for (int i = 0; i < rowsize; i += 2)
          {
            Node left = new Node(null, null, BLACK);
            Node right = new Node(null, null, BLACK);
            left.parent = parent;
            left.right = right;
            right.parent = parent;
            parent.left = left;
            Node next = parent.right;
            parent.right = right;
            parent = next;
            if (last != null)
              last.right = left;
            last = right;
          }
        row = row.left;
      }

    // Now do the partial final row in red.
    int overflow = count - rowsize;
    Node parent = row;
    int i;
    for (i = 0; i < overflow; i += 2)
      {
        Node left = new Node(null, null, RED);
        Node right = new Node(null, null, RED);
        left.parent = parent;
        right.parent = parent;
        parent.left = left;
        Node next = parent.right;
        parent.right = right;
        parent = next;
      }
    // Add a lone left node if necessary.
    if (i - overflow == 0)
      {
        Node left = new Node(null, null, RED);
        left.parent = parent;
        parent.left = left;
        parent = parent.right;
        left.parent.right = nil;
      }
    // Unlink the remaining nodes of the previous row.
    while (parent != nil)
      {
        Node next = parent.right;
        parent.right = nil;
        parent = next;
      }
  }

  /**
   * Returns the first sorted node in the map, or nil if empty. Package
   * visible for use by nested classes.
   *
   * @return the first node
   */
954
  final Node<K, V> firstNode()
Tom Tromey committed
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
  {
    // Exploit fact that nil.left == nil.
    Node node = root;
    while (node.left != nil)
      node = node.left;
    return node;
  }

  /**
   * Return the TreeMap.Node associated with key, or the nil node if no such
   * node exists in the tree. Package visible for use by nested classes.
   *
   * @param key the key to search for
   * @return the node where the key is found, or nil
   */
970
  final Node<K, V> getNode(K key)
Tom Tromey committed
971
  {
972
    Node<K,V> current = root;
Tom Tromey committed
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    while (current != nil)
      {
        int comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else
          return current;
      }
    return current;
  }

  /**
   * Find the "highest" node which is &lt; key. If key is nil, return last
   * node. Package visible for use by nested classes.
   *
   * @param key the upper bound, exclusive
   * @return the previous node
   */
993
  final Node<K,V> highestLessThan(K key)
Tom Tromey committed
994
  {
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    return highestLessThan(key, false);
  }

  /**
   * Find the "highest" node which is &lt; (or equal to,
   * if <code>equal</code> is true) key. If key is nil,
   * return last node. Package visible for use by nested
   * classes.
   *
   * @param key the upper bound, exclusive
   * @param equal true if the key should be returned if found.
   * @return the previous node
   */
  final Node<K,V> highestLessThan(K key, boolean equal)
  {
Tom Tromey committed
1010 1011 1012
    if (key == nil)
      return lastNode();

1013 1014
    Node<K,V> last = nil;
    Node<K,V> current = root;
Tom Tromey committed
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    int comparison = 0;

    while (current != nil)
      {
        last = current;
        comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else // Exact match.
1026
          return (equal ? last : predecessor(last));
Tom Tromey committed
1027
      }
1028
    return comparison < 0 ? predecessor(last) : last;
Tom Tromey committed
1029 1030 1031 1032 1033 1034 1035
  }

  /**
   * Maintain red-black balance after inserting a new node.
   *
   * @param n the newly inserted node
   */
1036
  private void insertFixup(Node<K,V> n)
Tom Tromey committed
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
  {
    // Only need to rebalance when parent is a RED node, and while at least
    // 2 levels deep into the tree (ie: node has a grandparent). Remember
    // that nil.color == BLACK.
    while (n.parent.color == RED && n.parent.parent != nil)
      {
        if (n.parent == n.parent.parent.left)
          {
            Node uncle = n.parent.parent.right;
            // Uncle may be nil, in which case it is BLACK.
            if (uncle.color == RED)
              {
                // Case 1. Uncle is RED: Change colors of parent, uncle,
                // and grandparent, and move n to grandparent.
                n.parent.color = BLACK;
                uncle.color = BLACK;
                uncle.parent.color = RED;
                n = uncle.parent;
              }
            else
              {
                if (n == n.parent.right)
                  {
                    // Case 2. Uncle is BLACK and x is right child.
                    // Move n to parent, and rotate n left.
                    n = n.parent;
                    rotateLeft(n);
                  }
                // Case 3. Uncle is BLACK and x is left child.
                // Recolor parent, grandparent, and rotate grandparent right.
                n.parent.color = BLACK;
                n.parent.parent.color = RED;
                rotateRight(n.parent.parent);
              }
          }
        else
          {
            // Mirror image of above code.
            Node uncle = n.parent.parent.left;
            // Uncle may be nil, in which case it is BLACK.
            if (uncle.color == RED)
              {
                // Case 1. Uncle is RED: Change colors of parent, uncle,
                // and grandparent, and move n to grandparent.
                n.parent.color = BLACK;
                uncle.color = BLACK;
                uncle.parent.color = RED;
                n = uncle.parent;
              }
            else
              {
                if (n == n.parent.left)
                {
                    // Case 2. Uncle is BLACK and x is left child.
                    // Move n to parent, and rotate n right.
                    n = n.parent;
                    rotateRight(n);
                  }
                // Case 3. Uncle is BLACK and x is right child.
                // Recolor parent, grandparent, and rotate grandparent left.
                n.parent.color = BLACK;
                n.parent.parent.color = RED;
                rotateLeft(n.parent.parent);
              }
          }
      }
    root.color = BLACK;
  }

  /**
   * Returns the last sorted node in the map, or nil if empty.
   *
   * @return the last node
   */
1111
  private Node<K,V> lastNode()
Tom Tromey committed
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  {
    // Exploit fact that nil.right == nil.
    Node node = root;
    while (node.right != nil)
      node = node.right;
    return node;
  }

  /**
   * Find the "lowest" node which is &gt;= key. If key is nil, return either
1122 1123
   * nil or the first node, depending on the parameter first.  Package visible
   * for use by nested classes.
Tom Tromey committed
1124 1125 1126 1127 1128
   *
   * @param key the lower bound, inclusive
   * @param first true to return the first element instead of nil for nil key
   * @return the next node
   */
1129
  final Node<K,V> lowestGreaterThan(K key, boolean first)
Tom Tromey committed
1130
  {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    return lowestGreaterThan(key, first, true);
  }

  /**
   * Find the "lowest" node which is &gt; (or equal to, if <code>equal</code>
   * is true) key. If key is nil, return either nil or the first node, depending
   * on the parameter first.  Package visible for use by nested classes.
   *
   * @param key the lower bound, inclusive
   * @param first true to return the first element instead of nil for nil key
   * @param equal true if the key should be returned if found.
   * @return the next node
   */
  final Node<K,V> lowestGreaterThan(K key, boolean first, boolean equal)
  {
Tom Tromey committed
1146 1147 1148
    if (key == nil)
      return first ? firstNode() : nil;

1149 1150
    Node<K,V> last = nil;
    Node<K,V> current = root;
Tom Tromey committed
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    int comparison = 0;

    while (current != nil)
      {
        last = current;
        comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else
1162
          return (equal ? current : successor(current));
Tom Tromey committed
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
      }
    return comparison > 0 ? successor(last) : last;
  }

  /**
   * Return the node preceding the given one, or nil if there isn't one.
   *
   * @param node the current node, not nil
   * @return the prior node in sorted order
   */
1173
  private Node<K,V> predecessor(Node<K,V> node)
Tom Tromey committed
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
  {
    if (node.left != nil)
      {
        node = node.left;
        while (node.right != nil)
          node = node.right;
        return node;
      }

