df.h 47 KB
Newer Older
Jeff Law committed
1
/* Form lists of pseudo register references for autoinc optimization
2
   for GNU compiler.  This is part of flow optimization.
3
   Copyright (C) 1999-2017 Free Software Foundation, Inc.
H.J. Lu committed
4
   Originally contributed by Michael P. Hayes
5 6 7
             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
             and Kenneth Zadeck (zadeck@naturalbridge.com).
Jeff Law committed
8

9
This file is part of GCC.
Jeff Law committed
10

11 12
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
13
Software Foundation; either version 3, or (at your option) any later
14
version.
Jeff Law committed
15

16 17 18 19
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeff Law committed
20 21

You should have received a copy of the GNU General Public License
22 23
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Jeff Law committed
24

25 26 27
#ifndef GCC_DF_H
#define GCC_DF_H

28
#include "regset.h"
29
#include "alloc-pool.h"
30
#include "timevar.h"
31 32

struct dataflow;
33
struct df_d;
34
struct df_problem;
35
struct df_link;
36 37
struct df_insn_info;
union df_ref_d;
38

H.J. Lu committed
39
/* Data flow problems.  All problems must have a unique id here.  */
40

41 42
/* Scanning is not really a dataflow problem, but it is useful to have
   the basic block functions in the vector so that things get done in
43 44 45
   a uniform manner.  The last four problems can be added or deleted
   at any time are always defined (though LIVE is always there at -O2
   or higher); the others are always there.  */
46 47 48 49 50 51 52 53 54 55 56 57 58 59
enum df_problem_id
  {
    DF_SCAN,
    DF_LR,                /* Live Registers backward. */
    DF_LIVE,              /* Live Registers & Uninitialized Registers */
    DF_RD,                /* Reaching Defs. */
    DF_CHAIN,             /* Def-Use and/or Use-Def Chains. */
    DF_WORD_LR,           /* Subreg tracking lr.  */
    DF_NOTE,              /* REG_DEAD and REG_UNUSED notes.  */
    DF_MD,                /* Multiple Definitions. */
    DF_MIR,               /* Must-initialized Registers.  */

    DF_LAST_PROBLEM_PLUS1
  };
Jeff Law committed
60

61 62 63 64 65 66 67
/* Dataflow direction.  */
enum df_flow_dir
  {
    DF_NONE,
    DF_FORWARD,
    DF_BACKWARD
  };
Jeff Law committed
68

69
/* Descriminator for the various df_ref types.  */
70
enum df_ref_class {DF_REF_BASE, DF_REF_ARTIFICIAL, DF_REF_REGULAR};
71

72 73 74 75 76
/* The first of these us a set of a registers.  The remaining three
   are all uses of a register (the mem_load and mem_store relate to
   how the register as an addressing operand).  */
enum df_ref_type {DF_REF_REG_DEF, DF_REF_REG_USE,
		  DF_REF_REG_MEM_LOAD, DF_REF_REG_MEM_STORE};
77 78 79

enum df_ref_flags
  {
80 81 82
    /* This flag is set if this ref occurs inside of a conditional
       execution instruction.  */
    DF_REF_CONDITIONAL = 1 << 0,
83 84 85 86 87

    /* If this flag is set for an artificial use or def, that ref
       logically happens at the top of the block.  If it is not set
       for an artificial use or def, that ref logically happens at the
       bottom of the block.  This is never set for regular refs.  */
88
    DF_REF_AT_TOP = 1 << 1,
89

90 91 92
    /* This flag is set if the use is inside a REG_EQUAL or REG_EQUIV
       note.  */
    DF_REF_IN_NOTE = 1 << 2,
93

94 95 96 97 98 99 100 101
    /* This bit is true if this ref can make regs_ever_live true for
       this regno.  */
    DF_HARD_REG_LIVE = 1 << 3,


    /* This flag is set if this ref is a partial use or def of the
       associated register.  */
    DF_REF_PARTIAL = 1 << 4,
H.J. Lu committed
102

103 104 105 106 107
    /* Read-modify-write refs generate both a use and a def and
       these are marked with this flag to show that they are not
       independent.  */
    DF_REF_READ_WRITE = 1 << 5,

108 109 110 111 112
    /* This flag is set if this ref, generally a def, may clobber the
       referenced register.  This is generally only set for hard
       registers that cross a call site.  With better information
       about calls, some of these could be changed in the future to
       DF_REF_MUST_CLOBBER.  */
113
    DF_REF_MAY_CLOBBER = 1 << 6,
114 115 116

    /* This flag is set if this ref, generally a def, is a real
       clobber. This is not currently set for registers live across a
H.J. Lu committed
117
       call because that clobbering may or may not happen.
118 119 120 121 122 123

       Most of the uses of this are with sets that have a
       GET_CODE(..)==CLOBBER.  Note that this is set even if the
       clobber is to a subreg.  So in order to tell if the clobber
       wipes out the entire register, it is necessary to also check
       the DF_REF_PARTIAL flag.  */
124
    DF_REF_MUST_CLOBBER = 1 << 7,
125 126


127 128 129
    /* If the ref has one of the following two flags set, then the
       struct df_ref can be cast to struct df_ref_extract to access
       the width and offset fields.  */
H.J. Lu committed
130

131 132
    /* This flag is set if the ref contains a SIGN_EXTRACT.  */
    DF_REF_SIGN_EXTRACT = 1 << 8,
133

134 135
    /* This flag is set if the ref contains a ZERO_EXTRACT.  */
    DF_REF_ZERO_EXTRACT = 1 << 9,
136

137 138
    /* This flag is set if the ref contains a STRICT_LOW_PART.  */
    DF_REF_STRICT_LOW_PART = 1 << 10,
139

140 141 142 143 144 145
    /* This flag is set if the ref contains a SUBREG.  */
    DF_REF_SUBREG = 1 << 11,


    /* This bit is true if this ref is part of a multiword hardreg.  */
    DF_REF_MW_HARDREG = 1 << 12,
146 147 148

    /* This flag is set if this ref is a usage of the stack pointer by
       a function call.  */
149
    DF_REF_CALL_STACK_USAGE = 1 << 13,
150 151

    /* This flag is used for verification of existing refs. */
152 153 154 155 156
    DF_REF_REG_MARKER = 1 << 14,

    /* This flag is set if this ref is inside a pre/post modify.  */
    DF_REF_PRE_POST_MODIFY = 1 << 15

157 158
  };

159 160 161
/* The possible ordering of refs within the df_ref_info.  */
enum df_ref_order
  {
H.J. Lu committed
162
    /* There is not table.  */
163 164 165 166 167 168
    DF_REF_ORDER_NO_TABLE,

    /* There is a table of refs but it is not (or no longer) organized
       by one of the following methods.  */
    DF_REF_ORDER_UNORDERED,
    DF_REF_ORDER_UNORDERED_WITH_NOTES,
H.J. Lu committed
169

170 171 172 173 174 175 176 177 178 179
    /* Organize the table by reg order, all of the refs with regno 0
       followed by all of the refs with regno 1 ... .  Within all of
       the regs for a particular regno, the refs are unordered.  */
    DF_REF_ORDER_BY_REG,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_REG.  */
    DF_REF_ORDER_BY_REG_WITH_NOTES,

    /* Organize the refs in insn order.  The insns are ordered within a
180
       block, and the blocks are ordered by FOR_ALL_BB_FN.  */
181 182 183 184 185 186
    DF_REF_ORDER_BY_INSN,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_INSN.  */
    DF_REF_ORDER_BY_INSN_WITH_NOTES
  };
187

