df.h 37 KB
Newer Older
Jeff Law committed
1
/* Form lists of pseudo register references for autoinc optimization
2
   for GNU compiler.  This is part of flow optimization.
3
   Copyright (C) 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007
4
   Free Software Foundation, Inc.
5 6 7 8
   Originally contributed by Michael P. Hayes 
             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
             and Kenneth Zadeck (zadeck@naturalbridge.com).
Jeff Law committed
9

10
This file is part of GCC.
Jeff Law committed
11

12 13
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
14
Software Foundation; either version 3, or (at your option) any later
15
version.
Jeff Law committed
16

17 18 19 20
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeff Law committed
21 22

You should have received a copy of the GNU General Public License
23 24
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Jeff Law committed
25

26 27 28 29 30
#ifndef GCC_DF_H
#define GCC_DF_H

#include "bitmap.h"
#include "basic-block.h"
31 32 33 34 35
#include "alloc-pool.h"

struct dataflow;
struct df;
struct df_problem;
36
struct df_link;
37

38
/* Data flow problems.  All problems must have a unique id here.  */ 
39

40 41
/* Scanning is not really a dataflow problem, but it is useful to have
   the basic block functions in the vector so that things get done in
42 43 44
   a uniform manner.  The last four problems can be added or deleted
   at any time are always defined (though LIVE is always there at -O2
   or higher); the others are always there.  */
45
#define DF_SCAN  0 
46 47
#define DF_LR    1      /* Live Registers backward. */
#define DF_LIVE  2      /* Live Registers & Uninitialized Registers */
48
#define DF_RD    3      /* Reaching Defs. */
49 50
#define DF_CHAIN 4      /* Def-Use and/or Use-Def Chains. */
#define DF_NOTE  5      /* REG_DEF and REG_UNUSED notes. */
51

52
#define DF_LAST_PROBLEM_PLUS1 (DF_NOTE + 1)
Jeff Law committed
53

54 55 56 57 58 59 60
/* Dataflow direction.  */
enum df_flow_dir
  {
    DF_NONE,
    DF_FORWARD,
    DF_BACKWARD
  };
Jeff Law committed
61

62 63 64 65 66 67 68 69 70 71 72

/* The first of these is a set of a register.  The remaining three are
   all uses of a register (the mem_load and mem_store relate to how
   the register as an addressing operand).  */
enum df_ref_type {DF_REF_REG_DEF, DF_REF_REG_USE, DF_REF_REG_MEM_LOAD,
		  DF_REF_REG_MEM_STORE};

#define DF_REF_TYPE_NAMES {"def", "use", "mem load", "mem store"}

enum df_ref_flags
  {
73 74 75
    /* This flag is set if this ref occurs inside of a conditional
       execution instruction.  */
    DF_REF_CONDITIONAL = 1 << 0,
76 77 78 79 80

    /* If this flag is set for an artificial use or def, that ref
       logically happens at the top of the block.  If it is not set
       for an artificial use or def, that ref logically happens at the
       bottom of the block.  This is never set for regular refs.  */
81
    DF_REF_AT_TOP = 1 << 1,
82

83 84 85
    /* This flag is set if the use is inside a REG_EQUAL or REG_EQUIV
       note.  */
    DF_REF_IN_NOTE = 1 << 2,
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100
    /* This bit is true if this ref can make regs_ever_live true for
       this regno.  */
    DF_HARD_REG_LIVE = 1 << 3,


    /* This flag is set if this ref is a partial use or def of the
       associated register.  */
    DF_REF_PARTIAL = 1 << 4,
    
    /* Read-modify-write refs generate both a use and a def and
       these are marked with this flag to show that they are not
       independent.  */
    DF_REF_READ_WRITE = 1 << 5,

101 102 103 104 105
    /* This flag is set if this ref, generally a def, may clobber the
       referenced register.  This is generally only set for hard
       registers that cross a call site.  With better information
       about calls, some of these could be changed in the future to
       DF_REF_MUST_CLOBBER.  */
106
    DF_REF_MAY_CLOBBER = 1 << 6,
107 108 109 110 111 112 113 114 115 116

    /* This flag is set if this ref, generally a def, is a real
       clobber. This is not currently set for registers live across a
       call because that clobbering may or may not happen.  

       Most of the uses of this are with sets that have a
       GET_CODE(..)==CLOBBER.  Note that this is set even if the
       clobber is to a subreg.  So in order to tell if the clobber
       wipes out the entire register, it is necessary to also check
       the DF_REF_PARTIAL flag.  */
117
    DF_REF_MUST_CLOBBER = 1 << 7,
118 119


120 121
    /* This flag is set if this ref is inside a pre/post modify.  */
    DF_REF_PRE_POST_MODIFY = 1 << 8,
122

123 124
    /* This flag is set if the ref contains a ZERO_EXTRACT or SIGN_EXTRACT.  */
    DF_REF_EXTRACT = 1 << 9,
125

126 127
    /* This flag is set if the ref contains a STRICT_LOWER_PART.  */
    DF_REF_STRICT_LOWER_PART = 1 << 10,
128

129 130 131 132 133 134
    /* This flag is set if the ref contains a SUBREG.  */
    DF_REF_SUBREG = 1 << 11,


    /* This bit is true if this ref is part of a multiword hardreg.  */
    DF_REF_MW_HARDREG = 1 << 12,
135 136 137

    /* This flag is set if this ref is a usage of the stack pointer by
       a function call.  */
138
    DF_REF_CALL_STACK_USAGE = 1 << 13,
139 140