    Node parent = node.parent;
    // Exploit fact that nil.left == nil and node is non-nil.
    while (node == parent.left)
      {
        node = parent;
        parent = node.parent;
      }
    return parent;
  }

  /**
   * Construct a tree from sorted keys in linear time. Package visible for
   * use by TreeSet.
   *
   * @param s the stream to read from
   * @param count the number of keys to read
1199
   * @param readValues true to read values, false to insert "" as the value
Tom Tromey committed
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
   * @throws ClassNotFoundException if the underlying stream fails
   * @throws IOException if the underlying stream fails
   * @see #readObject(ObjectInputStream)
   * @see TreeSet#readObject(ObjectInputStream)
   */
  final void putFromObjStream(ObjectInputStream s, int count,
                              boolean readValues)
    throws IOException, ClassNotFoundException
  {
    fabricateTree(count);
    Node node = firstNode();

    while (--count >= 0)
      {
        node.key = s.readObject();
        node.value = readValues ? s.readObject() : "";
        node = successor(node);
      }
  }

  /**
   * Construct a tree from sorted keys in linear time, with values of "".
1222
   * Package visible for use by TreeSet, which uses a value type of String.
Tom Tromey committed
1223 1224 1225 1226 1227
   *
   * @param keys the iterator over the sorted keys
   * @param count the number of nodes to insert
   * @see TreeSet#TreeSet(SortedSet)
   */
1228
  final void putKeysLinear(Iterator<K> keys, int count)
Tom Tromey committed
1229 1230
  {
    fabricateTree(count);
1231
    Node<K,V> node = firstNode();
Tom Tromey committed
1232 1233 1234 1235

    while (--count >= 0)
      {
        node.key = keys.next();
1236
        node.value = (V) "";
Tom Tromey committed
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        node = successor(node);
      }
  }

  /**
   * Deserializes this object from the given stream.
   *
   * @param s the stream to read from
   * @throws ClassNotFoundException if the underlying stream fails
   * @throws IOException if the underlying stream fails
   * @serialData the <i>size</i> (int), followed by key (Object) and value
   *             (Object) pairs in sorted order
   */
  private void readObject(ObjectInputStream s)
    throws IOException, ClassNotFoundException
  {
    s.defaultReadObject();
    int size = s.readInt();
    putFromObjStream(s, size, true);
  }

  /**
   * Remove node from tree. This will increment modCount and decrement size.
   * Node must exist in the tree. Package visible for use by nested classes.
   *
   * @param node the node to remove
   */
1264
  final void removeNode(Node<K,V> node)
Tom Tromey committed
1265
  {
1266 1267
    Node<K,V> splice;
    Node<K,V> child;
Tom Tromey committed
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

    modCount++;
    size--;

    // Find splice, the node at the position to actually remove from the tree.
    if (node.left == nil)
      {
        // Node to be deleted has 0 or 1 children.
        splice = node;
        child = node.right;
      }
    else if (node.right == nil)
      {
        // Node to be deleted has 1 child.
        splice = node;
        child = node.left;
      }
    else
      {
        // Node has 2 children. Splice is node's predecessor, and we swap
        // its contents into node.
        splice = node.left;
        while (splice.right != nil)
          splice = splice.right;
        child = splice.left;
        node.key = splice.key;
        node.value = splice.value;
      }

    // Unlink splice from the tree.
    Node parent = splice.parent;
    if (child != nil)
      child.parent = parent;
    if (parent == nil)
      {
        // Special case for 0 or 1 node remaining.
        root = child;
        return;
      }
    if (splice == parent.left)
      parent.left = child;
    else
      parent.right = child;

    if (splice.color == BLACK)
      deleteFixup(child, parent);
  }

  /**
   * Rotate node n to the left.
   *
   * @param node the node to rotate
   */
1321
  private void rotateLeft(Node<K,V> node)
Tom Tromey committed
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
  {
    Node child = node.right;
    // if (node == nil || child == nil)
    //   throw new InternalError();

    // Establish node.right link.
    node.right = child.left;
    if (child.left != nil)
      child.left.parent = node;

    // Establish child->parent link.
    child.parent = node.parent;
    if (node.parent != nil)
      {
        if (node == node.parent.left)
          node.parent.left = child;
        else
          node.parent.right = child;
      }
    else
      root = child;

    // Link n and child.
    child.left = node;
    node.parent = child;
  }

  /**
   * Rotate node n to the right.
   *
   * @param node the node to rotate
   */
1354
  private void rotateRight(Node<K,V> node)
Tom Tromey committed
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
  {
    Node child = node.left;
    // if (node == nil || child == nil)
    //   throw new InternalError();

    // Establish node.left link.
    node.left = child.right;
    if (child.right != nil)
      child.right.parent = node;

    // Establish child->parent link.
    child.parent = node.parent;
    if (node.parent != nil)
      {
        if (node == node.parent.right)
          node.parent.right = child;
        else
          node.parent.left = child;
      }
    else
      root = child;

    // Link n and child.
    child.right = node;
    node.parent = child;
  }

  /**
   * Return the node following the given one, or nil if there isn't one.
   * Package visible for use by nested classes.
   *
   * @param node the current node, not nil
   * @return the next node in sorted order
   */
1389
  final Node<K,V> successor(Node<K,V> node)
Tom Tromey committed
1390 1391 1392 1393 1394 1395 1396 1397 1398
  {
    if (node.right != nil)
      {
        node = node.right;
        while (node.left != nil)
          node = node.left;
        return node;
      }

1399
    Node<K,V> parent = node.parent;
Tom Tromey committed
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    // Exploit fact that nil.right == nil and node is non-nil.
    while (node == parent.right)
      {
        node = parent;
        parent = parent.parent;
      }
    return parent;
  }

  /**
   * Serializes this object to the given stream.
   *
   * @param s the stream to write to
   * @throws IOException if the underlying stream fails
   * @serialData the <i>size</i> (int), followed by key (Object) and value
   *             (Object) pairs in sorted order
   */
  private void writeObject(ObjectOutputStream s) throws IOException
  {
    s.defaultWriteObject();

    Node node = firstNode();
    s.writeInt(size);
    while (node != nil)
      {
        s.writeObject(node.key);
        s.writeObject(node.value);
        node = successor(node);
      }
  }

  /**
   * Iterate over TreeMap's entries. This implementation is parameterized
   * to give a sequential view of keys, values, or entries.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private final class TreeIterator implements Iterator
  {
    /**
     * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
     * or {@link #ENTRIES}.
     */
    private final int type;
    /** The number of modifications to the backing Map that we know about. */
    private int knownMod = modCount;
    /** The last Entry returned by a next() call. */
    private Node last;
    /** The next entry that should be returned by next(). */
    private Node next;
    /**
     * The last node visible to this iterator. This is used when iterating
     * on a SubMap.
     */
    private final Node max;

    /**
     * Construct a new TreeIterator with the supplied type.
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
     */
    TreeIterator(int type)
    {
1462
      this(type, firstNode(), nil);
Tom Tromey committed
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    }

    /**
     * Construct a new TreeIterator with the supplied type. Iteration will
     * be from "first" (inclusive) to "max" (exclusive).
     *
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
     * @param first where to start iteration, nil for empty iterator
     * @param max the cutoff for iteration, nil for all remaining nodes
     */
    TreeIterator(int type, Node first, Node max)
    {
      this.type = type;
      this.next = first;
      this.max = max;
    }

    /**
     * Returns true if the Iterator has more elements.
     * @return true if there are more elements
     */
    public boolean hasNext()
    {
      return next != max;
    }