188
/* Function prototypes added to df_problem instance.  */
Jeff Law committed
189

190
/* Allocate the problem specific data.  */
191
typedef void (*df_alloc_function) (bitmap);
192

193 194 195 196 197 198
/* This function is called if the problem has global data that needs
   to be cleared when ever the set of blocks changes.  The bitmap
   contains the set of blocks that may require special attention.
   This call is only made if some of the blocks are going to change.
   If everything is to be deleted, the wholesale deletion mechanisms
   apply. */
199
typedef void (*df_reset_function) (bitmap);
200

201 202
/* Free the basic block info.  Called from the block reordering code
   to get rid of the blocks that have been squished down.   */
203
typedef void (*df_free_bb_function) (basic_block, void *);
204 205

/* Local compute function.  */
206
typedef void (*df_local_compute_function) (bitmap);
207 208

/* Init the solution specific data.  */
209
typedef void (*df_init_function) (bitmap);
210 211

/* Iterative dataflow function.  */
212
typedef void (*df_dataflow_function) (struct dataflow *, bitmap, int *, int);
213 214

/* Confluence operator for blocks with 0 out (or in) edges.  */
215
typedef void (*df_confluence_function_0) (basic_block);
216

217 218
/* Confluence operator for blocks with 1 or more out (or in) edges.
   Return true if BB input data has changed.  */
219
typedef bool (*df_confluence_function_n) (edge);
220

221 222
/* Transfer function for blocks. 
   Return true if BB output data has changed.  */
223
typedef bool (*df_transfer_function) (int);
224 225

/* Function to massage the information after the problem solving.  */
226
typedef void (*df_finalizer_function) (bitmap);
227 228

/* Function to free all of the problem specific datastructures.  */
229 230 231 232 233 234 235 236 237
typedef void (*df_free_function) (void);

/* Function to remove this problem from the stack of dataflow problems
   without effecting the other problems in the stack except for those
   that depend on this problem.  */
typedef void (*df_remove_problem_function) (void);

/* Function to dump basic block independent results to FILE.  */
typedef void (*df_dump_problem_function) (FILE *);
238

239 240
/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_dump_bb_problem_function) (basic_block, FILE *);
241

242
/* Function to dump before or after an insn to FILE.  */
243
typedef void (*df_dump_insn_problem_function) (const rtx_insn *, FILE *);
244

245 246 247 248 249
/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_start) (void);

/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_end) (void);
250

251 252 253 254 255 256
/* The static description of a dataflow problem to solve.  See above
   typedefs for doc for the function fields.  */

struct df_problem {
  /* The unique id of the problem.  This is used it index into
     df->defined_problems to make accessing the problem data easy.  */
257
  enum df_problem_id id;
258 259
  enum df_flow_dir dir;			/* Dataflow direction.  */
  df_alloc_function alloc_fun;
260
  df_reset_function reset_fun;
261 262 263 264 265 266 267 268 269
  df_free_bb_function free_bb_fun;
  df_local_compute_function local_compute_fun;
  df_init_function init_fun;
  df_dataflow_function dataflow_fun;
  df_confluence_function_0 con_fun_0;
  df_confluence_function_n con_fun_n;
  df_transfer_function trans_fun;
  df_finalizer_function finalize_fun;
  df_free_function free_fun;
270 271 272 273
  df_remove_problem_function remove_problem_fun;
  df_dump_problem_function dump_start_fun;
  df_dump_bb_problem_function dump_top_fun;
  df_dump_bb_problem_function dump_bottom_fun;
274 275
  df_dump_insn_problem_function dump_insn_top_fun;
  df_dump_insn_problem_function dump_insn_bottom_fun;
276 277
  df_verify_solution_start verify_start_fun;
  df_verify_solution_end verify_end_fun;
278
  const struct df_problem *dependent_problem;
279
  unsigned int block_info_elt_size;
280

281
  /* The timevar id associated with this pass.  */
282
  timevar_id_t tv_id;
283 284 285 286

  /* True if the df_set_blocks should null out the basic block info if
     this block drops out of df->blocks_to_analyze.  */
  bool free_blocks_on_set_blocks;
287 288 289 290 291
};


/* The specific instance of the problem to solve.  */
struct dataflow
Jeff Law committed
292
{
293
  const struct df_problem *problem;     /* The problem to be solved.  */
294 295 296

  /* Array indexed by bb->index, that contains basic block problem and
     solution specific information.  */
297
  void *block_info;
298 299 300
  unsigned int block_info_size;

  /* The pool to allocate the block_info from. */
301
  object_allocator<df_link> *block_pool;
302

303 304 305 306 307 308
  /* The lr and live problems have their transfer functions recomputed
     only if necessary.  This is possible for them because, the
     problems are kept active for the entire backend and their
     transfer functions are indexed by the REGNO.  These are not
     defined for any other problem.  */
  bitmap out_of_date_transfer_functions;
309

310 311 312 313
  /* Other problem specific data that is not on a per basic block
     basis.  The structure is generally defined privately for the
     problem.  The exception being the scanning problem where it is
     fully public.  */
314 315 316 317
  void *problem_data;

  /* Local flags for some of the problems. */
  unsigned int local_flags;
H.J. Lu committed
318

319 320 321 322 323 324 325
  /* True if this problem of this instance has been initialized.  This
     is used by the dumpers to keep garbage out of the dumps if, for
     debugging a dump is produced before the first call to
     df_analyze after a new problem is added.  */
  bool computed;

  /* True if the something has changed which invalidates the dataflow
H.J. Lu committed
326
     solutions.  Note that this bit is always true for all problems except
327 328
     lr and live.  */
  bool solutions_dirty;
329 330 331 332 333

  /* If true, this pass is deleted by df_finish_pass.  This is never
     true for DF_SCAN and DF_LR.  It is true for DF_LIVE if optimize >
     1.  It is always true for the other problems.  */
  bool optional_p;
Jeff Law committed
334 335
};

336 337 338 339 340 341 342

/* The set of multiword hardregs used as operands to this
   instruction. These are factored into individual uses and defs but
   the aggregate is still needed to service the REG_DEAD and
   REG_UNUSED notes.  */
struct df_mw_hardreg
{
343
  df_mw_hardreg *next;		/* Next entry for this instruction.  */
H.J. Lu committed
344
  rtx mw_reg;                   /* The multiword hardreg.  */
345
  /* These two bitfields are intentionally oversized, in the hope that
346 347 348
     accesses to 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_type) type : 16;
				/* Used to see if the ref is read or write.  */
349
  int flags : 16;		/* Various df_ref_flags.  */
350 351 352
  unsigned int start_regno;     /* First word of the multi word subreg.  */
  unsigned int end_regno;       /* Last word of the multi word subreg.  */
  unsigned int mw_order;        /* Same as df_ref.ref_order.  */
353
};
H.J. Lu committed
354

355

356
/* Define a register reference structure.  One of these is allocated
357 358 359
    for every register reference (use or def).  Note some register
    references (e.g., post_inc, subreg) generate both a def and a use.  */
struct df_base_ref
Jeff Law committed
360
{
361 362 363
  /* These three bitfields are intentionally oversized, in the hope that
     accesses to 8 and 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_class) cl : 8;
364