    /* This flag is used for verification of existing refs. */
141
    DF_REF_REG_MARKER = 1 << 14
142 143
  };

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/* The possible ordering of refs within the df_ref_info.  */
enum df_ref_order
  {
    /* There is not table.  */ 
    DF_REF_ORDER_NO_TABLE,

    /* There is a table of refs but it is not (or no longer) organized
       by one of the following methods.  */
    DF_REF_ORDER_UNORDERED,
    DF_REF_ORDER_UNORDERED_WITH_NOTES,
  
    /* Organize the table by reg order, all of the refs with regno 0
       followed by all of the refs with regno 1 ... .  Within all of
       the regs for a particular regno, the refs are unordered.  */
    DF_REF_ORDER_BY_REG,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_REG.  */
    DF_REF_ORDER_BY_REG_WITH_NOTES,

    /* Organize the refs in insn order.  The insns are ordered within a
       block, and the blocks are ordered by FOR_ALL_BB.  */  
    DF_REF_ORDER_BY_INSN,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_INSN.  */
    DF_REF_ORDER_BY_INSN_WITH_NOTES
  };
172

173
/* Function prototypes added to df_problem instance.  */
Jeff Law committed
174

175
/* Allocate the problem specific data.  */
176
typedef void (*df_alloc_function) (bitmap);
177

178 179 180 181 182 183
/* This function is called if the problem has global data that needs
   to be cleared when ever the set of blocks changes.  The bitmap
   contains the set of blocks that may require special attention.
   This call is only made if some of the blocks are going to change.
   If everything is to be deleted, the wholesale deletion mechanisms
   apply. */
184
typedef void (*df_reset_function) (bitmap);
185

186 187
/* Free the basic block info.  Called from the block reordering code
   to get rid of the blocks that have been squished down.   */
188
typedef void (*df_free_bb_function) (basic_block, void *);
189 190

/* Local compute function.  */
191
typedef void (*df_local_compute_function) (bitmap);
192 193

/* Init the solution specific data.  */
194
typedef void (*df_init_function) (bitmap);
195 196

/* Iterative dataflow function.  */
197
typedef void (*df_dataflow_function) (struct dataflow *, bitmap, int *, int);
198 199

/* Confluence operator for blocks with 0 out (or in) edges.  */
200
typedef void (*df_confluence_function_0) (basic_block);
201 202

/* Confluence operator for blocks with 1 or more out (or in) edges.  */
203
typedef void (*df_confluence_function_n) (edge);
204 205

/* Transfer function for blocks.  */
206
typedef bool (*df_transfer_function) (int);
207 208

/* Function to massage the information after the problem solving.  */
209
typedef void (*df_finalizer_function) (bitmap);
210 211

/* Function to free all of the problem specific datastructures.  */
212 213 214 215 216 217 218 219 220
typedef void (*df_free_function) (void);

/* Function to remove this problem from the stack of dataflow problems
   without effecting the other problems in the stack except for those
   that depend on this problem.  */
typedef void (*df_remove_problem_function) (void);

/* Function to dump basic block independent results to FILE.  */
typedef void (*df_dump_problem_function) (FILE *);
221

222 223
/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_dump_bb_problem_function) (basic_block, FILE *);
224

225 226 227 228 229
/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_start) (void);

/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_end) (void);
230

231 232 233 234 235 236 237 238 239
/* The static description of a dataflow problem to solve.  See above
   typedefs for doc for the function fields.  */

struct df_problem {
  /* The unique id of the problem.  This is used it index into
     df->defined_problems to make accessing the problem data easy.  */
  unsigned int id;                        
  enum df_flow_dir dir;			/* Dataflow direction.  */
  df_alloc_function alloc_fun;
240
  df_reset_function reset_fun;
241 242 243 244 245 246 247 248 249
  df_free_bb_function free_bb_fun;
  df_local_compute_function local_compute_fun;
  df_init_function init_fun;
  df_dataflow_function dataflow_fun;
  df_confluence_function_0 con_fun_0;
  df_confluence_function_n con_fun_n;
  df_transfer_function trans_fun;
  df_finalizer_function finalize_fun;
  df_free_function free_fun;
250 251 252 253 254 255 256
  df_remove_problem_function remove_problem_fun;
  df_dump_problem_function dump_start_fun;
  df_dump_bb_problem_function dump_top_fun;
  df_dump_bb_problem_function dump_bottom_fun;
  df_verify_solution_start verify_start_fun;
  df_verify_solution_end verify_end_fun;
  struct df_problem *dependent_problem;
257

258 259
  /* The timevar id associated with this pass.  */
  unsigned int tv_id;
260 261 262 263

  /* True if the df_set_blocks should null out the basic block info if
     this block drops out of df->blocks_to_analyze.  */
  bool free_blocks_on_set_blocks;
264 265 266 267 268
};


/* The specific instance of the problem to solve.  */
struct dataflow
Jeff Law committed
269
{
270 271 272 273 274 275 276 277 278 279
  struct df_problem *problem;           /* The problem to be solved.  */

  /* Array indexed by bb->index, that contains basic block problem and
     solution specific information.  */
  void **block_info;
  unsigned int block_info_size;

  /* The pool to allocate the block_info from. */
  alloc_pool block_pool;                