    /**
     * Returns the next element in the Iterator's sequential view.
     * @return the next element
     * @throws ConcurrentModificationException if the TreeMap was modified
     * @throws NoSuchElementException if there is none
     */
    public Object next()
    {
      if (knownMod != modCount)
        throw new ConcurrentModificationException();
      if (next == max)
        throw new NoSuchElementException();
      last = next;
      next = successor(last);

      if (type == VALUES)
        return last.value;
      else if (type == KEYS)
        return last.key;
      return last;
    }

    /**
     * Removes from the backing TreeMap the last element which was fetched
     * with the <code>next()</code> method.
     * @throws ConcurrentModificationException if the TreeMap was modified
     * @throws IllegalStateException if called when there is no last element
     */
    public void remove()
    {
      if (last == null)
        throw new IllegalStateException();
      if (knownMod != modCount)
        throw new ConcurrentModificationException();

      removeNode(last);
      last = null;
      knownMod++;
    }
  } // class TreeIterator

  /**
   * Implementation of {@link #subMap(Object, Object)} and other map
   * ranges. This class provides a view of a portion of the original backing
   * map, and throws {@link IllegalArgumentException} for attempts to
   * access beyond that range.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
1538 1539 1540
  private final class SubMap
    extends AbstractMap<K,V>
    implements NavigableMap<K,V>
Tom Tromey committed
1541 1542 1543 1544 1545
  {
    /**
     * The lower range of this view, inclusive, or nil for unbounded.
     * Package visible for use by nested classes.
     */
1546
    final K minKey;
Tom Tromey committed
1547 1548 1549 1550 1551

    /**
     * The upper range of this view, exclusive, or nil for unbounded.
     * Package visible for use by nested classes.
     */
1552
    final K maxKey;
Tom Tromey committed
1553 1554 1555 1556

    /**
     * The cache for {@link #entrySet()}.
     */
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    private Set<Map.Entry<K,V>> entries;

    /**
     * The cache for {@link #descendingMap()}.
     */
    private NavigableMap<K,V> descendingMap;

    /**
     * The cache for {@link #navigableKeySet()}.
     */
    private NavigableSet<K> nKeys;
Tom Tromey committed
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

    /**
     * Create a SubMap representing the elements between minKey (inclusive)
     * and maxKey (exclusive). If minKey is nil, SubMap has no lower bound
     * (headMap). If maxKey is nil, the SubMap has no upper bound (tailMap).
     *
     * @param minKey the lower bound
     * @param maxKey the upper bound
     * @throws IllegalArgumentException if minKey &gt; maxKey
     */
1578
    SubMap(K minKey, K maxKey)
Tom Tromey committed
1579
    {
1580
      if (minKey != nil && maxKey != nil && compare(minKey, maxKey) > 0)
Tom Tromey committed
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        throw new IllegalArgumentException("fromKey > toKey");
      this.minKey = minKey;
      this.maxKey = maxKey;
    }

    /**
     * Check if "key" is in within the range bounds for this SubMap. The
     * lower ("from") SubMap range is inclusive, and the upper ("to") bound
     * is exclusive. Package visible for use by nested classes.
     *
     * @param key the key to check
     * @return true if the key is in range
     */
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    boolean keyInRange(K key)
    {
      return ((minKey == nil || compare(key, minKey) >= 0)
              && (maxKey == nil || compare(key, maxKey) < 0));
    }

    public Entry<K,V> ceilingEntry(K key)
    {
      Entry<K,V> n = TreeMap.this.ceilingEntry(key);
      if (n != null && keyInRange(n.getKey()))
1604
        return n;
1605 1606 1607 1608 1609 1610 1611
      return null;
    }

    public K ceilingKey(K key)
    {
      K found = TreeMap.this.ceilingKey(key);
      if (keyInRange(found))
1612
        return found;
1613
      else
1614
        return null;
1615 1616 1617
    }

    public NavigableSet<K> descendingKeySet()
Tom Tromey committed
1618
    {
1619
      return descendingMap().navigableKeySet();
Tom Tromey committed
1620 1621
    }

1622 1623 1624
    public NavigableMap<K,V> descendingMap()
    {
      if (descendingMap == null)
1625
        descendingMap = new DescendingMap(this);
1626 1627
      return descendingMap;
    }
1628

Tom Tromey committed
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    public void clear()
    {
      Node next = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      while (next != max)
        {
          Node current = next;
          next = successor(current);
          removeNode(current);
        }
    }

1641
    public Comparator<? super K> comparator()
Tom Tromey committed
1642 1643 1644 1645 1646 1647
    {
      return comparator;
    }

    public boolean containsKey(Object key)
    {
1648
      return keyInRange((K) key) && TreeMap.this.containsKey(key);
Tom Tromey committed
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    }

    public boolean containsValue(Object value)
    {
      Node node = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      while (node != max)
        {
          if (equals(value, node.getValue()))
            return true;
          node = successor(node);
        }
      return false;
    }

1664
    public Set<Map.Entry<K,V>> entrySet()
Tom Tromey committed
1665 1666 1667 1668
    {
      if (entries == null)
        // Create an AbstractSet with custom implementations of those methods
        // that can be overriden easily and efficiently.
1669
        entries = new SubMap.NavigableEntrySet();
Tom Tromey committed
1670 1671 1672
      return entries;
    }

1673
    public Entry<K,V> firstEntry()
Tom Tromey committed
1674
    {
1675
      Node<K,V> node = lowestGreaterThan(minKey, true);
Tom Tromey committed
1676
      if (node == nil || ! keyInRange(node.key))
1677
        return null;
1678 1679 1680 1681 1682 1683 1684
      return node;
    }

    public K firstKey()
    {
      Entry<K,V> e = firstEntry();
      if (e == null)
Tom Tromey committed
1685
        throw new NoSuchElementException();
1686
      return e.getKey();
Tom Tromey committed
1687 1688
    }

1689
    public Entry<K,V> floorEntry(K key)
Tom Tromey committed
1690
    {
1691 1692
      Entry<K,V> n = TreeMap.this.floorEntry(key);
      if (n != null && keyInRange(n.getKey()))
1693
        return n;
Tom Tromey committed
1694 1695 1696
      return null;
    }

1697
    public K floorKey(K key)
Tom Tromey committed
1698
    {
1699 1700
      K found = TreeMap.this.floorKey(key);
      if (keyInRange(found))
1701
        return found;
1702
      else
1703
        return null;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    }

    public V get(Object key)
    {
      if (keyInRange((K) key))
        return TreeMap.this.get(key);
      return null;
    }

    public SortedMap<K,V> headMap(K toKey)
    {
      return headMap(toKey, false);
    }

    public NavigableMap<K,V> headMap(K toKey, boolean inclusive)
    {
      if (!keyInRange(toKey))
        throw new IllegalArgumentException("Key outside submap range");
1722 1723
      return new SubMap(minKey, (inclusive ?
                                 successor(getNode(toKey)).key : toKey));
Tom Tromey committed
1724 1725
    }

1726
    public Set<K> keySet()
Tom Tromey committed
1727 1728 1729 1730
    {
      if (this.keys == null)
        // Create an AbstractSet with custom implementations of those methods
        // that can be overriden easily and efficiently.
1731 1732 1733
        this.keys = new SubMap.KeySet();
      return this.keys;
    }
Tom Tromey committed
1734

1735 1736 1737 1738
    public Entry<K,V> higherEntry(K key)
    {
      Entry<K,V> n = TreeMap.this.higherEntry(key);
      if (n != null && keyInRange(n.getKey()))
1739
        return n;
1740 1741
      return null;
    }
Tom Tromey committed
1742