365 366
  ENUM_BITFIELD(df_ref_type) type : 8;
				/* Type of ref.  */
367
  int flags : 16;		/* Various df_ref_flags.  */
368
  unsigned int regno;		/* The register number referenced.  */
369
  rtx reg;			/* The register referenced.  */
370
  union df_ref_d *next_loc;	/* Next ref for same insn or bb.  */
371
  struct df_link *chain;	/* Head of def-use, use-def.  */
H.J. Lu committed
372
  /* Pointer to the insn info of the containing instruction.  FIXME!
373
     Currently this is NULL for artificial refs but this will be used
H.J. Lu committed
374
     when FUDs are added.  */
375 376
  struct df_insn_info *insn_info;
  /* For each regno, there are three chains of refs, one for the uses,
Joseph Myers committed
377
     the eq_uses and the defs.  These chains go through the refs
378 379 380
     themselves rather than using an external structure.  */
  union df_ref_d *next_reg;     /* Next ref with same regno and type.  */
  union df_ref_d *prev_reg;     /* Prev ref with same regno and type.  */
H.J. Lu committed
381
  /* Location in the ref table.  This is only valid after a call to
382 383 384 385 386
     df_maybe_reorganize_[use,def]_refs which is an expensive operation.  */
  int id;
  /* The index at which the operand was scanned in the insn.  This is
     used to totally order the refs in an insn.  */
  unsigned int ref_order;
387
};
388

Jeff Law committed
389

390
/* The three types of df_refs.  Note that the df_ref_extract is an
H.J. Lu committed
391
   extension of the df_regular_ref, not the df_base_ref.  */
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
struct df_artificial_ref
{
  struct df_base_ref base;

  /* Artificial refs do not have an insn, so to get the basic block,
     it must be explicitly here.  */
  basic_block bb;
};


struct df_regular_ref
{
  struct df_base_ref base;
  /* The loc is the address in the insn of the reg.  This is not
     defined for special registers, such as clobbers and stack
     pointers that are also associated with call insns and so those
     just use the base.  */
  rtx *loc;
Jeff Law committed
410 411
};

412 413 414 415 416 417 418 419 420 421 422 423 424
/* Union of the different kinds of defs/uses placeholders.  */
union df_ref_d
{
  struct df_base_ref base;
  struct df_regular_ref regular_ref;
  struct df_artificial_ref artificial_ref;
};
typedef union df_ref_d *df_ref;


/* One of these structures is allocated for every insn.  */
struct df_insn_info
{
425
  rtx_insn *insn;	        /* The insn this info comes from.  */
426 427
  df_ref defs;	                /* Head of insn-def chain.  */
  df_ref uses;	                /* Head of insn-use chain.  */
428
  /* Head of insn-use chain for uses in REG_EQUAL/EQUIV notes.  */
429 430
  df_ref eq_uses;
  struct df_mw_hardreg *mw_hardregs;
431 432 433
  /* The logical uid of the insn in the basic block.  This is valid
     after any call to df_analyze but may rot after insns are added,
     deleted or moved. */
H.J. Lu committed
434
  int luid;
435
};
H.J. Lu committed
436

437 438
/* These links are used for ref-ref chains.  Currently only DEF-USE and
   USE-DEF chains can be built by DF.  */
439
struct df_link
Jeff Law committed
440
{
441
  df_ref ref;
442
  struct df_link *next;
Jeff Law committed
443 444
};

445 446 447 448

enum df_chain_flags
{
  /* Flags that control the building of chains.  */
H.J. Lu committed
449
  DF_DU_CHAIN      =  1, /* Build DU chains.  */
450 451 452
  DF_UD_CHAIN      =  2  /* Build UD chains.  */
};

453 454 455 456 457 458 459
enum df_scan_flags
{
  /* Flags for the SCAN problem.  */
  DF_SCAN_EMPTY_ENTRY_EXIT = 1  /* Don't define any registers in the entry
				   block; don't use any in the exit block.  */
};

H.J. Lu committed
460
enum df_changeable_flags
461 462 463
{
  /* Scanning flags.  */
  /* Flag to control the running of dce as a side effect of building LR.  */
464 465 466
  DF_LR_RUN_DCE           = 1 << 0, /* Run DCE.  */
  DF_NO_HARD_REGS         = 1 << 1, /* Skip hard registers in RD and CHAIN Building.  */

467 468
  DF_EQ_NOTES             = 1 << 2, /* Build chains with uses present in EQUIV/EQUAL notes. */
  DF_NO_REGS_EVER_LIVE    = 1 << 3, /* Do not compute the regs_ever_live.  */
469 470 471 472

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return immediately.  This is used by passes that know how to update
  the scanning them selves.  */
473
  DF_NO_INSN_RESCAN       = 1 << 4,
474 475 476 477

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return after marking the insn for later processing.  This allows all
  rescans to be batched.  */
478
  DF_DEFER_INSN_RESCAN    = 1 << 5,
479

480 481 482 483 484 485
  /* Compute the reaching defs problem as "live and reaching defs" (LR&RD).
     A DEF is reaching and live at insn I if DEF reaches I and REGNO(DEF)
     is in LR_IN of the basic block containing I.  */
  DF_RD_PRUNE_DEAD_DEFS   = 1 << 6,

  DF_VERIFY_SCHEDULED     = 1 << 7
486 487 488 489 490
};

/* Two of these structures are inline in df, one for the uses and one
   for the defs.  This structure is only contains the refs within the
   boundary of the df_set_blocks if that has been defined.  */
491
struct df_ref_info
Jeff Law committed
492
{
493
  df_ref *refs;                 /* Ref table, indexed by id.  */
494 495
  unsigned int *begin;          /* First ref_index for this pseudo.  */
  unsigned int *count;          /* Count of refs for this pseudo.  */
496
  unsigned int refs_size;       /* Size of currently allocated refs table.  */
497 498 499 500 501 502 503 504 505 506 507

  /* Table_size is the number of elements in the refs table.  This
     will also be the width of the bitvectors in the rd and ru
     problems.  Total_size is the number of refs.  These will be the
     same if the focus has not been reduced by df_set_blocks.  If the
     focus has been reduced, table_size will be smaller since it only
     contains the refs in the set blocks.  */
  unsigned int table_size;
  unsigned int total_size;

  enum df_ref_order ref_order;
Jeff Law committed
508 509
};

510 511 512 513 514
/* Three of these structures are allocated for every pseudo reg. One
   for the uses, one for the eq_uses and one for the defs.  */
struct df_reg_info
{
  /* Head of chain for refs of that type and regno.  */
515
  df_ref reg_chain;
516 517 518 519 520
  /* Number of refs in the chain.  */
  unsigned int n_refs;
};


521 522 523 524 525
/*----------------------------------------------------------------------------
   Problem data for the scanning dataflow problem.  Unlike the other
   dataflow problems, the problem data for scanning is fully exposed and
   used by owners of the problem.
----------------------------------------------------------------------------*/
Jeff Law committed
526

527
struct df_d
Jeff Law committed
528
{
529 530 531 532 533 534 535 536 537

  /* The set of problems to be solved is stored in two arrays.  In
     PROBLEMS_IN_ORDER, the problems are stored in the order that they
     are solved.  This is an internally dense array that may have
     nulls at the end of it.  In PROBLEMS_BY_INDEX, the problem is
     stored by the value in df_problem.id.  These are used to access
     the problem local data without having to search the first
     array.  */

H.J. Lu committed
538 539
  struct dataflow *problems_in_order[DF_LAST_PROBLEM_PLUS1];
  struct dataflow *problems_by_index[DF_LAST_PROBLEM_PLUS1];
540