280 281 282 283 284 285
  /* The lr and live problems have their transfer functions recomputed
     only if necessary.  This is possible for them because, the
     problems are kept active for the entire backend and their
     transfer functions are indexed by the REGNO.  These are not
     defined for any other problem.  */
  bitmap out_of_date_transfer_functions;
286

287 288 289 290
  /* Other problem specific data that is not on a per basic block
     basis.  The structure is generally defined privately for the
     problem.  The exception being the scanning problem where it is
     fully public.  */
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  void *problem_data;

  /* Local flags for some of the problems. */
  unsigned int local_flags;
  
  /* True if this problem of this instance has been initialized.  This
     is used by the dumpers to keep garbage out of the dumps if, for
     debugging a dump is produced before the first call to
     df_analyze after a new problem is added.  */
  bool computed;

  /* True if the something has changed which invalidates the dataflow
     solutions.  Note that this bit is always true for all problems except 
     lr and live.  */
  bool solutions_dirty;
306 307 308 309 310

  /* If true, this pass is deleted by df_finish_pass.  This is never
     true for DF_SCAN and DF_LR.  It is true for DF_LIVE if optimize >
     1.  It is always true for the other problems.  */
  bool optional_p;
Jeff Law committed
311 312
};

313 314 315 316 317 318 319 320

/* The set of multiword hardregs used as operands to this
   instruction. These are factored into individual uses and defs but
   the aggregate is still needed to service the REG_DEAD and
   REG_UNUSED notes.  */
struct df_mw_hardreg
{
  rtx mw_reg;                   /* The multiword hardreg.  */ 
321
  /* These two bitfields are intentionally oversized, in the hope that
322 323 324 325 326
     accesses to 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_type) type : 16;
				/* Used to see if the ref is read or write.  */
  ENUM_BITFIELD(df_ref_flags) flags : 16;
				/* Various flags.  */
327 328 329
  unsigned int start_regno;     /* First word of the multi word subreg.  */
  unsigned int end_regno;       /* Last word of the multi word subreg.  */
  unsigned int mw_order;        /* Same as df_ref.ref_order.  */
330 331 332
};
 

333 334 335
/* One of these structures is allocated for every insn.  */
struct df_insn_info
{
336 337 338 339 340 341 342 343 344 345
  rtx insn;                     /* The insn this info comes from.  */
  struct df_ref **defs;	        /* Head of insn-def chain.  */
  struct df_ref **uses;	        /* Head of insn-use chain.  */
  /* Head of insn-use chain for uses in REG_EQUAL/EQUIV notes.  */
  struct df_ref **eq_uses;       
  struct df_mw_hardreg **mw_hardregs;
  /* The logical uid of the insn in the basic block.  This is valid
     after any call to df_analyze but may rot after insns are added,
     deleted or moved. */
  int luid; 
346 347
};

348

349 350 351
/* Define a register reference structure.  One of these is allocated
   for every register reference (use or def).  Note some register
   references (e.g., post_inc, subreg) generate both a def and a use.  */
352
struct df_ref
Jeff Law committed
353 354
{
  rtx reg;			/* The register referenced.  */
355
  basic_block bb;               /* Basic block containing the instruction. */
356 357 358 359

  /* Insn containing ref. This will be null if this is an artificial
     reference.  */
  rtx insn;
360
  rtx *loc;			/* The location of the reg.  */
361
  struct df_link *chain;	/* Head of def-use, use-def.  */
362 363 364 365 366 367 368
  /* Location in the ref table.  This is only valid after a call to 
     df_maybe_reorganize_[use,def]_refs which is an expensive operation.  */
  int id;
  /* The index at which the operand was scanned in the insn.  This is
     used to totally order the refs in an insn.  */
  unsigned int ref_order;

369
  unsigned int regno;		/* The register number referenced.  */
370
  /* These two bitfields are intentionally oversized, in the hope that
371 372 373 374 375
     accesses to 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_type) type : 16;
				/* Type of ref.  */
  ENUM_BITFIELD(df_ref_flags) flags : 16;
				/* Various flags.  */
Jeff Law committed
376

377 378 379
  /* For each regno, there are three chains of refs, one for the uses,
     the eq_uses and the defs.  These chains go thru the refs
     themselves rather than using an external structure.  */
380 381
  struct df_ref *next_reg;     /* Next ref with same regno and type.  */
  struct df_ref *prev_reg;     /* Prev ref with same regno and type.  */
Jeff Law committed
382 383
};

384 385 386
/* These links are used for two purposes:
   1) def-use or use-def chains. 
   2) Multiword hard registers that underly a single hardware register.  */
387
struct df_link
Jeff Law committed
388
{
389 390
  struct df_ref *ref;
  struct df_link *next;
Jeff Law committed
391 392
};

393 394 395 396 397 398 399 400 401 402 403 404

enum df_chain_flags
{
  /* Flags that control the building of chains.  */
  DF_DU_CHAIN      =  1, /* Build DU chains.  */  
  DF_UD_CHAIN      =  2  /* Build UD chains.  */
};

enum df_changeable_flags 
{
  /* Scanning flags.  */
  /* Flag to control the running of dce as a side effect of building LR.  */
405 406 407
  DF_LR_RUN_DCE           = 1 << 0, /* Run DCE.  */
  DF_NO_HARD_REGS         = 1 << 1, /* Skip hard registers in RD and CHAIN Building.  */

408 409
  DF_EQ_NOTES             = 1 << 2, /* Build chains with uses present in EQUIV/EQUAL notes. */
  DF_NO_REGS_EVER_LIVE    = 1 << 3, /* Do not compute the regs_ever_live.  */
410 411 412 413

