SizeRequirements.java 18.8 KB
Newer Older
Tom Tromey committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/* SizeRequirements.java --
   Copyright (C) 2002, 2005 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package javax.swing;

import java.io.Serializable;

/**
 * This class calculates information about the size and position requirements
 * of components.
 *
 * Two types of layout are supported:
 * <ul>
 * <li>Tiled: the components are placed at position top-left or bottom-right
 *    position within their allocated space</li>
 * <li>Aligned: the components are placed aligned in their allocated space
 *    according to their alignment value</li>
 * </ul>
 *
 * @author Andrew Selkirk
 * @author Roman Kennke (roman@kennke.org)
 */
public class SizeRequirements implements Serializable
{
  /**
   * The serialVersionUID.
   */
  private static final long serialVersionUID = 9217749429906736553L;

  /**
   * The minimum reasonable width or height of a component.
   */
  public int minimum;

  /**
   * The preferred width or height of a component.
   */
  public int preferred;

  /**
   * The maximum reasonable width or height of a component.
   */
  public int maximum;

  /**
   * The horizontal or vertical alignment of a component.
   */
  public float alignment;

  /**
   * Creates a SizeRequirements object with minimum, preferred and
   * maximum size set to zero, and an alignment value of 0.5.
   */
  public SizeRequirements()
  {
    this (0, 0, 0, 0.5F);
  }

  /**
   * Creates a SizeRequirements object with the specified minimum,
   * preferred, maximum and alignment values.
   *
   * @param min the minimum reasonable size of the component
   * @param pref the preferred size of the component
   * @param max the maximum size of the component
   * @param align the alignment of the component
   */
  public SizeRequirements(int min, int pref, int max, float align)
  {
    minimum = min;
    preferred = pref;
    maximum = max;
    alignment = align;
  }

  /**
   * Returns a String representation of this SizeRequirements object,
   * containing information about the minimum, preferred, maximum and
   * alignment value.
   *
   * @return a String representation of this SizeRequirements object
   */
  public String toString()
  {
119 120 121 122 123 124 125 126 127 128 129
    StringBuilder b = new StringBuilder();
    b.append("<[");
    b.append(minimum);
    b.append(',');
    b.append(preferred);
    b.append(',');
    b.append(maximum);
    b.append("]@");
    b.append(alignment);
    b.append('>');
    return b.toString();
Tom Tromey committed
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  }

  /**
   * Calculates how much space is nessecary to place a set of components
   * end-to-end. The size requirements of the components is specified
   * in <code>children</code>.
   *
   * @param children the SizeRequirements of each of the components
   *
   * @return the SizeRequirements that describe how much space is needed
   *     to place the components end-to-end
   */
  public static SizeRequirements
  getTiledSizeRequirements(SizeRequirements[] children)
  {
145 146 147
    long minimum = 0;
    long preferred = 0;
    long maximum = 0;
Tom Tromey committed
148 149
    for (int i = 0; i < children.length; i++)
      {
150 151 152
        minimum += children[i].minimum;
        preferred += children[i].preferred;
        maximum += children[i].maximum;
Tom Tromey committed
153
      }
154 155 156 157 158 159 160 161 162 163 164
    // Overflow check.
    if (minimum > Integer.MAX_VALUE)
      minimum = Integer.MAX_VALUE;
    if (preferred > Integer.MAX_VALUE)
      preferred = Integer.MAX_VALUE;
    if (maximum > Integer.MAX_VALUE)
      maximum = Integer.MAX_VALUE;
    SizeRequirements result = new SizeRequirements((int) minimum,
                                                   (int) preferred,
                                                   (int) maximum,
                                                   0.5F);
Tom Tromey committed
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    return result;
  }