541 542 543
  /* If not NULL, this subset of blocks of the program to be
     considered for analysis.  At certain times, this will contain all
     the blocks in the function so it cannot be used as an indicator
H.J. Lu committed
544
     of if we are analyzing a subset.  See analyze_subset.  */
545 546 547 548 549 550 551
  bitmap blocks_to_analyze;

  /* The following information is really the problem data for the
     scanning instance but it is used too often by the other problems
     to keep getting it from there.  */
  struct df_ref_info def_info;   /* Def info.  */
  struct df_ref_info use_info;   /* Use info.  */
552 553 554 555 556 557 558 559 560 561

  /* The following three arrays are allocated in parallel.   They contain
     the sets of refs of each type for each reg.  */
  struct df_reg_info **def_regs;       /* Def reg info.  */
  struct df_reg_info **use_regs;       /* Eq_use reg info.  */
  struct df_reg_info **eq_use_regs;    /* Eq_use info.  */
  unsigned int regs_size;       /* Size of currently allocated regs table.  */
  unsigned int regs_inited;     /* Number of regs with reg_infos allocated.  */


562 563
  struct df_insn_info **insns;   /* Insn table, indexed by insn UID.  */
  unsigned int insns_size;       /* Size of insn table.  */
564 565 566

  int num_problems_defined;

567
  bitmap_head hardware_regs_used;     /* The set of hardware registers used.  */
568 569
  /* The set of hard regs that are in the artificial uses at the end
     of a regular basic block.  */
570
  bitmap_head regular_block_artificial_uses;
571 572
  /* The set of hard regs that are in the artificial uses at the end
     of a basic block that has an EH pred.  */
573
  bitmap_head eh_block_artificial_uses;
574 575
  /* The set of hardware registers live on entry to the function.  */
  bitmap entry_block_defs;
576
  bitmap exit_block_uses;        /* The set of hardware registers used in exit block.  */
577 578 579

  /* Insns to delete, rescan or reprocess the notes at next
     df_rescan_all or df_process_deferred_rescans. */
580 581 582
  bitmap_head insns_to_delete;
  bitmap_head insns_to_rescan;
  bitmap_head insns_to_notes_rescan;
H.J. Lu committed
583
  int *postorder;                /* The current set of basic blocks
584
                                    in reverse postorder.  */
585
  vec<int> postorder_inverted;       /* The current set of basic blocks
586 587 588 589 590 591 592 593
                                    in reverse postorder of inverted CFG.  */
  int n_blocks;                  /* The number of blocks in reverse postorder.  */

  /* An array [FIRST_PSEUDO_REGISTER], indexed by regno, of the number
     of refs that qualify as being real hard regs uses.  Artificial
     uses and defs as well as refs in eq notes are ignored.  If the
     ref is a def, it cannot be a MAY_CLOBBER def.  If the ref is a
     use, it cannot be the emim_reg_set or be the frame or arg pointer
594
     register.  Uses in debug insns are ignored.
595 596 597 598 599 600 601 602 603 604

     IT IS NOT ACCEPTABLE TO MANUALLY CHANGE THIS ARRAY.  This array
     always reflects the actual number of refs in the insn stream that
     satisfy the above criteria.  */
  unsigned int *hard_regs_live_count;

  /* This counter provides a way to totally order refs without using
     addresses.  It is incremented whenever a ref is created.  */
  unsigned int ref_order;

605 606 607
  /* Problem specific control information.  This is a combination of
     enum df_changeable_flags values.  */
  int changeable_flags : 8;
608 609 610 611 612 613 614 615

  /* If this is true, then only a subset of the blocks of the program
     is considered to compute the solutions of dataflow problems.  */
  bool analyze_subset;

  /* True if someone added or deleted something from regs_ever_live so
     that the entry and exit blocks need be reprocessed.  */
  bool redo_entry_and_exit;
Jeff Law committed
616 617
};

618 619 620 621 622 623
#define DF_SCAN_BB_INFO(BB) (df_scan_get_bb_info ((BB)->index))
#define DF_RD_BB_INFO(BB) (df_rd_get_bb_info ((BB)->index))
#define DF_LR_BB_INFO(BB) (df_lr_get_bb_info ((BB)->index))
#define DF_LIVE_BB_INFO(BB) (df_live_get_bb_info ((BB)->index))
#define DF_WORD_LR_BB_INFO(BB) (df_word_lr_get_bb_info ((BB)->index))
#define DF_MD_BB_INFO(BB) (df_md_get_bb_info ((BB)->index))
624
#define DF_MIR_BB_INFO(BB) (df_mir_get_bb_info ((BB)->index))
Jeff Law committed
625

626
/* Most transformations that wish to use live register analysis will
627
   use these macros.  This info is the and of the lr and live sets.  */
628 629
#define DF_LIVE_IN(BB) (&DF_LIVE_BB_INFO (BB)->in)
#define DF_LIVE_OUT(BB) (&DF_LIVE_BB_INFO (BB)->out)
Jeff Law committed
630

631 632 633
#define DF_MIR_IN(BB) (&DF_MIR_BB_INFO (BB)->in)
#define DF_MIR_OUT(BB) (&DF_MIR_BB_INFO (BB)->out)

634 635 636
/* These macros are used by passes that are not tolerant of
   uninitialized variables.  This intolerance should eventually
   be fixed.  */
637 638
#define DF_LR_IN(BB) (&DF_LR_BB_INFO (BB)->in)
#define DF_LR_OUT(BB) (&DF_LR_BB_INFO (BB)->out)
Jeff Law committed
639

640 641 642
/* These macros are used by passes that are not tolerant of
   uninitialized variables.  This intolerance should eventually
   be fixed.  */
643 644
#define DF_WORD_LR_IN(BB) (&DF_WORD_LR_BB_INFO (BB)->in)
#define DF_WORD_LR_OUT(BB) (&DF_WORD_LR_BB_INFO (BB)->out)
645

Jeff Law committed
646
/* Macros to access the elements within the ref structure.  */
647