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return immediately.  This is used by passes that know how to update
  the scanning them selves.  */
414
  DF_NO_INSN_RESCAN       = 1 << 4,
415 416 417 418

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return after marking the insn for later processing.  This allows all
  rescans to be batched.  */
419
  DF_DEFER_INSN_RESCAN    = 1 << 5,
420

421
  DF_VERIFY_SCHEDULED     = 1 << 6
422 423 424 425 426
};

/* Two of these structures are inline in df, one for the uses and one
   for the defs.  This structure is only contains the refs within the
   boundary of the df_set_blocks if that has been defined.  */
427
struct df_ref_info
Jeff Law committed
428
{
429
  struct df_ref **refs;         /* Ref table, indexed by id.  */
430 431
  unsigned int *begin;          /* First ref_index for this pseudo.  */
  unsigned int *count;          /* Count of refs for this pseudo.  */
432
  unsigned int refs_size;       /* Size of currently allocated refs table.  */
433 434 435 436 437 438 439 440 441 442 443

  /* Table_size is the number of elements in the refs table.  This
     will also be the width of the bitvectors in the rd and ru
     problems.  Total_size is the number of refs.  These will be the
     same if the focus has not been reduced by df_set_blocks.  If the
     focus has been reduced, table_size will be smaller since it only
     contains the refs in the set blocks.  */
  unsigned int table_size;
  unsigned int total_size;

  enum df_ref_order ref_order;
Jeff Law committed
444 445
};

446 447 448 449 450 451 452 453 454 455 456
/* Three of these structures are allocated for every pseudo reg. One
   for the uses, one for the eq_uses and one for the defs.  */
struct df_reg_info
{
  /* Head of chain for refs of that type and regno.  */
  struct df_ref *reg_chain;
  /* Number of refs in the chain.  */
  unsigned int n_refs;
};


457 458 459 460 461
/*----------------------------------------------------------------------------
   Problem data for the scanning dataflow problem.  Unlike the other
   dataflow problems, the problem data for scanning is fully exposed and
   used by owners of the problem.
----------------------------------------------------------------------------*/
Jeff Law committed
462 463 464

struct df
{
465 466 467 468 469 470 471 472 473

  /* The set of problems to be solved is stored in two arrays.  In
     PROBLEMS_IN_ORDER, the problems are stored in the order that they
     are solved.  This is an internally dense array that may have
     nulls at the end of it.  In PROBLEMS_BY_INDEX, the problem is
     stored by the value in df_problem.id.  These are used to access
     the problem local data without having to search the first
     array.  */

474 475
  struct dataflow *problems_in_order[DF_LAST_PROBLEM_PLUS1]; 
  struct dataflow *problems_by_index[DF_LAST_PROBLEM_PLUS1]; 
476 477
  int num_problems_defined;

478 479 480 481
  /* If not NULL, this subset of blocks of the program to be
     considered for analysis.  At certain times, this will contain all
     the blocks in the function so it cannot be used as an indicator
     of if we are analyzing a subset.  See analyze_subset.  */ 
482 483
  bitmap blocks_to_analyze;

484 485 486 487 488 489 490 491
  /* If this is true, then only a subset of the blocks of the program
     is considered to compute the solutions of dataflow problems.  */
  bool analyze_subset;

  /* True if someone added or deleted something from regs_ever_live so
     that the entry and exit blocks need be reprocessed.  */
  bool redo_entry_and_exit;

492 493 494 495 496
  /* The following information is really the problem data for the
     scanning instance but it is used too often by the other problems
     to keep getting it from there.  */
  struct df_ref_info def_info;   /* Def info.  */
  struct df_ref_info use_info;   /* Use info.  */
497 498 499 500 501 502 503 504 505 506

  /* The following three arrays are allocated in parallel.   They contain
     the sets of refs of each type for each reg.  */
  struct df_reg_info **def_regs;       /* Def reg info.  */
  struct df_reg_info **use_regs;       /* Eq_use reg info.  */
  struct df_reg_info **eq_use_regs;    /* Eq_use info.  */
  unsigned int regs_size;       /* Size of currently allocated regs table.  */
  unsigned int regs_inited;     /* Number of regs with reg_infos allocated.  */


507 508 509
  struct df_insn_info **insns;   /* Insn table, indexed by insn UID.  */
  unsigned int insns_size;       /* Size of insn table.  */
  bitmap hardware_regs_used;     /* The set of hardware registers used.  */
510 511 512 513 514 515 516 517
  /* The set of hard regs that are in the artificial uses at the end
     of a regular basic block.  */
  bitmap regular_block_artificial_uses;
  /* The set of hard regs that are in the artificial uses at the end
     of a basic block that has an EH pred.  */
  bitmap eh_block_artificial_uses;
  /* The set of hardware registers live on entry to the function.  */
  bitmap entry_block_defs;
518
  bitmap exit_block_uses;        /* The set of hardware registers used in exit block.  */
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

  /* Insns to delete, rescan or reprocess the notes at next
     df_rescan_all or df_process_deferred_rescans. */
  bitmap insns_to_delete;
  bitmap insns_to_rescan;
  bitmap insns_to_notes_rescan;
  int *postorder;                /* The current set of basic blocks 
                                    in reverse postorder.  */
  int *postorder_inverted;       /* The current set of basic blocks 
                                    in reverse postorder of inverted CFG.  */
  int n_blocks;                  /* The number of blocks in reverse postorder.  */
  int n_blocks_inverted;         /* The number of blocks 
                                    in reverse postorder of inverted CFG.  */

  /* An array [FIRST_PSEUDO_REGISTER], indexed by regno, of the number
     of refs that qualify as being real hard regs uses.  Artificial
     uses and defs as well as refs in eq notes are ignored.  If the
     ref is a def, it cannot be a MAY_CLOBBER def.  If the ref is a
     use, it cannot be the emim_reg_set or be the frame or arg pointer
     register.