  /**
   * Calculates how much space is nessecary to place a set of components
   * aligned according to their alignment value.
   * The size requirements of the components is specified in
   * <code>children</code>.
   *
   * @param children the SizeRequirements of each of the components
   *
   * @return the SizeRequirements that describe how much space is needed
   *     to place the components aligned
   */
  public static SizeRequirements
  getAlignedSizeRequirements(SizeRequirements[] children)
  {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    float minLeft = 0;
    float minRight = 0;
    float prefLeft = 0;
    float prefRight = 0;
    float maxLeft = 0;
    float maxRight = 0;
    for (int i = 0; i < children.length; i++)
      {
        float myMinLeft = children[i].minimum * children[i].alignment;
        float myMinRight = children[i].minimum - myMinLeft;
        minLeft = Math.max(myMinLeft, minLeft);
        minRight = Math.max(myMinRight, minRight);
        float myPrefLeft = children[i].preferred * children[i].alignment;
        float myPrefRight = children[i].preferred - myPrefLeft;
        prefLeft = Math.max(myPrefLeft, prefLeft);
        prefRight = Math.max(myPrefRight, prefRight);
        float myMaxLeft = children[i].maximum * children[i].alignment;
        float myMaxRight = children[i].maximum - myMaxLeft;
        maxLeft = Math.max(myMaxLeft, maxLeft);
        maxRight = Math.max(myMaxRight, maxRight);
      }
    int minSize = (int) (minLeft + minRight);
    int prefSize = (int) (prefLeft + prefRight);
    int maxSize = (int) (maxLeft + maxRight);
    float align = prefLeft / (prefRight + prefLeft);
    if (Float.isNaN(align))
      align = 0;
    return new SizeRequirements(minSize, prefSize, maxSize, align);
Tom Tromey committed
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  }

  /**
   * Calculate the offsets and spans of the components, when they should
   * be placed end-to-end.
   *
   * You must specify the amount of allocated space in
   * <code>allocated</code>, the total size requirements of the set of
   * components in <code>total</code> (this can be calculated using
   * {@link #getTiledSizeRequirements} and the size requirements of the
   * components in <code>children</code>.
   *
   * The calculated offset and span values for each component are then
   * stored in the arrays <code>offsets</code> and <code>spans</code>.
   *
   * The components are placed in the forward direction, beginning with
   * an offset of 0.
   *
   * @param allocated the amount of allocated space
   * @param total the total size requirements of the components
   * @param children the size requirement of each component
   * @param offsets will hold the offset values for each component
   * @param spans will hold the span values for each component
   */
  public static void calculateTiledPositions(int allocated,
                                             SizeRequirements total,
                                             SizeRequirements[] children,
                                             int[] offsets, int[] spans)
  {
    calculateTiledPositions(allocated, total, children, offsets, spans, true);
  }

  /**
   * Calculate the offsets and spans of the components, when they should
   * be placed end-to-end.
   *
   * You must specify the amount of allocated space in
   * <code>allocated</code>, the total size requirements of the set of
   * components in <code>total</code> (this can be calculated using
   * {@link #getTiledSizeRequirements} and the size requirements of the
   * components in <code>children</code>.
   *
   * The calculated offset and span values for each component are then
   * stored in the arrays <code>offsets</code> and <code>spans</code>.
   *
   * Depending on the value of <code>forward</code> the components are
   * placed in the forward direction (left-right or top-bottom), where
   * the offsets begin with 0, or in the reverse direction
   * (right-left or bottom-top).
   *
   * @param allocated the amount of allocated space
   * @param total the total size requirements of the components
   * @param children the size requirement of each component
   * @param offsets will hold the offset values for each component
   * @param spans will hold the span values for each component
   * @param forward whether the components should be placed in the forward
   *     direction (left-right or top-bottom) or reverse direction
   *     (right-left or bottom-top)
   */
  public static void calculateTiledPositions(int allocated,
                                             SizeRequirements total,
                                             SizeRequirements[] children,
                                             int[] offsets, int[] spans,
                                             boolean forward)
  {
275
    int span = 0;
Tom Tromey committed
276 277 278 279 280 281 282
    if (forward)
      {
        int offset = 0;
        for (int i = 0; i < children.length; i++)
          {
            offsets[i] = offset;
            spans[i] = children[i].preferred;
283
            span += spans[i];
Tom Tromey committed
284 285 286 287 288 289 290 291 292 293
            offset += children[i].preferred;
          }
      }
    else
      {
        int offset = allocated;
        for (int i = 0; i < children.length; i++)
          {
            offset -= children[i].preferred;
            offsets[i] = offset;
294
            span += spans[i];
Tom Tromey committed
295 296 297
            spans[i] = children[i].preferred;
          }
      }
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    // Adjust spans so that we exactly fill the allocated region. If
    if (span > allocated)
      adjustSmaller(allocated, children, spans, span);
    else if (span < allocated)
      adjustGreater(allocated, children, spans, span);