648

649 650 651 652 653 654
#define DF_REF_REAL_REG(REF) (GET_CODE ((REF)->base.reg) == SUBREG \
				? SUBREG_REG ((REF)->base.reg) : ((REF)->base.reg))
#define DF_REF_REGNO(REF) ((REF)->base.regno)
#define DF_REF_REAL_LOC(REF) (GET_CODE (*((REF)->regular_ref.loc)) == SUBREG \
                               ? &SUBREG_REG (*((REF)->regular_ref.loc)) : ((REF)->regular_ref.loc))
#define DF_REF_REG(REF) ((REF)->base.reg)
655
#define DF_REF_LOC(REF) (DF_REF_CLASS (REF) == DF_REF_REGULAR ? \
656
			 (REF)->regular_ref.loc : NULL)
657 658 659
#define DF_REF_BB(REF) (DF_REF_IS_ARTIFICIAL (REF) \
			? (REF)->artificial_ref.bb \
			: BLOCK_FOR_INSN (DF_REF_INSN (REF)))
660
#define DF_REF_BBNO(REF) (DF_REF_BB (REF)->index)
661
#define DF_REF_INSN_INFO(REF) ((REF)->base.insn_info)
662
#define DF_REF_INSN(REF) ((REF)->base.insn_info->insn)
663
#define DF_REF_INSN_UID(REF) (INSN_UID (DF_REF_INSN(REF)))
664 665 666 667 668
#define DF_REF_CLASS(REF) ((REF)->base.cl)
#define DF_REF_TYPE(REF) ((REF)->base.type)
#define DF_REF_CHAIN(REF) ((REF)->base.chain)
#define DF_REF_ID(REF) ((REF)->base.id)
#define DF_REF_FLAGS(REF) ((REF)->base.flags)
669 670 671
#define DF_REF_FLAGS_IS_SET(REF, v) ((DF_REF_FLAGS (REF) & (v)) != 0)
#define DF_REF_FLAGS_SET(REF, v) (DF_REF_FLAGS (REF) |= (v))
#define DF_REF_FLAGS_CLEAR(REF, v) (DF_REF_FLAGS (REF) &= ~(v))
672 673 674 675
#define DF_REF_ORDER(REF) ((REF)->base.ref_order)
/* If DF_REF_IS_ARTIFICIAL () is true, this is not a real
   definition/use, but an artificial one created to model always live
   registers, eh uses, etc.  */
676
#define DF_REF_IS_ARTIFICIAL(REF) (DF_REF_CLASS (REF) == DF_REF_ARTIFICIAL)
677 678 679
#define DF_REF_REG_MARK(REF) (DF_REF_FLAGS_SET ((REF),DF_REF_REG_MARKER))
#define DF_REF_REG_UNMARK(REF) (DF_REF_FLAGS_CLEAR ((REF),DF_REF_REG_MARKER))
#define DF_REF_IS_REG_MARKED(REF) (DF_REF_FLAGS_IS_SET ((REF),DF_REF_REG_MARKER))
680
#define DF_REF_NEXT_LOC(REF) ((REF)->base.next_loc)
681 682
#define DF_REF_NEXT_REG(REF) ((REF)->base.next_reg)
#define DF_REF_PREV_REG(REF) ((REF)->base.prev_reg)
H.J. Lu committed
683 684
/* The following two macros may only be applied if one of
   DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT is true. */
685 686 687
#define DF_REF_EXTRACT_WIDTH(REF) ((REF)->extract_ref.width)
#define DF_REF_EXTRACT_OFFSET(REF) ((REF)->extract_ref.offset)
#define DF_REF_EXTRACT_MODE(REF) ((REF)->extract_ref.mode)
Jeff Law committed
688

689
/* Macros to determine the reference type.  */
Jeff Law committed
690
#define DF_REF_REG_DEF_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_DEF)
691
#define DF_REF_REG_USE_P(REF) (!DF_REF_REG_DEF_P (REF))
Jeff Law committed
692 693 694
#define DF_REF_REG_MEM_STORE_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_STORE)
#define DF_REF_REG_MEM_LOAD_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_LOAD)
#define DF_REF_REG_MEM_P(REF) (DF_REF_REG_MEM_STORE_P (REF) \
695
                               || DF_REF_REG_MEM_LOAD_P (REF))
Jeff Law committed
696

697
#define DF_MWS_REG_DEF_P(MREF) (DF_MWS_TYPE (MREF) == DF_REF_REG_DEF)
698
#define DF_MWS_REG_USE_P(MREF) (!DF_MWS_REG_DEF_P (MREF))
699
#define DF_MWS_NEXT(MREF) ((MREF)->next)
700 701
#define DF_MWS_TYPE(MREF) ((MREF)->type)

702 703 704
/* Macros to get the refs out of def_info or use_info refs table.  If
   the focus of the dataflow has been set to some subset of blocks
   with df_set_blocks, these macros will only find the uses and defs
H.J. Lu committed
705
   in that subset of blocks.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

   These macros should be used with care.  The def macros are only
   usable after a call to df_maybe_reorganize_def_refs and the use
   macros are only usable after a call to
   df_maybe_reorganize_use_refs.  HOWEVER, BUILDING AND USING THESE
   ARRAYS ARE A CACHE LOCALITY KILLER.  */

#define DF_DEFS_TABLE_SIZE() (df->def_info.table_size)
#define DF_DEFS_GET(ID) (df->def_info.refs[(ID)])
#define DF_DEFS_SET(ID,VAL) (df->def_info.refs[(ID)]=(VAL))
#define DF_DEFS_COUNT(ID) (df->def_info.count[(ID)])
#define DF_DEFS_BEGIN(ID) (df->def_info.begin[(ID)])
#define DF_USES_TABLE_SIZE() (df->use_info.table_size)
#define DF_USES_GET(ID) (df->use_info.refs[(ID)])
#define DF_USES_SET(ID,VAL) (df->use_info.refs[(ID)]=(VAL))
#define DF_USES_COUNT(ID) (df->use_info.count[(ID)])
#define DF_USES_BEGIN(ID) (df->use_info.begin[(ID)])
723 724 725

/* Macros to access the register information from scan dataflow record.  */

726 727 728 729 730 731 732 733 734 735
#define DF_REG_SIZE(DF) (df->regs_inited)
#define DF_REG_DEF_GET(REG) (df->def_regs[(REG)])
#define DF_REG_DEF_CHAIN(REG) (df->def_regs[(REG)]->reg_chain)
#define DF_REG_DEF_COUNT(REG) (df->def_regs[(REG)]->n_refs)
#define DF_REG_USE_GET(REG) (df->use_regs[(REG)])
#define DF_REG_USE_CHAIN(REG) (df->use_regs[(REG)]->reg_chain)
#define DF_REG_USE_COUNT(REG) (df->use_regs[(REG)]->n_refs)
#define DF_REG_EQ_USE_GET(REG) (df->eq_use_regs[(REG)])
#define DF_REG_EQ_USE_CHAIN(REG) (df->eq_use_regs[(REG)]->reg_chain)
#define DF_REG_EQ_USE_COUNT(REG) (df->eq_use_regs[(REG)]->n_refs)
Jeff Law committed
736 737 738

/* Macros to access the elements within the reg_info structure table.  */

739
#define DF_REGNO_FIRST_DEF(REGNUM) \
740
(DF_REG_DEF_GET(REGNUM) ? DF_REG_DEF_GET (REGNUM) : 0)
741
#define DF_REGNO_LAST_USE(REGNUM) \
742
(DF_REG_USE_GET(REGNUM) ? DF_REG_USE_GET (REGNUM) : 0)
Jeff Law committed
743 744 745

/* Macros to access the elements within the insn_info structure table.  */

746
#define DF_INSN_SIZE() ((df)->insns_size)
747
#define DF_INSN_INFO_GET(INSN) (df->insns[(INSN_UID (INSN))])
748 749 750 751 752
#define DF_INSN_INFO_SET(INSN,VAL) (df->insns[(INSN_UID (INSN))]=(VAL))
#define DF_INSN_INFO_LUID(II) ((II)->luid)
#define DF_INSN_INFO_DEFS(II) ((II)->defs)
#define DF_INSN_INFO_USES(II) ((II)->uses)
#define DF_INSN_INFO_EQ_USES(II) ((II)->eq_uses)
753
#define DF_INSN_INFO_MWS(II) ((II)->mw_hardregs)
754

755 756 757 758
#define DF_INSN_LUID(INSN) (DF_INSN_INFO_LUID (DF_INSN_INFO_GET (INSN)))
#define DF_INSN_DEFS(INSN) (DF_INSN_INFO_DEFS (DF_INSN_INFO_GET (INSN)))
#define DF_INSN_USES(INSN) (DF_INSN_INFO_USES (DF_INSN_INFO_GET (INSN)))
#define DF_INSN_EQ_USES(INSN) (DF_INSN_INFO_EQ_USES (DF_INSN_INFO_GET (INSN)))
759 760 761