     IT IS NOT ACCEPTABLE TO MANUALLY CHANGE THIS ARRAY.  This array
     always reflects the actual number of refs in the insn stream that
     satisfy the above criteria.  */
  unsigned int *hard_regs_live_count;

  /* This counter provides a way to totally order refs without using
     addresses.  It is incremented whenever a ref is created.  */
  unsigned int ref_order;

549
  /* Problem specific control information.  */
550
  enum df_changeable_flags changeable_flags;
Jeff Law committed
551 552
};

553 554 555 556
#define DF_SCAN_BB_INFO(BB) (df_scan_get_bb_info((BB)->index))
#define DF_RD_BB_INFO(BB) (df_rd_get_bb_info((BB)->index))
#define DF_LR_BB_INFO(BB) (df_lr_get_bb_info((BB)->index))
#define DF_LIVE_BB_INFO(BB) (df_live_get_bb_info((BB)->index))
Jeff Law committed
557

558
/* Most transformations that wish to use live register analysis will
559 560 561
   use these macros.  This info is the and of the lr and live sets.  */
#define DF_LIVE_IN(BB) (DF_LIVE_BB_INFO(BB)->in) 
#define DF_LIVE_OUT(BB) (DF_LIVE_BB_INFO(BB)->out) 
Jeff Law committed
562

563 564 565
/* These macros are used by passes that are not tolerant of
   uninitialized variables.  This intolerance should eventually
   be fixed.  */
566 567
#define DF_LR_IN(BB) (DF_LR_BB_INFO(BB)->in) 
#define DF_LR_OUT(BB) (DF_LR_BB_INFO(BB)->out) 
Jeff Law committed
568 569

/* Macros to access the elements within the ref structure.  */
570

571

Jeff Law committed
572 573
#define DF_REF_REAL_REG(REF) (GET_CODE ((REF)->reg) == SUBREG \
				? SUBREG_REG ((REF)->reg) : ((REF)->reg))
574
#define DF_REF_REGNO(REF) ((REF)->regno)
575 576
#define DF_REF_REAL_LOC(REF) (GET_CODE (*((REF)->loc)) == SUBREG \
                               ? &SUBREG_REG (*((REF)->loc)) : ((REF)->loc))
Jeff Law committed
577 578
#define DF_REF_REG(REF) ((REF)->reg)
#define DF_REF_LOC(REF) ((REF)->loc)
579 580
#define DF_REF_BB(REF) ((REF)->bb)
#define DF_REF_BBNO(REF) (DF_REF_BB (REF)->index)
Jeff Law committed
581 582 583 584 585
#define DF_REF_INSN(REF) ((REF)->insn)
#define DF_REF_INSN_UID(REF) (INSN_UID ((REF)->insn))
#define DF_REF_TYPE(REF) ((REF)->type)
#define DF_REF_CHAIN(REF) ((REF)->chain)
#define DF_REF_ID(REF) ((REF)->id)
586
#define DF_REF_FLAGS(REF) ((REF)->flags)
587 588 589 590 591 592 593 594 595 596 597 598
#define DF_REF_FLAGS_IS_SET(REF, v) ((DF_REF_FLAGS (REF) & (v)) != 0)
#define DF_REF_FLAGS_SET(REF, v) (DF_REF_FLAGS (REF) |= (v))
#define DF_REF_FLAGS_CLEAR(REF, v) (DF_REF_FLAGS (REF) &= ~(v))
#define DF_REF_ORDER(REF) ((REF)->ref_order)
/* If DF_REF_IS_ARTIFICIAL () is true, this is not a real definition/use, 
   but an artificial one created to model 
   always live registers, eh uses, etc.  
   ARTIFICIAL refs has NULL insn.  */
#define DF_REF_IS_ARTIFICIAL(REF) ((REF)->insn == NULL)
#define DF_REF_REG_MARK(REF) (DF_REF_FLAGS_SET ((REF),DF_REF_REG_MARKER))
#define DF_REF_REG_UNMARK(REF) (DF_REF_FLAGS_CLEAR ((REF),DF_REF_REG_MARKER))
#define DF_REF_IS_REG_MARKED(REF) (DF_REF_FLAGS_IS_SET ((REF),DF_REF_REG_MARKER))
599 600
#define DF_REF_NEXT_REG(REF) ((REF)->next_reg)
#define DF_REF_PREV_REG(REF) ((REF)->prev_reg)
Jeff Law committed
601 602 603 604

/* Macros to determine the reference type.  */

#define DF_REF_REG_DEF_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_DEF)
605
#define DF_REF_REG_USE_P(REF) ((REF) && !DF_REF_REG_DEF_P (REF))
Jeff Law committed
606 607 608
#define DF_REF_REG_MEM_STORE_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_STORE)
#define DF_REF_REG_MEM_LOAD_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_LOAD)
#define DF_REF_REG_MEM_P(REF) (DF_REF_REG_MEM_STORE_P (REF) \
609
                               || DF_REF_REG_MEM_LOAD_P (REF))
Jeff Law committed
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
/* Macros to get the refs out of def_info or use_info refs table.  If
   the focus of the dataflow has been set to some subset of blocks
   with df_set_blocks, these macros will only find the uses and defs
   in that subset of blocks.  