    // Adjust offsets.
    if (forward)
      {
        int offset = 0;
        for (int i = 0; i < children.length; i++)
          {
            offsets[i] = offset;
            offset += spans[i];
          }
      }
    else
      {
        int offset = allocated;
        for (int i = 0; i < children.length; i++)
          {
            offset -= spans[i];
            offsets[i] = offset;
          }
      }
  }

  private static void adjustSmaller(int allocated, SizeRequirements[] children,
                                    int[] spans, int span)
  {
    // Sum up (prefSize - minSize) over all children
    int sumDelta = 0;
    for (int i = 0; i < children.length; i++)
      sumDelta += children[i].preferred - children[i].minimum;

    // If we have sumDelta == 0, then all components have prefSize == maxSize
    // and we can't do anything about it.
    if (sumDelta == 0)
      return;

    // Adjust all sizes according to their preferred and minimum sizes.
    for (int i = 0; i < children.length; i++)
      {
        double factor = ((double) (children[i].preferred - children[i].minimum))
                        / ((double) sumDelta);
        // In case we have a sumDelta of 0, the factor should also be 0.
        if (Double.isNaN(factor))
          factor = 0;
        spans[i] -= factor * (span - allocated);
      }
  }

  private static void adjustGreater(int allocated, SizeRequirements[] children,
                                    int[] spans, int span)
  {
    // Sum up (maxSize - prefSize) over all children
    long sumDelta = 0;
    for (int i = 0; i < children.length; i++)
      {
        sumDelta += children[i].maximum - children[i].preferred;
      }

    // If we have sumDelta == 0, then all components have prefSize == maxSize
    // and we can't do anything about it.
    if (sumDelta == 0)
      return;

    // Adjust all sizes according to their preferred and minimum sizes.
    for (int i = 0; i < children.length; i++)
      {
        double factor = ((double) (children[i].maximum - children[i].preferred))
                        / ((double) sumDelta);
        spans[i] += factor * (allocated - span);
      }
Tom Tromey committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  }

  /**
   * Calculate the offsets and spans of the components, when they should
   * be placed end-to-end.
   *
   * You must specify the amount of allocated space in
   * <code>allocated</code>, the total size requirements of the set of
   * components in <code>total</code> (this can be calculated using
   * {@link #getTiledSizeRequirements} and the size requirements of the
   * components in <code>children</code>.
   *
   * The calculated offset and span values for each component are then
   * stored in the arrays <code>offsets</code> and <code>spans</code>.
   *
   * The components are tiled in the forward direction, beginning with
   * an offset of 0.
389
   *
Tom Tromey committed
390 391 392 393 394 395 396 397 398 399 400
   * @param allocated the amount of allocated space
   * @param total the total size requirements of the components
   * @param children the size requirement of each component
   * @param offsets will hold the offset values for each component
   * @param spans will hold the span values for each component
   */
  public static void calculateAlignedPositions(int allocated,
                                               SizeRequirements total,
                                               SizeRequirements[] children,
                                               int[] offsets, int[] spans)
  {
401 402
    calculateAlignedPositions(allocated, total, children, offsets, spans,
                              true);
Tom Tromey committed
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  }