#define DF_INSN_UID_GET(UID) (df->insns[(UID)])
#define DF_INSN_UID_SET(UID,VAL) (df->insns[(UID)]=(VAL))
762
#define DF_INSN_UID_SAFE_GET(UID) (((unsigned)(UID) < DF_INSN_SIZE ())	\
763 764
                                     ? DF_INSN_UID_GET (UID) \
                                     : NULL)
765 766 767 768 769
#define DF_INSN_UID_LUID(INSN) (DF_INSN_UID_GET (INSN)->luid)
#define DF_INSN_UID_DEFS(INSN) (DF_INSN_UID_GET (INSN)->defs)
#define DF_INSN_UID_USES(INSN) (DF_INSN_UID_GET (INSN)->uses)
#define DF_INSN_UID_EQ_USES(INSN) (DF_INSN_UID_GET (INSN)->eq_uses)
#define DF_INSN_UID_MWS(INSN) (DF_INSN_UID_GET (INSN)->mw_hardregs)
770

771
#define FOR_EACH_INSN_INFO_DEF(ITER, INSN) \
772
  for (ITER = DF_INSN_INFO_DEFS (INSN); ITER; ITER = DF_REF_NEXT_LOC (ITER))
773 774

#define FOR_EACH_INSN_INFO_USE(ITER, INSN) \
775
  for (ITER = DF_INSN_INFO_USES (INSN); ITER; ITER = DF_REF_NEXT_LOC (ITER))
776 777

#define FOR_EACH_INSN_INFO_EQ_USE(ITER, INSN) \
778
  for (ITER = DF_INSN_INFO_EQ_USES (INSN); ITER; ITER = DF_REF_NEXT_LOC (ITER))
779

780
#define FOR_EACH_INSN_INFO_MW(ITER, INSN) \
781
  for (ITER = DF_INSN_INFO_MWS (INSN); ITER; ITER = DF_MWS_NEXT (ITER))
782

783 784 785 786 787 788 789 790 791
#define FOR_EACH_INSN_DEF(ITER, INSN) \
  FOR_EACH_INSN_INFO_DEF(ITER, DF_INSN_INFO_GET (INSN))

#define FOR_EACH_INSN_USE(ITER, INSN) \
  FOR_EACH_INSN_INFO_USE(ITER, DF_INSN_INFO_GET (INSN))

#define FOR_EACH_INSN_EQ_USE(ITER, INSN) \
  FOR_EACH_INSN_INFO_EQ_USE(ITER, DF_INSN_INFO_GET (INSN))

792
#define FOR_EACH_ARTIFICIAL_USE(ITER, BB_INDEX) \
793 794
  for (ITER = df_get_artificial_uses (BB_INDEX); ITER; \
       ITER = DF_REF_NEXT_LOC (ITER))
795 796

#define FOR_EACH_ARTIFICIAL_DEF(ITER, BB_INDEX) \
797 798
  for (ITER = df_get_artificial_defs (BB_INDEX); ITER; \
       ITER = DF_REF_NEXT_LOC (ITER))
799

800 801 802 803 804
/* An obstack for bitmap not related to specific dataflow problems.
   This obstack should e.g. be used for bitmaps with a short life time
   such as temporary bitmaps.  This obstack is declared in df-core.c.  */

extern bitmap_obstack df_bitmap_obstack;
Jeff Law committed
805 806


807 808 809
/* One of these structures is allocated for every basic block.  */
struct df_scan_bb_info
{
810 811 812 813 814 815 816 817 818
  /* The entry block has many artificial defs and these are at the
     bottom of the block.

     Blocks that are targets of exception edges may have some
     artificial defs.  These are logically located at the top of the
     block.

     Blocks that are the targets of non-local goto's have the hard
     frame pointer defined at the top of the block.  */
819
  df_ref artificial_defs;
Jeff Law committed
820

821 822 823 824
  /* Blocks that are targets of exception edges may have some
     artificial uses.  These are logically at the top of the block.

     Most blocks have artificial uses at the bottom of the block.  */
825
  df_ref artificial_uses;
826
};
Jeff Law committed
827 828


829
/* Reaching definitions.  All bitmaps are indexed by the id field of
830 831 832
   the ref except sparse_kill which is indexed by regno.  For the
   LR&RD problem, the kill set is not complete: It does not contain
   DEFs killed because the set register has died in the LR set.  */
H.J. Lu committed
833
struct df_rd_bb_info
834
{
835
  /* Local sets to describe the basic blocks.   */
836 837 838
  bitmap_head kill;
  bitmap_head sparse_kill;
  bitmap_head gen;   /* The set of defs generated in this block.  */
839

840
  /* The results of the dataflow problem.  */
841 842
  bitmap_head in;    /* At the top of the block.  */
  bitmap_head out;   /* At the bottom of the block.  */
843
};
Ayal Zaks committed
844 845


846 847 848
/* Multiple reaching definitions.  All bitmaps are referenced by the
   register number.  */

H.J. Lu committed
849
struct df_md_bb_info
850 851
{
  /* Local sets to describe the basic blocks.  */
852 853 854
  bitmap_head gen;    /* Partial/conditional definitions live at BB out.  */
  bitmap_head kill;   /* Other definitions that are live at BB out.  */
  bitmap_head init;   /* Definitions coming from dominance frontier edges. */
855 856

  /* The results of the dataflow problem.  */
857 858
  bitmap_head in;    /* Just before the block itself. */
  bitmap_head out;   /* At the bottom of the block.  */
859 860 861
};


862 863
/* Live registers, a backwards dataflow problem.  All bitmaps are
   referenced by the register number.  */
864

H.J. Lu committed
865
struct df_lr_bb_info
866
{
867
  /* Local sets to describe the basic blocks.  */
868 869 870
  bitmap_head def;   /* The set of registers set in this block
                        - except artificial defs at the top.  */
  bitmap_head use;   /* The set of registers used in this block.  */
871 872

  /* The results of the dataflow problem.  */
873 874
  bitmap_head in;    /* Just before the block itself. */
  bitmap_head out;   /* At the bottom of the block.  */
875
};
Ayal Zaks committed
876 877


878 879 880 881
/* Uninitialized registers.  All bitmaps are referenced by the
   register number.  Anded results of the forwards and backward live
   info.  Note that the forwards live information is not available
   separately.  */
H.J. Lu committed
882
struct df_live_bb_info
883
{
884
  /* Local sets to describe the basic blocks.  */
885 886 887
  bitmap_head kill;  /* The set of registers unset in this block.  Calls,
		        for instance, unset registers.  */
  bitmap_head gen;   /* The set of registers set in this block.  */
888 889

  /* The results of the dataflow problem.  */
890 891
  bitmap_head in;    /* At the top of the block.  */
  bitmap_head out;   /* At the bottom of the block.  */
892
};
893

894

895
/* Live registers, a backwards dataflow problem.  These bitmaps are
896 897 898
   indexed by 2 * regno for each pseudo and have two entries for each
   pseudo.  Only pseudos that have a size of 2 * UNITS_PER_WORD are
   meaningfully tracked.  */
899

900
struct df_word_lr_bb_info
901 902
{
  /* Local sets to describe the basic blocks.  */
903 904 905
  bitmap_head def;   /* The set of registers set in this block
                        - except artificial defs at the top.  */
  bitmap_head use;   /* The set of registers used in this block.  */
906 907