   These macros should be used with care.  The def macros are only
   usable after a call to df_maybe_reorganize_def_refs and the use
   macros are only usable after a call to
   df_maybe_reorganize_use_refs.  HOWEVER, BUILDING AND USING THESE
   ARRAYS ARE A CACHE LOCALITY KILLER.  */

#define DF_DEFS_TABLE_SIZE() (df->def_info.table_size)
#define DF_DEFS_GET(ID) (df->def_info.refs[(ID)])
#define DF_DEFS_SET(ID,VAL) (df->def_info.refs[(ID)]=(VAL))
#define DF_DEFS_COUNT(ID) (df->def_info.count[(ID)])
#define DF_DEFS_BEGIN(ID) (df->def_info.begin[(ID)])
#define DF_USES_TABLE_SIZE() (df->use_info.table_size)
#define DF_USES_GET(ID) (df->use_info.refs[(ID)])
#define DF_USES_SET(ID,VAL) (df->use_info.refs[(ID)]=(VAL))
#define DF_USES_COUNT(ID) (df->use_info.count[(ID)])
#define DF_USES_BEGIN(ID) (df->use_info.begin[(ID)])
632 633 634

/* Macros to access the register information from scan dataflow record.  */

635 636 637 638 639 640 641 642 643 644
#define DF_REG_SIZE(DF) (df->regs_inited)
#define DF_REG_DEF_GET(REG) (df->def_regs[(REG)])
#define DF_REG_DEF_CHAIN(REG) (df->def_regs[(REG)]->reg_chain)
#define DF_REG_DEF_COUNT(REG) (df->def_regs[(REG)]->n_refs)
#define DF_REG_USE_GET(REG) (df->use_regs[(REG)])
#define DF_REG_USE_CHAIN(REG) (df->use_regs[(REG)]->reg_chain)
#define DF_REG_USE_COUNT(REG) (df->use_regs[(REG)]->n_refs)
#define DF_REG_EQ_USE_GET(REG) (df->eq_use_regs[(REG)])
#define DF_REG_EQ_USE_CHAIN(REG) (df->eq_use_regs[(REG)]->reg_chain)
#define DF_REG_EQ_USE_COUNT(REG) (df->eq_use_regs[(REG)]->n_refs)
Jeff Law committed
645 646 647

/* Macros to access the elements within the reg_info structure table.  */

648 649 650 651
#define DF_REGNO_FIRST_DEF(REGNUM) \
(DF_REG_DEF_GET(REGNUM) ? DF_REG_DEF_GET(REGNUM) : 0)
#define DF_REGNO_LAST_USE(REGNUM) \
(DF_REG_USE_GET(REGNUM) ? DF_REG_USE_GET(REGNUM) : 0)
Jeff Law committed
652 653 654

/* Macros to access the elements within the insn_info structure table.  */

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#define DF_INSN_SIZE() ((df)->insns_size)
#define DF_INSN_GET(INSN) (df->insns[(INSN_UID(INSN))])
#define DF_INSN_SET(INSN,VAL) (df->insns[(INSN_UID (INSN))]=(VAL))
#define DF_INSN_LUID(INSN) (DF_INSN_GET(INSN)->luid)
#define DF_INSN_DEFS(INSN) (DF_INSN_GET(INSN)->defs)
#define DF_INSN_USES(INSN) (DF_INSN_GET(INSN)->uses)
#define DF_INSN_EQ_USES(INSN) (DF_INSN_GET(INSN)->eq_uses)

#define DF_INSN_UID_GET(UID) (df->insns[(UID)])
#define DF_INSN_UID_SET(UID,VAL) (df->insns[(UID)]=(VAL))
#define DF_INSN_UID_SAFE_GET(UID) (((unsigned)(UID) < DF_INSN_SIZE())	\
                                     ? DF_INSN_UID_GET (UID) \
                                     : NULL)
#define DF_INSN_UID_LUID(INSN) (DF_INSN_UID_GET(INSN)->luid)
#define DF_INSN_UID_DEFS(INSN) (DF_INSN_UID_GET(INSN)->defs)
#define DF_INSN_UID_USES(INSN) (DF_INSN_UID_GET(INSN)->uses)
#define DF_INSN_UID_EQ_USES(INSN) (DF_INSN_UID_GET(INSN)->eq_uses)
#define DF_INSN_UID_MWS(INSN) (DF_INSN_UID_GET(INSN)->mw_hardregs)

/* An obstack for bitmap not related to specific dataflow problems.
   This obstack should e.g. be used for bitmaps with a short life time
   such as temporary bitmaps.  This obstack is declared in df-core.c.  */

extern bitmap_obstack df_bitmap_obstack;
Jeff Law committed
679

680 681
/* This is a bitmap copy of regs_invalidated_by_call so that we can
   easily add it into bitmaps, etc. */ 
Jeff Law committed
682

683
extern bitmap df_invalidated_by_call;
Jeff Law committed
684 685


686 687 688
/* One of these structures is allocated for every basic block.  */
struct df_scan_bb_info
{
689 690 691 692 693 694 695 696 697
  /* The entry block has many artificial defs and these are at the
     bottom of the block.

     Blocks that are targets of exception edges may have some
     artificial defs.  These are logically located at the top of the
     block.