1743 1744 1745 1746
    public K higherKey(K key)
    {
      K found = TreeMap.this.higherKey(key);
      if (keyInRange(found))
1747
        return found;
1748
      else
1749
        return null;
1750
    }
Tom Tromey committed
1751

1752 1753 1754
    public Entry<K,V> lastEntry()
    {
      return lowerEntry(maxKey);
Tom Tromey committed
1755 1756
    }

1757
    public K lastKey()
Tom Tromey committed
1758
    {
1759 1760
      Entry<K,V> e = lastEntry();
      if (e == null)
Tom Tromey committed
1761
        throw new NoSuchElementException();
1762 1763 1764 1765 1766 1767 1768
      return e.getKey();
    }

    public Entry<K,V> lowerEntry(K key)
    {
      Entry<K,V> n = TreeMap.this.lowerEntry(key);
      if (n != null && keyInRange(n.getKey()))
1769
        return n;
1770 1771 1772 1773 1774 1775 1776
      return null;
    }

    public K lowerKey(K key)
    {
      K found = TreeMap.this.lowerKey(key);
      if (keyInRange(found))
1777
        return found;
1778
      else
1779
        return null;
1780 1781 1782 1783 1784 1785 1786 1787
    }

    public NavigableSet<K> navigableKeySet()
    {
      if (this.nKeys == null)
        // Create an AbstractSet with custom implementations of those methods
        // that can be overriden easily and efficiently.
        this.nKeys = new SubMap.NavigableKeySet();
1788
      return this.nKeys;
1789 1790 1791 1792 1793 1794
    }

    public Entry<K,V> pollFirstEntry()
    {
      Entry<K,V> e = firstEntry();
      if (e != null)
1795
        removeNode((Node<K,V>) e);
1796 1797 1798 1799 1800 1801 1802
      return e;
    }

    public Entry<K,V> pollLastEntry()
    {
      Entry<K,V> e = lastEntry();
      if (e != null)
1803
        removeNode((Node<K,V>) e);
1804
      return e;
Tom Tromey committed
1805 1806
    }

1807
    public V put(K key, V value)
Tom Tromey committed
1808 1809 1810
    {
      if (! keyInRange(key))
        throw new IllegalArgumentException("Key outside range");
1811
      return TreeMap.this.put(key, value);
Tom Tromey committed
1812 1813
    }

1814
    public V remove(Object key)
Tom Tromey committed
1815
    {
1816 1817
      if (keyInRange((K)key))
        return TreeMap.this.remove(key);
Tom Tromey committed
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
      return null;
    }

    public int size()
    {
      Node node = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      int count = 0;
      while (node != max)
        {
          count++;
          node = successor(node);
        }
      return count;
    }

1834 1835 1836 1837 1838 1839
    public SortedMap<K,V> subMap(K fromKey, K toKey)
    {
      return subMap(fromKey, true, toKey, false);
    }

    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1840
                                    K toKey, boolean toInclusive)
Tom Tromey committed
1841 1842 1843
    {
      if (! keyInRange(fromKey) || ! keyInRange(toKey))
        throw new IllegalArgumentException("key outside range");
1844 1845
      return new SubMap(fromInclusive ? fromKey : successor(getNode(fromKey)).key,
                        toInclusive ? successor(getNode(toKey)).key : toKey);
Tom Tromey committed
1846 1847
    }

1848 1849 1850 1851
    public SortedMap<K, V> tailMap(K fromKey)
    {
      return tailMap(fromKey, true);
    }
1852

1853
    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive)
Tom Tromey committed
1854 1855 1856
    {
      if (! keyInRange(fromKey))
        throw new IllegalArgumentException("key outside range");
1857
      return new SubMap(inclusive ? fromKey : successor(getNode(fromKey)).key,
1858
                        maxKey);
Tom Tromey committed
1859 1860
    }

1861
    public Collection<V> values()
Tom Tromey committed
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    {
      if (this.values == null)
        // Create an AbstractCollection with custom implementations of those
        // methods that can be overriden easily and efficiently.
        this.values = new AbstractCollection()
        {
          public int size()
          {
            return SubMap.this.size();
          }

1873
          public Iterator<V> iterator()
Tom Tromey committed
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
          {
            Node first = lowestGreaterThan(minKey, true);
            Node max = lowestGreaterThan(maxKey, false);
            return new TreeIterator(VALUES, first, max);
          }

          public void clear()
          {
            SubMap.this.clear();
          }
        };
      return this.values;
    }
1887

1888 1889 1890 1891 1892
    private class KeySet
      extends AbstractSet<K>
    {
      public int size()
      {
1893
        return SubMap.this.size();
1894
      }
1895

1896 1897
      public Iterator<K> iterator()
      {
1898 1899 1900
        Node first = lowestGreaterThan(minKey, true);
        Node max = lowestGreaterThan(maxKey, false);
        return new TreeIterator(KEYS, first, max);
1901
      }
1902

1903 1904
      public void clear()
      {
1905
        SubMap.this.clear();
1906
      }
1907

1908 1909
      public boolean contains(Object o)
      {
1910 1911 1912
        if (! keyInRange((K) o))
          return false;
        return getNode((K) o) != nil;
1913
      }
1914

1915 1916
      public boolean remove(Object o)
      {
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        if (! keyInRange((K) o))
          return false;
        Node n = getNode((K) o);
        if (n != nil)
          {
            removeNode(n);
            return true;
          }
        return false;
      }

1928 1929 1930 1931 1932 1933 1934 1935 1936
    } // class SubMap.KeySet

    private final class NavigableKeySet
      extends KeySet
      implements NavigableSet<K>
    {

      public K ceiling(K k)
      {
1937
        return SubMap.this.ceilingKey(k);
1938
      }
1939

1940 1941
      public Comparator<? super K> comparator()
      {
1942
        return comparator;
1943
      }
1944

1945 1946
      public Iterator<K> descendingIterator()
      {
1947
        return descendingSet().iterator();
1948
      }
1949

1950 1951
      public NavigableSet<K> descendingSet()
      {
1952
        return new DescendingSet(this);
1953
      }
1954

1955 1956
      public K first()
      {
1957
        return SubMap.this.firstKey();
1958
      }
1959

1960 1961
      public K floor(K k)
      {
1962
        return SubMap.this.floorKey(k);
1963
      }
1964

1965 1966
      public SortedSet<K> headSet(K to)
      {
1967
        return headSet(to, false);
1968 1969 1970 1971
      }

      public NavigableSet<K> headSet(K to, boolean inclusive)
      {
1972
        return SubMap.this.headMap(to, inclusive).navigableKeySet();
1973 1974 1975 1976
      }

      public K higher(K k)
      {
1977
        return SubMap.this.higherKey(k);
1978 1979 1980 1981
      }

      public K last()
      {
1982
        return SubMap.this.lastKey();
1983 1984 1985 1986
      }

      public K lower(K k)
      {
1987
        return SubMap.this.lowerKey(k);
1988 1989 1990 1991
      }

      public K pollFirst()
      {
1992
        return SubMap.this.pollFirstEntry().getKey();
1993 1994 1995 1996
      }

      public K pollLast()
      {
1997
        return SubMap.this.pollLastEntry().getKey();
1998 1999 2000 2001
      }

      public SortedSet<K> subSet(K from, K to)
      {
2002
        return subSet(from, true, to, false);
2003
      }
2004

2005
      public NavigableSet<K> subSet(K from, boolean fromInclusive,
2006
                                    K to, boolean toInclusive)
2007
      {
2008 2009
        return SubMap.this.subMap(from, fromInclusive,
                                  to, toInclusive).navigableKeySet();
2010 2011 2012 2013
      }

      public SortedSet<K> tailSet(K from)
      {
2014
        return tailSet(from, true);
2015
      }
2016