  /* The results of the dataflow problem.  */
908 909
  bitmap_head in;    /* Just before the block itself. */
  bitmap_head out;   /* At the bottom of the block.  */
910 911
};

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/* Must-initialized registers.  All bitmaps are referenced by the
   register number.  */
struct df_mir_bb_info
{
  /* Local sets to describe the basic blocks.  */
  bitmap_head kill;  /* The set of registers unset in this block.  Calls,
		        for instance, unset registers.  */
  bitmap_head gen;   /* The set of registers set in this block, excluding the
			ones killed later on in this block.  */

  /* The results of the dataflow problem.  */
  bitmap_head in;    /* At the top of the block.  */
  bitmap_head out;   /* At the bottom of the block.  */
};

927

928 929
/* This is used for debugging and for the dumpers to find the latest
   instance so that the df info can be added to the dumps.  This
H.J. Lu committed
930
   should not be used by regular code.  */
931
extern struct df_d *df;
932 933 934 935 936
#define df_scan    (df->problems_by_index[DF_SCAN])
#define df_rd      (df->problems_by_index[DF_RD])
#define df_lr      (df->problems_by_index[DF_LR])
#define df_live    (df->problems_by_index[DF_LIVE])
#define df_chain   (df->problems_by_index[DF_CHAIN])
937
#define df_word_lr (df->problems_by_index[DF_WORD_LR])
938
#define df_note    (df->problems_by_index[DF_NOTE])
939
#define df_md      (df->problems_by_index[DF_MD])
940
#define df_mir     (df->problems_by_index[DF_MIR])
941

942
/* This symbol turns on checking that each modification of the cfg has
943 944 945 946 947 948 949 950 951 952
  been identified to the appropriate df routines.  It is not part of
  verification per se because the check that the final solution has
  not changed covers this.  However, if the solution is not being
  properly recomputed because the cfg is being modified, adding in
  calls to df_check_cfg_clean can be used to find the source of that
  kind of problem.  */
#if 0
#define DF_DEBUG_CFG
#endif

953 954 955

/* Functions defined in df-core.c.  */

956
extern void df_add_problem (const struct df_problem *);
957 958
extern int df_set_flags (int);
extern int df_clear_flags (int);
959 960
extern void df_set_blocks (bitmap);
extern void df_remove_problem (struct dataflow *);
961
extern void df_finish_pass (bool);
962
extern void df_analyze_problem (struct dataflow *, bitmap, int *, int);
963 964
extern void df_analyze ();
extern void df_analyze_loop (struct loop *);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
extern int df_get_n_blocks (enum df_flow_dir);
extern int *df_get_postorder (enum df_flow_dir);
extern void df_simple_dataflow (enum df_flow_dir, df_init_function,
				df_confluence_function_0, df_confluence_function_n,
				df_transfer_function, bitmap, int *, int);
extern void df_mark_solutions_dirty (void);
extern bool df_get_bb_dirty (basic_block);
extern void df_set_bb_dirty (basic_block);
extern void df_compact_blocks (void);
extern void df_bb_replace (int, basic_block);
extern void df_bb_delete (int);
extern void df_verify (void);
#ifdef DF_DEBUG_CFG
extern void df_check_cfg_clean (void);
#endif
980 981
extern df_ref df_bb_regno_first_def_find (basic_block, unsigned int);
extern df_ref df_bb_regno_last_def_find (basic_block, unsigned int);
982 983 984 985
extern df_ref df_find_def (rtx_insn *, rtx);
extern bool df_reg_defined (rtx_insn *, rtx);
extern df_ref df_find_use (rtx_insn *, rtx);
extern bool df_reg_used (rtx_insn *, rtx);
986 987
extern void df_worklist_dataflow (struct dataflow *,bitmap, int *, int);
extern void df_print_regset (FILE *file, bitmap r);
988
extern void df_print_word_regset (FILE *file, bitmap r);
989
extern void df_dump (FILE *);
990
extern void df_dump_region (FILE *);
991 992 993
extern void df_dump_start (FILE *);
extern void df_dump_top (basic_block, FILE *);
extern void df_dump_bottom (basic_block, FILE *);
994 995
extern void df_dump_insn_top (const rtx_insn *, FILE *);
extern void df_dump_insn_bottom (const rtx_insn *, FILE *);
996
extern void df_refs_chain_dump (df_ref, bool, FILE *);
997
extern void df_regs_chain_dump (df_ref,  FILE *);
998 999
extern void df_insn_debug (rtx_insn *, bool, FILE *);
extern void df_insn_debug_regno (rtx_insn *, FILE *);
1000
extern void df_regno_debug (unsigned int, FILE *);
1001
extern void df_ref_debug (df_ref, FILE *);
1002
extern void debug_df_insn (rtx_insn *);
1003 1004 1005 1006
extern void debug_df_regno (unsigned int);
extern void debug_df_reg (rtx);
extern void debug_df_defno (unsigned int);
extern void debug_df_useno (unsigned int);
1007
extern void debug_df_ref (df_ref);
1008
extern void debug_df_chain (struct df_link *);
1009 1010 1011

/* Functions defined in df-problems.c. */

1012 1013 1014
extern struct df_link *df_chain_create (df_ref, df_ref);
extern void df_chain_unlink (df_ref);
extern void df_chain_copy (df_ref, struct df_link *);
1015
extern void df_grow_bb_info (struct dataflow *);
1016
extern void df_chain_dump (struct df_link *, FILE *);
1017
extern void df_print_bb_index (basic_block bb, FILE *file);
1018
extern void df_rd_add_problem (void);
1019
extern void df_rd_simulate_artificial_defs_at_top (basic_block, bitmap);
1020
extern void df_rd_simulate_one_insn (basic_block, rtx_insn *, bitmap);
1021 1022 1023 1024
extern void df_lr_add_problem (void);
extern void df_lr_verify_transfer_functions (void);
extern void df_live_verify_transfer_functions (void);
extern void df_live_add_problem (void);
1025
extern void df_live_set_all_dirty (void);
1026
extern void df_chain_add_problem (unsigned int);
1027 1028
extern void df_word_lr_add_problem (void);
extern bool df_word_lr_mark_ref (df_ref, bool, bitmap);
1029 1030
extern bool df_word_lr_simulate_defs (rtx_insn *, bitmap);
extern void df_word_lr_simulate_uses (rtx_insn *, bitmap);
1031 1032
extern void df_word_lr_simulate_artificial_refs_at_top (basic_block, bitmap);
extern void df_word_lr_simulate_artificial_refs_at_end (basic_block, bitmap);
1033
extern void df_note_add_problem (void);
1034 1035
extern void df_md_add_problem (void);
extern void df_md_simulate_artificial_defs_at_top (basic_block, bitmap);
1036
extern void df_md_simulate_one_insn (basic_block, rtx_insn *, bitmap);
1037 1038
extern void df_mir_add_problem (void);
extern void df_mir_simulate_one_insn (basic_block, rtx_insn *, bitmap, bitmap);
1039 1040 1041 1042
extern void df_simulate_find_noclobber_defs (rtx_insn *, bitmap);
extern void df_simulate_find_defs (rtx_insn *, bitmap);
extern void df_simulate_defs (rtx_insn *, bitmap);
extern void df_simulate_uses (rtx_insn *, bitmap);
1043
extern void df_simulate_initialize_backwards (basic_block, bitmap);
1044
extern void df_simulate_one_insn_backwards (basic_block, rtx_insn *, bitmap);
1045 1046
extern void df_simulate_finalize_backwards (basic_block, bitmap);
extern void df_simulate_initialize_forwards (basic_block, bitmap);
1047
extern void df_simulate_one_insn_forwards (basic_block, rtx_insn *, bitmap);
1048
extern void simulate_backwards_to_point (basic_block, regset, rtx);
1049 1050 1051 1052
extern bool can_move_insns_across (rtx_insn *, rtx_insn *,
				   rtx_insn *, rtx_insn *,
				   basic_block, regset,
				   regset, rtx_insn **);
1053 1054
/* Functions defined in df-scan.c.  */