     Blocks that are the targets of non-local goto's have the hard
     frame pointer defined at the top of the block.  */
698
  struct df_ref **artificial_defs;
Jeff Law committed
699

700 701 702 703
  /* Blocks that are targets of exception edges may have some
     artificial uses.  These are logically at the top of the block.

     Most blocks have artificial uses at the bottom of the block.  */
704
  struct df_ref **artificial_uses;
705
};
Jeff Law committed
706 707


708
/* Reaching definitions.  All bitmaps are indexed by the id field of
709
   the ref except sparse_kill which is indexed by regno.  */
710 711
struct df_rd_bb_info 
{
712
  /* Local sets to describe the basic blocks.   */
713
  bitmap kill;  
714
  bitmap sparse_kill;
715
  bitmap gen;   /* The set of defs generated in this block.  */
716

717
  /* The results of the dataflow problem.  */
718 719
  bitmap in;    /* At the top of the block.  */
  bitmap out;   /* At the bottom of the block.  */
720
};
Ayal Zaks committed
721 722


723 724
/* Live registers, a backwards dataflow problem.  All bitmaps are
   referenced by the register number.  */
725

726 727
struct df_lr_bb_info 
{
728
  /* Local sets to describe the basic blocks.  */
729 730
  bitmap def;   /* The set of registers set in this block 
                   - except artificial defs at the top.  */
731 732 733
  bitmap use;   /* The set of registers used in this block.  */

  /* The results of the dataflow problem.  */
734
  bitmap in;    /* Just before the block itself. */
735
  bitmap out;   /* At the bottom of the block.  */
736
};
Ayal Zaks committed
737 738


739 740 741 742 743
/* Uninitialized registers.  All bitmaps are referenced by the
   register number.  Anded results of the forwards and backward live
   info.  Note that the forwards live information is not available
   separately.  */
struct df_live_bb_info 
744
{
745 746 747 748 749 750 751 752
  /* Local sets to describe the basic blocks.  */
  bitmap kill;  /* The set of registers unset in this block.  Calls,
		   for instance, unset registers.  */
  bitmap gen;   /* The set of registers set in this block.  */

  /* The results of the dataflow problem.  */
  bitmap in;    /* At the top of the block.  */
  bitmap out;   /* At the bottom of the block.  */
753
};
754

755 756 757 758 759 760 761 762 763 764 765 766

/* This is used for debugging and for the dumpers to find the latest
   instance so that the df info can be added to the dumps.  This
   should not be used by regular code.  */ 
extern struct df *df;
#define df_scan  (df->problems_by_index[DF_SCAN])
#define df_rd    (df->problems_by_index[DF_RD])
#define df_lr    (df->problems_by_index[DF_LR])
#define df_live  (df->problems_by_index[DF_LIVE])
#define df_chain (df->problems_by_index[DF_CHAIN])
#define df_note  (df->problems_by_index[DF_NOTE])

767
/* This symbol turns on checking that each modification of the cfg has
768 769 770 771 772 773 774 775 776 777
  been identified to the appropriate df routines.  It is not part of
  verification per se because the check that the final solution has
  not changed covers this.  However, if the solution is not being
  properly recomputed because the cfg is being modified, adding in
  calls to df_check_cfg_clean can be used to find the source of that
  kind of problem.  */
#if 0
#define DF_DEBUG_CFG
#endif

778 779 780

/* Functions defined in df-core.c.  */

781 782 783 784 785
extern void df_add_problem (struct df_problem *);
extern enum df_changeable_flags df_set_flags (enum df_changeable_flags);
extern enum df_changeable_flags df_clear_flags (enum df_changeable_flags);
extern void df_set_blocks (bitmap);
extern void df_remove_problem (struct dataflow *);
786
extern void df_finish_pass (bool);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
extern void df_analyze_problem (struct dataflow *, bitmap, int *, int);
extern void df_analyze (void);
extern int df_get_n_blocks (enum df_flow_dir);
extern int *df_get_postorder (enum df_flow_dir);
extern void df_simple_dataflow (enum df_flow_dir, df_init_function,
				df_confluence_function_0, df_confluence_function_n,
				df_transfer_function, bitmap, int *, int);
extern void df_mark_solutions_dirty (void);
extern bool df_get_bb_dirty (basic_block);
extern void df_set_bb_dirty (basic_block);
extern void df_compact_blocks (void);
extern void df_bb_replace (int, basic_block);
extern void df_bb_delete (int);
extern void df_verify (void);
#ifdef DF_DEBUG_CFG
extern void df_check_cfg_clean (void);
#endif
extern struct df_ref *df_bb_regno_first_def_find (basic_block, unsigned int);
extern struct df_ref *df_bb_regno_last_def_find (basic_block, unsigned int);
extern struct df_ref *df_find_def (rtx, rtx);
extern bool df_reg_defined (rtx, rtx);
extern struct df_ref *df_find_use (rtx, rtx);
extern bool df_reg_used (rtx, rtx);
extern void df_worklist_dataflow (struct dataflow *,bitmap, int *, int);
extern void df_print_regset (FILE *file, bitmap r);
extern void df_dump (FILE *);
813
extern void df_dump_region (FILE *);
814 815 816 817 818 819 820 821
extern void df_dump_start (FILE *);
extern void df_dump_top (basic_block, FILE *);
extern void df_dump_bottom (basic_block, FILE *);
extern void df_refs_chain_dump (struct df_ref **, bool, FILE *);
extern void df_regs_chain_dump (struct df_ref *,  FILE *);
extern void df_insn_debug (rtx, bool, FILE *);
extern void df_insn_debug_regno (rtx, FILE *);
extern void df_regno_debug (unsigned int, FILE *);
822
extern void df_ref_debug (struct df_ref *, FILE *);
823 824 825 826 827
extern void debug_df_insn (rtx);
extern void debug_df_regno (unsigned int);
extern void debug_df_reg (rtx);
extern void debug_df_defno (unsigned int);
extern void debug_df_useno (unsigned int);
828
extern void debug_df_ref (struct df_ref *);
829
extern void debug_df_chain (struct df_link *);
830 831 832