  /**
   * Calculate the offsets and spans of the components, when they should
   * be placed end-to-end.
   *
   * You must specify the amount of allocated space in
   * <code>allocated</code>, the total size requirements of the set of
   * components in <code>total</code> (this can be calculated using
   * {@link #getTiledSizeRequirements} and the size requirements of the
   * components in <code>children</code>.
   *
   * The calculated offset and span values for each component are then
   * stored in the arrays <code>offsets</code> and <code>spans</code>.
   *
   * Depending on the value of <code>forward</code> the components are
   * placed in the forward direction (left-right or top-bottom), where
   * the offsets begin with 0, or in the reverse direction
   * (right-left or bottom-top).
   *
   * @param allocated the amount of allocated space
   * @param total the total size requirements of the components
   * @param children the size requirement of each component
   * @param spans will hold the span values for each component
   * @param forward whether the components should be placed in the forward
   *     direction (left-right or top-bottom) or reverse direction
   *     (right-left or bottom-top)
   */
  public static void calculateAlignedPositions(int allocated,
                                               SizeRequirements total,
                                               SizeRequirements[] children,
                                               int[] offset, int[] spans,
                                               boolean forward)
  {
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    // First we compute the position of the baseline.
    float baseline = allocated * total.alignment;

    // Now we can layout the components along the baseline.
    for (int i = 0; i < children.length; i++)
      {
        float align = children[i].alignment;
        // Try to fit the component into the available space.
        int[] spanAndOffset = new int[2];
        if (align < .5F || baseline == 0)
          adjustFromRight(children[i], baseline, allocated, spanAndOffset);
        else
          adjustFromLeft(children[i], baseline, allocated, spanAndOffset);
        spans[i] = spanAndOffset[0];
        offset[i] = spanAndOffset[1];
      }
  }

  /**
   * Adjusts the span and offset of a component for the aligned layout.
   *
   * @param reqs
   * @param baseline
   * @param allocated
   * @param spanAndOffset
   */
  private static void adjustFromRight(SizeRequirements reqs, float baseline,
                                      int allocated, int[] spanAndOffset)
  {
    float right = allocated - baseline;
    // If the resulting span exceeds the maximum of the component, then adjust
    // accordingly.
    float maxRight = ((float) reqs.maximum) * (1.F - reqs.alignment);
    if (right / (1.F - reqs.alignment) > reqs.maximum)
      right = maxRight;
    // If we have not enough space on the left side, then adjust accordingly.
    if (right / (1.F - reqs.alignment) * reqs.alignment > allocated - baseline)
      right = ((float) (allocated - baseline))
             / reqs.alignment * (1.F - reqs.alignment);

    spanAndOffset[0] = (int) (right / (1.F - reqs.alignment));
    spanAndOffset[1] = (int) (baseline - spanAndOffset[0] * reqs.alignment);
  }

  /**
   * Adjusts the span and offset of a component for the aligned layout.
   *
   * @param reqs
   * @param baseline
   * @param allocated
   * @param spanAndOffset
   */
  private static void adjustFromLeft(SizeRequirements reqs, float baseline,
                                     int allocated, int[] spanAndOffset)
  {
    float left = baseline;
    // If the resulting span exceeds the maximum of the component, then adjust
    // accordingly.
    float maxLeft = ((float) reqs.maximum) * reqs.alignment;
    if (left / reqs.alignment > reqs.maximum)
      left = maxLeft;
    // If we have not enough space on the right side, then adjust accordingly.
    if (left / reqs.alignment * (1.F - reqs.alignment) > allocated - baseline)
      left = ((float) (allocated - baseline))
             / (1.F - reqs.alignment) * reqs.alignment;

    spanAndOffset[0] = (int) (left / reqs.alignment);
    spanAndOffset[1] = (int) (baseline - spanAndOffset[0] * reqs.alignment);
Tom Tromey committed
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  }

  /**
   * Returns an array of new preferred sizes for the children based on
   * <code>delta</code>. <code>delta</code> specifies a change in the
   * allocated space. The sizes of the children will be shortened or
   * lengthened to accomodate the new allocation.
   *
   * @param delta the change of the size of the total allocation for
   *     the components
   * @param children the size requirements of each component
   *
   * @return the new preferred sizes for each component
   */
  public static int[] adjustSizes(int delta, SizeRequirements[] children)
  {
    return null; // TODO
  }
}