2017 2018
      public NavigableSet<K> tailSet(K from, boolean inclusive)
      {
2019
        return SubMap.this.tailMap(from, inclusive).navigableKeySet();
2020
      }
2021

2022 2023 2024 2025 2026 2027 2028 2029
  } // class SubMap.NavigableKeySet

  /**
   * Implementation of {@link #entrySet()}.
   */
  private class EntrySet
    extends AbstractSet<Entry<K,V>>
  {
2030

2031 2032 2033 2034
    public int size()
    {
      return SubMap.this.size();
    }
2035

2036 2037 2038 2039 2040 2041
    public Iterator<Map.Entry<K,V>> iterator()
    {
      Node first = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      return new TreeIterator(ENTRIES, first, max);
    }
2042

2043 2044 2045 2046
    public void clear()
    {
      SubMap.this.clear();
    }
2047

2048 2049 2050
    public boolean contains(Object o)
    {
      if (! (o instanceof Map.Entry))
2051
        return false;
2052 2053 2054
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
      K key = me.getKey();
      if (! keyInRange(key))
2055
        return false;
2056 2057 2058
      Node<K,V> n = getNode(key);
      return n != nil && AbstractSet.equals(me.getValue(), n.value);
    }
2059

2060 2061 2062
    public boolean remove(Object o)
    {
      if (! (o instanceof Map.Entry))
2063
        return false;
2064 2065 2066
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
      K key = me.getKey();
      if (! keyInRange(key))
2067
        return false;
2068 2069
      Node<K,V> n = getNode(key);
      if (n != nil && AbstractSet.equals(me.getValue(), n.value))
2070 2071 2072 2073
        {
          removeNode(n);
          return true;
        }
2074 2075 2076
      return false;
    }
  } // class SubMap.EntrySet
2077

2078 2079 2080 2081 2082 2083 2084
    private final class NavigableEntrySet
      extends EntrySet
      implements NavigableSet<Entry<K,V>>
    {

      public Entry<K,V> ceiling(Entry<K,V> e)
      {
2085
        return SubMap.this.ceilingEntry(e.getKey());
2086
      }
2087

2088 2089
      public Comparator<? super Entry<K,V>> comparator()
      {
2090 2091 2092 2093 2094 2095 2096
        return new Comparator<Entry<K,V>>()
          {
            public int compare(Entry<K,V> t1, Entry<K,V> t2)
              {
                return comparator.compare(t1.getKey(), t2.getKey());
              }
          };
2097
      }
2098

2099 2100
      public Iterator<Entry<K,V>> descendingIterator()
      {
2101
        return descendingSet().iterator();
2102
      }
2103

2104 2105
      public NavigableSet<Entry<K,V>> descendingSet()
      {
2106
        return new DescendingSet(this);
2107
      }
2108

2109 2110
      public Entry<K,V> first()
      {
2111
        return SubMap.this.firstEntry();
2112
      }
2113

2114 2115
      public Entry<K,V> floor(Entry<K,V> e)
      {
2116
        return SubMap.this.floorEntry(e.getKey());
2117
      }
2118

2119 2120
      public SortedSet<Entry<K,V>> headSet(Entry<K,V> to)
      {
2121
        return headSet(to, false);
2122 2123 2124 2125
      }

      public NavigableSet<Entry<K,V>> headSet(Entry<K,V> to, boolean inclusive)
      {
2126 2127
        return (NavigableSet<Entry<K,V>>)
          SubMap.this.headMap(to.getKey(), inclusive).entrySet();
2128 2129 2130 2131
      }

      public Entry<K,V> higher(Entry<K,V> e)
      {
2132
        return SubMap.this.higherEntry(e.getKey());
2133 2134 2135 2136
      }

      public Entry<K,V> last()
      {
2137
        return SubMap.this.lastEntry();
2138 2139 2140 2141
      }

      public Entry<K,V> lower(Entry<K,V> e)
      {
2142
        return SubMap.this.lowerEntry(e.getKey());
2143 2144 2145 2146
      }

      public Entry<K,V> pollFirst()
      {
2147
        return SubMap.this.pollFirstEntry();
2148 2149 2150 2151
      }

      public Entry<K,V> pollLast()
      {
2152
        return SubMap.this.pollLastEntry();
2153 2154 2155 2156
      }

      public SortedSet<Entry<K,V>> subSet(Entry<K,V> from, Entry<K,V> to)
      {
2157
        return subSet(from, true, to, false);
2158
      }
2159

2160
      public NavigableSet<Entry<K,V>> subSet(Entry<K,V> from, boolean fromInclusive,
2161
                                             Entry<K,V> to, boolean toInclusive)
2162
      {
2163 2164 2165
        return (NavigableSet<Entry<K,V>>)
          SubMap.this.subMap(from.getKey(), fromInclusive,
                             to.getKey(), toInclusive).entrySet();
2166 2167 2168 2169
      }

      public SortedSet<Entry<K,V>> tailSet(Entry<K,V> from)
      {
2170
        return tailSet(from, true);
2171
      }
2172

2173 2174
      public NavigableSet<Entry<K,V>> tailSet(Entry<K,V> from, boolean inclusive)
      {
2175 2176
        return (NavigableSet<Entry<K,V>>)
          SubMap.this.tailMap(from.getKey(), inclusive).navigableKeySet();
2177
      }
2178

2179 2180
  } // class SubMap.NavigableEntrySet

2181
} // class SubMap
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

  /**
   * Returns the entry associated with the least or lowest key
   * that is greater than or equal to the specified key, or
   * <code>null</code> if there is no such key.
   *
   * @param key the key relative to the returned entry.
   * @return the entry with the least key greater than or equal
   *         to the given key, or <code>null</code> if there is
   *         no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public Entry<K,V> ceilingEntry(K key)
  {
    Node<K,V> n = lowestGreaterThan(key, false);
    return (n == nil) ? null : n;
  }

  /**
   * Returns the the least or lowest key that is greater than
   * or equal to the specified key, or <code>null</code> if
   * there is no such key.
   *
   * @param key the key relative to the returned entry.
   * @return the least key greater than or equal to the given key,
   *         or <code>null</code> if there is no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public K ceilingKey(K key)
  {
    Entry<K,V> e = ceilingEntry(key);
    return (e == null) ? null : e.getKey();
  }

  /**
   * Returns a reverse ordered {@link NavigableSet} view of this
   * map's keys. The set is backed by the {@link TreeMap}, so changes
   * in one show up in the other.  The set supports element removal,
   * but not element addition.
   *
   * @return a reverse ordered set view of the keys.
   * @since 1.6
   * @see #descendingMap()
   */
  public NavigableSet<K> descendingKeySet()
  {
    return descendingMap().navigableKeySet();
  }

  /**
   * Returns a view of the map in reverse order.  The descending map
   * is backed by the original map, so that changes affect both maps.
   * Any changes occurring to either map while an iteration is taking
   * place (with the exception of a {@link Iterator#remove()} operation)
   * result in undefined behaviour from the iteration.  The ordering
   * of the descending map is the same as for a map with a
   * {@link Comparator} given by {@link Collections#reverseOrder()},
   * and calling {@link #descendingMap()} on the descending map itself
   * results in a view equivalent to the original map.
   *
   * @return a reverse order view of the map.
   * @since 1.6
   */
  public NavigableMap<K,V> descendingMap()
  {
    if (descendingMap == null)
      descendingMap = new DescendingMap<K,V>(this);
    return descendingMap;
  }