1055 1056 1057 1058 1059
extern void df_scan_alloc (bitmap);
extern void df_scan_add_problem (void);
extern void df_grow_reg_info (void);
extern void df_grow_insn_info (void);
extern void df_scan_blocks (void);
1060 1061 1062
extern void df_uses_create (rtx *, rtx_insn *, int);
extern struct df_insn_info * df_insn_create_insn_record (rtx_insn *);
extern void df_insn_delete (rtx_insn *);
1063
extern void df_bb_refs_record (int, bool);
1064 1065
extern bool df_insn_rescan (rtx_insn *);
extern bool df_insn_rescan_debug_internal (rtx_insn *);
1066 1067 1068
extern void df_insn_rescan_all (void);
extern void df_process_deferred_rescans (void);
extern void df_recompute_luids (basic_block);
1069
extern void df_insn_change_bb (rtx_insn *, basic_block);
1070 1071
extern void df_maybe_reorganize_use_refs (enum df_ref_order);
extern void df_maybe_reorganize_def_refs (enum df_ref_order);
1072
extern void df_ref_change_reg_with_loc (rtx, unsigned int);
1073
extern void df_notes_rescan (rtx_insn *);
1074
extern void df_hard_reg_init (void);
1075 1076 1077 1078 1079 1080 1081 1082
extern void df_update_entry_block_defs (void);
extern void df_update_exit_block_uses (void);
extern void df_update_entry_exit_and_calls (void);
extern bool df_hard_reg_used_p (unsigned int);
extern unsigned int df_hard_reg_used_count (unsigned int);
extern bool df_regs_ever_live_p (unsigned int);
extern void df_set_regs_ever_live (unsigned int, bool);
extern void df_compute_regs_ever_live (bool);
1083
extern bool df_read_modify_subreg_p (rtx);
1084 1085
extern void df_scan_verify (void);

1086 1087 1088 1089

/*----------------------------------------------------------------------------
   Public functions access functions for the dataflow problems.
----------------------------------------------------------------------------*/
1090 1091 1092 1093 1094

static inline struct df_scan_bb_info *
df_scan_get_bb_info (unsigned int index)
{
  if (index < df_scan->block_info_size)
1095
    return &((struct df_scan_bb_info *) df_scan->block_info)[index];
1096 1097 1098 1099 1100 1101 1102 1103
  else
    return NULL;
}

static inline struct df_rd_bb_info *
df_rd_get_bb_info (unsigned int index)
{
  if (index < df_rd->block_info_size)
1104
    return &((struct df_rd_bb_info *) df_rd->block_info)[index];
1105 1106 1107 1108 1109 1110 1111 1112
  else
    return NULL;
}

static inline struct df_lr_bb_info *
df_lr_get_bb_info (unsigned int index)
{
  if (index < df_lr->block_info_size)
1113
    return &((struct df_lr_bb_info *) df_lr->block_info)[index];
1114 1115 1116 1117
  else
    return NULL;
}

1118 1119 1120 1121
static inline struct df_md_bb_info *
df_md_get_bb_info (unsigned int index)
{
  if (index < df_md->block_info_size)
1122
    return &((struct df_md_bb_info *) df_md->block_info)[index];
1123 1124 1125 1126
  else
    return NULL;
}

1127 1128 1129 1130
static inline struct df_live_bb_info *
df_live_get_bb_info (unsigned int index)
{
  if (index < df_live->block_info_size)
1131
    return &((struct df_live_bb_info *) df_live->block_info)[index];
1132 1133 1134 1135
  else
    return NULL;
}

1136 1137
static inline struct df_word_lr_bb_info *
df_word_lr_get_bb_info (unsigned int index)
1138
{
1139 1140
  if (index < df_word_lr->block_info_size)
    return &((struct df_word_lr_bb_info *) df_word_lr->block_info)[index];
1141 1142 1143 1144
  else
    return NULL;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153
static inline struct df_mir_bb_info *
df_mir_get_bb_info (unsigned int index)
{
  if (index < df_mir->block_info_size)
    return &((struct df_mir_bb_info *) df_mir->block_info)[index];
  else
    return NULL;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/* Get the live at out set for BB no matter what problem happens to be
   defined.  This function is used by the register allocators who
   choose different dataflow problems depending on the optimization
   level.  */

static inline bitmap
df_get_live_out (basic_block bb)
{
  gcc_checking_assert (df_lr);

  if (df_live)
    return DF_LIVE_OUT (bb);
  else
    return DF_LR_OUT (bb);
}

/* Get the live at in set for BB no matter what problem happens to be
   defined.  This function is used by the register allocators who
   choose different dataflow problems depending on the optimization
   level.  */

static inline bitmap
df_get_live_in (basic_block bb)
{
  gcc_checking_assert (df_lr);

  if (df_live)
    return DF_LIVE_IN (bb);
  else
    return DF_LR_IN (bb);
}

/* Get basic block info.  */
1187 1188
/* Get the artificial defs for a basic block.  */

1189
static inline df_ref
1190 1191 1192 1193 1194 1195 1196 1197
df_get_artificial_defs (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_defs;
}


/* Get the artificial uses for a basic block.  */

1198
static inline df_ref
1199 1200 1201 1202
df_get_artificial_uses (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_uses;
}
1203

1204 1205 1206 1207 1208 1209
/* If INSN defines exactly one register, return the associated reference,
   otherwise return null.  */

static inline df_ref
df_single_def (const df_insn_info *info)
{
1210 1211
  df_ref defs = DF_INSN_INFO_DEFS (info);
  return defs && !DF_REF_NEXT_LOC (defs) ? defs : NULL;
1212 1213 1214 1215 1216 1217 1218 1219
}

/* If INSN uses exactly one register, return the associated reference,
   otherwise return null.  */

static inline df_ref
df_single_use (const df_insn_info *info)
{
1220 1221
  df_ref uses = DF_INSN_INFO_USES (info);
  return uses && !DF_REF_NEXT_LOC (uses) ? uses : NULL;
1222
}
1223

Razya Ladelsky committed
1224 1225
/* web */

1226
class web_entry_base
Razya Ladelsky committed
1227
{
1228 1229 1230 1231 1232 1233 1234 1235
 private:
  /* Reference to the parent in the union/find tree.  */
  web_entry_base *pred_pvt;

 public:
  /* Accessors.  */
  web_entry_base *pred () { return pred_pvt; }
  void set_pred (web_entry_base *p) { pred_pvt = p; }
Razya Ladelsky committed
1236

1237 1238 1239 1240 1241 1242
  /* Find representative in union-find tree.  */
  web_entry_base *unionfind_root ();

  /* Union with another set, returning TRUE if they are already unioned.  */
  friend bool unionfind_union (web_entry_base *first, web_entry_base *second);
};
Razya Ladelsky committed
1243

1244
#endif /* GCC_DF_H */