  /**
   * Returns the entry associated with the least or lowest key
   * in the map, or <code>null</code> if the map is empty.
   *
   * @return the lowest entry, or <code>null</code> if the map
   *         is empty.
   * @since 1.6
   */
  public Entry<K,V> firstEntry()
  {
    Node<K,V> n = firstNode();
    return (n == nil) ? null : n;
  }

  /**
   * Returns the entry associated with the greatest or highest key
   * that is less than or equal to the specified key, or
   * <code>null</code> if there is no such key.
   *
   * @param key the key relative to the returned entry.
   * @return the entry with the greatest key less than or equal
   *         to the given key, or <code>null</code> if there is
   *         no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public Entry<K,V> floorEntry(K key)
  {
    Node<K,V> n = highestLessThan(key, true);
    return (n == nil) ? null : n;
  }

  /**
   * Returns the the greatest or highest key that is less than
   * or equal to the specified key, or <code>null</code> if
   * there is no such key.
   *
   * @param key the key relative to the returned entry.
   * @return the greatest key less than or equal to the given key,
   *         or <code>null</code> if there is no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public K floorKey(K key)
  {
    Entry<K,V> e = floorEntry(key);
    return (e == null) ? null : e.getKey();
  }

  /**
   * Returns the entry associated with the least or lowest key
   * that is strictly greater than the specified key, or
   * <code>null</code> if there is no such key.
   *
   * @param key the key relative to the returned entry.
2329
   * @return the entry with the least key greater than
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
   *         the given key, or <code>null</code> if there is
   *         no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public Entry<K,V> higherEntry(K key)
  {
    Node<K,V> n = lowestGreaterThan(key, false, false);
    return (n == nil) ? null : n;
  }

  /**
   * Returns the the least or lowest key that is strictly
   * greater than the specified key, or <code>null</code> if
   * there is no such key.
   *
   * @param key the key relative to the returned entry.
   * @return the least key greater than the given key,
   *         or <code>null</code> if there is no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public K higherKey(K key)
  {
    Entry<K,V> e = higherEntry(key);
    return (e == null) ? null : e.getKey();
  }

  /**
   * Returns the entry associated with the greatest or highest key
   * in the map, or <code>null</code> if the map is empty.
   *
   * @return the highest entry, or <code>null</code> if the map
   *         is empty.
   * @since 1.6
   */
  public Entry<K,V> lastEntry()
  {
    Node<K,V> n = lastNode();
    return (n == nil) ? null : n;
  }

  /**
   * Returns the entry associated with the greatest or highest key
   * that is strictly less than the specified key, or
   * <code>null</code> if there is no such key.
   *
   * @param key the key relative to the returned entry.
2388
   * @return the entry with the greatest key less than
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
   *         the given key, or <code>null</code> if there is
   *         no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public Entry<K,V> lowerEntry(K key)
  {
    Node<K,V> n = highestLessThan(key);
    return (n == nil) ? null : n;
  }

  /**
   * Returns the the greatest or highest key that is strictly
   * less than the specified key, or <code>null</code> if
   * there is no such key.
   *
   * @param key the key relative to the returned entry.
   * @return the greatest key less than the given key,
   *         or <code>null</code> if there is no such key.
   * @throws ClassCastException if the specified key can not
   *                            be compared with those in the map.
   * @throws NullPointerException if the key is <code>null</code>
   *                              and this map either uses natural
   *                              ordering or a comparator that does
   *                              not permit null keys.
   * @since 1.6
   */
  public K lowerKey(K key)
  {
    Entry<K,V> e = lowerEntry(key);
    return (e == null) ? null : e.getKey();
  }

  /**
   * Returns a {@link NavigableSet} view of this map's keys. The set is
   * backed by the {@link TreeMap}, so changes in one show up in the other.
   * Any changes occurring to either while an iteration is taking
   * place (with the exception of a {@link Iterator#remove()} operation)
   * result in undefined behaviour from the iteration.  The ordering
   * The set supports element removal, but not element addition.
   *
   * @return a {@link NavigableSet} view of the keys.
   * @since 1.6
   */
  public NavigableSet<K> navigableKeySet()
  {
    if (nKeys == null)
      nKeys = new NavigableKeySet();
    return nKeys;
  }

  /**
   * Removes and returns the entry associated with the least
   * or lowest key in the map, or <code>null</code> if the map
   * is empty.
   *
   * @return the removed first entry, or <code>null</code> if the
   *         map is empty.
   * @since 1.6
   */
  public Entry<K,V> pollFirstEntry()
  {
    Entry<K,V> e = firstEntry();
    if (e != null)
      removeNode((Node<K,V>)e);
    return e;
  }

  /**
   * Removes and returns the entry associated with the greatest
   * or highest key in the map, or <code>null</code> if the map
   * is empty.
   *
   * @return the removed last entry, or <code>null</code> if the
   *         map is empty.
   * @since 1.6
   */
  public Entry<K,V> pollLastEntry()
  {
    Entry<K,V> e = lastEntry();
    if (e != null)
      removeNode((Node<K,V>)e);
2476
    return e;
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
  }

  /**
   * Implementation of {@link #descendingMap()} and associated
   * derivatives. This class provides a view of the
   * original backing map in reverse order, and throws
   * {@link IllegalArgumentException} for attempts to
   * access beyond that range.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private static final class DescendingMap<DK,DV>
    implements NavigableMap<DK,DV>
  {

    /**
     * The cache for {@link #entrySet()}.
     */
    private Set<Map.Entry<DK,DV>> entries;

    /**
     * The cache for {@link #keySet()}.
     */
    private Set<DK> keys;

    /**
     * The cache for {@link #navigableKeySet()}.
     */
    private NavigableSet<DK> nKeys;

    /**
     * The cache for {@link #values()}.
     */
    private Collection<DV> values;

    /**
     * The backing {@link NavigableMap}.
     */
    private NavigableMap<DK,DV> map;

    /**
     * Create a {@link DescendingMap} around the specified
     * map.
     *
     * @param map the map to wrap.
     */
    public DescendingMap(NavigableMap<DK,DV> map)
    {
      this.map = map;
    }
2527

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
    public Map.Entry<DK,DV> ceilingEntry(DK key)
    {
      return map.floorEntry(key);
    }

    public DK ceilingKey(DK key)
    {
      return map.floorKey(key);
    }

    public void clear()
    {
      map.clear();
    }

    public Comparator<? super DK> comparator()
    {
      return Collections.reverseOrder(map.comparator());
    }

    public boolean containsKey(Object o)
    {
      return map.containsKey(o);
    }
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
    public boolean containsValue(Object o)
    {
      return map.containsValue(o);
    }

    public NavigableSet<DK> descendingKeySet()
    {
      return descendingMap().navigableKeySet();
    }

    public NavigableMap<DK,DV> descendingMap()
    {
      return map;
    }

    public Set<Entry<DK,DV>> entrySet()
    {
      if (entries == null)
2571 2572 2573
        entries =
          new DescendingSet<Entry<DK,DV>>((NavigableSet<Entry<DK,DV>>)
                                          map.entrySet());
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
      return entries;
    }

    public boolean equals(Object o)
    {
      return map.equals(o);
    }

    public Entry<DK,DV> firstEntry()
    {
      return map.lastEntry();
    }

    public DK firstKey()
    {
      return map.lastKey();
    }

    public Entry<DK,DV> floorEntry(DK key)
    {
      return map.ceilingEntry(key);
    }

    public DK floorKey(DK key)
    {
      return map.ceilingKey(key);
    }

    public DV get(Object key)
    {
      return map.get(key);
    }

    public int hashCode()
    {
      return map.hashCode();
    }

    public SortedMap<DK,DV> headMap(DK toKey)
    {
      return headMap(toKey, false);
    }

    public NavigableMap<DK,DV> headMap(DK toKey, boolean inclusive)
    {
      return new DescendingMap(map.tailMap(toKey, inclusive));
    }

    public Entry<DK,DV> higherEntry(DK key)
    {
      return map.lowerEntry(key);
    }

    public DK higherKey(DK key)
    {
      return map.lowerKey(key);
    }

    public Set<DK> keySet()
    {
      if (keys == null)
2635
        keys = new DescendingSet<DK>(map.navigableKeySet());
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
      return keys;
    }

    public boolean isEmpty()
    {
      return map.isEmpty();
    }

    public Entry<DK,DV> lastEntry()
    {
      return map.firstEntry();
    }

    public DK lastKey()
    {
      return map.firstKey();
    }

    public Entry<DK,DV> lowerEntry(DK key)
    {
      return map.higherEntry(key);
    }

    public DK lowerKey(DK key)
    {
      return map.higherKey(key);
    }

    public NavigableSet<DK> navigableKeySet()
    {
      if (nKeys == null)
2667
        nKeys = new DescendingSet<DK>(map.navigableKeySet());
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
      return nKeys;
    }

    public Entry<DK,DV> pollFirstEntry()
    {
      return pollLastEntry();
    }

    public Entry<DK,DV> pollLastEntry()
    {
      return pollFirstEntry();
    }

    public DV put(DK key, DV value)
    {
      return map.put(key, value);
    }

    public void putAll(Map<? extends DK, ? extends DV> m)
    {
      map.putAll(m);
    }

    public DV remove(Object key)
    {
      return map.remove(key);
    }

    public int size()
    {
      return map.size();
    }

    public SortedMap<DK,DV> subMap(DK fromKey, DK toKey)
    {
      return subMap(fromKey, true, toKey, false);
    }

    public NavigableMap<DK,DV> subMap(DK fromKey, boolean fromInclusive,
2707
                                      DK toKey, boolean toInclusive)
2708 2709
    {
      return new DescendingMap(map.subMap(fromKey, fromInclusive,
2710
                                          toKey, toInclusive));
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
    }

    public SortedMap<DK,DV> tailMap(DK fromKey)
    {
      return tailMap(fromKey, true);
    }

    public NavigableMap<DK,DV> tailMap(DK fromKey, boolean inclusive)
    {
      return new DescendingMap(map.headMap(fromKey, inclusive));
    }

    public String toString()
    {
2725
      CPStringBuilder r = new CPStringBuilder("{");
2726 2727 2728
      final Iterator<Entry<DK,DV>> it = entrySet().iterator();
      while (it.hasNext())
      {
2729
        final Entry<DK,DV> e = it.next();
2730 2731 2732
        r.append(e.getKey());
        r.append('=');
        r.append(e.getValue());
2733
        r.append(", ");
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
      }
      r.replace(r.length() - 2, r.length(), "}");
      return r.toString();
    }

    public Collection<DV> values()
    {
      if (values == null)
        // Create an AbstractCollection with custom implementations of those
        // methods that can be overriden easily and efficiently.
        values = new AbstractCollection()
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
          {
            public int size()
            {
              return DescendingMap.this.size();
            }

            public Iterator<DV> iterator()
            {
              return new Iterator<DV>()
                {
                  /** The last Entry returned by a next() call. */
                  private Entry<DK,DV> last;

                  /** The next entry that should be returned by next(). */
                  private Entry<DK,DV> next = firstEntry();

                  public boolean hasNext()
                  {
                    return next != null;
                  }

                  public DV next()
                  {
                    if (next == null)
                      throw new NoSuchElementException();
                    last = next;
                    next = higherEntry(last.getKey());

                    return last.getValue();
                  }

                  public void remove()
                  {
                    if (last == null)
                      throw new IllegalStateException();

                    DescendingMap.this.remove(last.getKey());
                    last = null;
                  }
                };
            }

            public void clear()
            {
              DescendingMap.this.clear();
            }
          };
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
      return values;
    }

  } // class DescendingMap

  /**
   * Implementation of {@link #keySet()}.
   */
  private class KeySet
    extends AbstractSet<K>
  {

    public int size()
    {
      return size;
    }

    public Iterator<K> iterator()
    {
      return new TreeIterator(KEYS);
    }

    public void clear()
    {
      TreeMap.this.clear();
    }
2818

2819 2820 2821 2822
    public boolean contains(Object o)
    {
      return containsKey(o);
    }
2823

2824 2825 2826 2827
    public boolean remove(Object key)
    {
      Node<K,V> n = getNode((K) key);
      if (n == nil)
2828
        return false;
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
      removeNode(n);
      return true;
    }
  } // class KeySet

  /**
   * Implementation of {@link #navigableKeySet()}.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private final class NavigableKeySet
    extends KeySet
    implements NavigableSet<K>
  {

    public K ceiling(K k)
    {
      return ceilingKey(k);
    }

    public Comparator<? super K> comparator()
    {
      return comparator;
    }

    public Iterator<K> descendingIterator()
    {
      return descendingSet().iterator();
    }

    public NavigableSet<K> descendingSet()
    {
      return new DescendingSet<K>(this);
    }

    public K first()
    {
      return firstKey();
    }

    public K floor(K k)
    {
      return floorKey(k);
    }

    public SortedSet<K> headSet(K to)
    {
      return headSet(to, false);
    }

    public NavigableSet<K> headSet(K to, boolean inclusive)
    {
      return headMap(to, inclusive).navigableKeySet();
    }

    public K higher(K k)
    {
      return higherKey(k);
    }

    public K last()
    {
      return lastKey();
    }

    public K lower(K k)
    {
      return lowerKey(k);
    }

    public K pollFirst()
    {
      return pollFirstEntry().getKey();
    }

    public K pollLast()
    {
      return pollLastEntry().getKey();
    }

    public SortedSet<K> subSet(K from, K to)
    {
      return subSet(from, true, to, false);
    }

    public NavigableSet<K> subSet(K from, boolean fromInclusive,
2915
                                  K to, boolean toInclusive)
2916 2917
    {
      return subMap(from, fromInclusive,
2918
                    to, toInclusive).navigableKeySet();
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
    }

    public SortedSet<K> tailSet(K from)
    {
      return tailSet(from, true);
    }

    public NavigableSet<K> tailSet(K from, boolean inclusive)
    {
      return tailMap(from, inclusive).navigableKeySet();
    }


  } // class NavigableKeySet

  /**
   * Implementation of {@link #descendingSet()} and associated
   * derivatives. This class provides a view of the
   * original backing set in reverse order, and throws
   * {@link IllegalArgumentException} for attempts to
   * access beyond that range.
   *
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private static final class DescendingSet<D>
    implements NavigableSet<D>
  {

    /**
     * The backing {@link NavigableSet}.
     */
    private NavigableSet<D> set;

    /**
     * Create a {@link DescendingSet} around the specified
     * set.
     *
     * @param map the set to wrap.
     */
    public DescendingSet(NavigableSet<D> set)
    {
      this.set = set;
    }
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
    public boolean add(D e)
    {
      return set.add(e);
    }

    public boolean addAll(Collection<? extends D> c)
    {
      return set.addAll(c);
    }

    public D ceiling(D e)
    {
      return set.floor(e);
    }

    public void clear()
    {
      set.clear();
    }

    public Comparator<? super D> comparator()
    {
      return Collections.reverseOrder(set.comparator());
    }

    public boolean contains(Object o)
    {
      return set.contains(o);
    }

    public boolean containsAll(Collection<?> c)
    {
      return set.containsAll(c);
    }

    public Iterator<D> descendingIterator()
    {
      return descendingSet().iterator();
    }

    public NavigableSet<D> descendingSet()
    {
      return set;
    }

    public boolean equals(Object o)
    {
      return set.equals(o);
    }

    public D first()
    {
      return set.last();
    }

    public D floor(D e)
    {
      return set.ceiling(e);
    }

    public int hashCode()
    {
      return set.hashCode();
    }

    public SortedSet<D> headSet(D to)
    {
      return headSet(to, false);
    }

    public NavigableSet<D> headSet(D to, boolean inclusive)
    {
      return new DescendingSet(set.tailSet(to, inclusive));
    }

    public D higher(D e)
    {
      return set.lower(e);
    }

    public boolean isEmpty()
    {
      return set.isEmpty();
    }

    public Iterator<D> iterator()
    {
      return new Iterator<D>()
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
        {

          /** The last element returned by a next() call. */
          private D last;

          /** The next element that should be returned by next(). */
          private D next = first();

          public boolean hasNext()
          {
            return next != null;
          }

          public D next()
          {
            if (next == null)
              throw new NoSuchElementException();
            last = next;
            next = higher(last);

            return last;
          }

          public void remove()
          {
            if (last == null)
              throw new IllegalStateException();

            DescendingSet.this.remove(last);
            last = null;
          }
        };
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
    }

    public D last()
    {
      return set.first();
    }

    public D lower(D e)
    {
      return set.higher(e);
    }

    public D pollFirst()
    {
      return set.pollLast();
    }

    public D pollLast()
    {
      return set.pollFirst();
    }

    public boolean remove(Object o)
    {
      return set.remove(o);
    }

    public boolean removeAll(Collection<?> c)
    {
      return set.removeAll(c);
    }

    public boolean retainAll(Collection<?> c)
    {
      return set.retainAll(c);
    }

    public int size()
    {
      return set.size();
    }

    public SortedSet<D> subSet(D from, D to)
    {
      return subSet(from, true, to, false);
    }

    public NavigableSet<D> subSet(D from, boolean fromInclusive,
3131
                                  D to, boolean toInclusive)
3132 3133
    {
      return new DescendingSet(set.subSet(from, fromInclusive,
3134
                                          to, toInclusive));
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
    }

    public SortedSet<D> tailSet(D from)
    {
      return tailSet(from, true);
    }

    public NavigableSet<D> tailSet(D from, boolean inclusive)
    {
      return new DescendingSet(set.headSet(from, inclusive));
    }

    public Object[] toArray()
    {
      D[] array = (D[]) set.toArray();
      Arrays.sort(array, comparator());
      return array;
    }

    public <T> T[] toArray(T[] a)
    {
      T[] array = set.toArray(a);
      Arrays.sort(array, (Comparator<? super T>) comparator());
      return array;
    }

    public String toString()
    {
3163
      CPStringBuilder r = new CPStringBuilder("[");
3164 3165 3166
      final Iterator<D> it = iterator();
      while (it.hasNext())
      {
3167 3168 3169 3170 3171 3172
        final D o = it.next();
        if (o == this)
          r.append("<this>");
        else
          r.append(o);
        r.append(", ");
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
      }
      r.replace(r.length() - 2, r.length(), "]");
      return r.toString();
    }

  } // class DescendingSet

  private class EntrySet
    extends AbstractSet<Entry<K,V>>
  {
    public int size()
    {
      return size;
    }
3187

3188 3189 3190 3191
    public Iterator<Map.Entry<K,V>> iterator()
    {
      return new TreeIterator(ENTRIES);
    }
3192

3193 3194 3195 3196 3197 3198 3199 3200
    public void clear()
    {
      TreeMap.this.clear();
    }

    public boolean contains(Object o)
    {
      if (! (o instanceof Map.Entry))
3201
        return false;
3202 3203 3204 3205
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
      Node<K,V> n = getNode(me.getKey());
      return n != nil && AbstractSet.equals(me.getValue(), n.value);
    }
3206

3207 3208 3209
    public boolean remove(Object o)
    {
      if (! (o instanceof Map.Entry))
3210
        return false;
3211 3212 3213
      Map.Entry<K,V> me = (Map.Entry<K,V>) o;
      Node<K,V> n = getNode(me.getKey());
      if (n != nil && AbstractSet.equals(me.getValue(), n.value))
3214 3215 3216 3217
        {
          removeNode(n);
          return true;
        }
3218 3219 3220
      return false;
    }
  }
3221

3222 3223 3224 3225
  private final class NavigableEntrySet
    extends EntrySet
    implements NavigableSet<Entry<K,V>>
  {
3226

3227 3228 3229 3230
    public Entry<K,V> ceiling(Entry<K,V> e)
    {
      return ceilingEntry(e.getKey());
    }
3231

3232 3233 3234
    public Comparator<? super Entry<K,V>> comparator()
    {
      return new Comparator<Entry<K,V>>()
3235 3236 3237 3238 3239 3240 3241 3242
        {
          public int compare(Entry<K,V> t1, Entry<K,V> t2)
          {
            return comparator.compare(t1.getKey(), t2.getKey());
          }
        };
    }

3243 3244 3245 3246
    public Iterator<Entry<K,V>> descendingIterator()
    {
      return descendingSet().iterator();
    }
3247

3248 3249 3250 3251
    public NavigableSet<Entry<K,V>> descendingSet()
    {
      return new DescendingSet(this);
    }
3252

3253 3254 3255 3256
    public Entry<K,V> first()
    {
      return firstEntry();
    }
3257

3258 3259 3260 3261
    public Entry<K,V> floor(Entry<K,V> e)
    {
      return floorEntry(e.getKey());
    }
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271
    public SortedSet<Entry<K,V>> headSet(Entry<K,V> to)
    {
      return headSet(to, false);
    }

    public NavigableSet<Entry<K,V>> headSet(Entry<K,V> to, boolean inclusive)
    {
      return (NavigableSet<Entry<K,V>>) headMap(to.getKey(), inclusive).entrySet();
    }
3272

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
    public Entry<K,V> higher(Entry<K,V> e)
    {
      return higherEntry(e.getKey());
    }

    public Entry<K,V> last()
    {
      return lastEntry();
    }

    public Entry<K,V> lower(Entry<K,V> e)
    {
      return lowerEntry(e.getKey());
    }

    public Entry<K,V> pollFirst()
    {
      return pollFirstEntry();
    }

    public Entry<K,V> pollLast()
    {
      return pollLastEntry();
    }

    public SortedSet<Entry<K,V>> subSet(Entry<K,V> from, Entry<K,V> to)
    {
      return subSet(from, true, to, false);
    }
3302

3303
    public NavigableSet<Entry<K,V>> subSet(Entry<K,V> from, boolean fromInclusive,
3304
                                           Entry<K,V> to, boolean toInclusive)
3305 3306
    {
      return (NavigableSet<Entry<K,V>>) subMap(from.getKey(), fromInclusive,
3307
                                               to.getKey(), toInclusive).entrySet();
3308 3309 3310 3311 3312 3313
    }

    public SortedSet<Entry<K,V>> tailSet(Entry<K,V> from)
    {
      return tailSet(from, true);
    }
3314

3315 3316 3317 3318
    public NavigableSet<Entry<K,V>> tailSet(Entry<K,V> from, boolean inclusive)
    {
      return (NavigableSet<Entry<K,V>>) tailMap(from.getKey(), inclusive).navigableKeySet();
    }
3319

3320 3321
  } // class NavigableEntrySet

Tom Tromey committed
3322
} // class TreeMap