/* Functions defined in df-problems.c. */

833 834 835 836 837
extern struct df_link *df_chain_create (struct df_ref *, struct df_ref *);
extern void df_chain_unlink (struct df_ref *);
extern void df_chain_copy (struct df_ref *, struct df_link *);
extern bitmap df_get_live_in (basic_block);
extern bitmap df_get_live_out (basic_block);
838
extern void df_grow_bb_info (struct dataflow *);
839
extern void df_chain_dump (struct df_link *, FILE *);
840
extern void df_print_bb_index (basic_block bb, FILE *file);
841 842 843 844 845
extern void df_rd_add_problem (void);
extern void df_lr_add_problem (void);
extern void df_lr_verify_transfer_functions (void);
extern void df_live_verify_transfer_functions (void);
extern void df_live_add_problem (void);
846
extern void df_live_set_all_dirty (void);
847 848 849 850 851 852 853 854 855
extern void df_chain_add_problem (enum df_chain_flags);
extern void df_note_add_problem (void);
extern void df_simulate_find_defs (rtx, bitmap);
extern void df_simulate_defs (rtx, bitmap);
extern void df_simulate_uses (rtx, bitmap);
extern void df_simulate_artificial_refs_at_top (basic_block, bitmap);
extern void df_simulate_one_insn_forwards (basic_block, rtx, bitmap);
extern void df_simulate_artificial_refs_at_end (basic_block, bitmap);
extern void df_simulate_one_insn_backwards (basic_block, rtx, bitmap);
856 857 858

/* Functions defined in df-scan.c.  */

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
extern void df_scan_alloc (bitmap);
extern void df_scan_add_problem (void);
extern void df_grow_reg_info (void);
extern void df_grow_insn_info (void);
extern void df_scan_blocks (void);
extern struct df_ref *df_ref_create (rtx, rtx *, rtx,basic_block, 
				     enum df_ref_type, enum df_ref_flags);
extern void df_ref_remove (struct df_ref *);
extern struct df_insn_info * df_insn_create_insn_record (rtx);
extern void df_insn_delete (basic_block, unsigned int);
extern void df_bb_refs_record (int, bool);
extern bool df_insn_rescan (rtx);
extern void df_insn_rescan_all (void);
extern void df_process_deferred_rescans (void);
extern void df_recompute_luids (basic_block);
extern void df_insn_change_bb (rtx);
extern void df_maybe_reorganize_use_refs (enum df_ref_order);
extern void df_maybe_reorganize_def_refs (enum df_ref_order);
extern void df_ref_change_reg_with_loc (int, int, rtx);
extern void df_notes_rescan (rtx);
879
extern void df_hard_reg_init (void);
880 881 882 883 884 885 886 887
extern void df_update_entry_block_defs (void);
extern void df_update_exit_block_uses (void);
extern void df_update_entry_exit_and_calls (void);
extern bool df_hard_reg_used_p (unsigned int);
extern unsigned int df_hard_reg_used_count (unsigned int);
extern bool df_regs_ever_live_p (unsigned int);
extern void df_set_regs_ever_live (unsigned int, bool);
extern void df_compute_regs_ever_live (bool);
888
extern bool df_read_modify_subreg_p (rtx);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
extern void df_scan_verify (void);


/* Get basic block info.  */

static inline struct df_scan_bb_info *
df_scan_get_bb_info (unsigned int index)
{
  if (index < df_scan->block_info_size)
    return (struct df_scan_bb_info *) df_scan->block_info[index];
  else
    return NULL;
}

static inline struct df_rd_bb_info *
df_rd_get_bb_info (unsigned int index)
{
  if (index < df_rd->block_info_size)
    return (struct df_rd_bb_info *) df_rd->block_info[index];
  else
    return NULL;
}

static inline struct df_lr_bb_info *
df_lr_get_bb_info (unsigned int index)
{
  if (index < df_lr->block_info_size)
    return (struct df_lr_bb_info *) df_lr->block_info[index];
  else
    return NULL;
}

static inline struct df_live_bb_info *
df_live_get_bb_info (unsigned int index)
{
  if (index < df_live->block_info_size)
    return (struct df_live_bb_info *) df_live->block_info[index];
  else
    return NULL;
}

/* Get the artificial defs for a basic block.  */

static inline struct df_ref **
df_get_artificial_defs (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_defs;
}


/* Get the artificial uses for a basic block.  */

static inline struct df_ref **
df_get_artificial_uses (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_uses;
}
946

947

Razya Ladelsky committed
948 949 950 951 952 953 954 955 956 957 958 959 960 961
/* web */

/* This entry is allocated for each reference in the insn stream.  */
struct web_entry
{
  /* Pointer to the parent in the union/find tree.  */
  struct web_entry *pred;
  /* Newly assigned register to the entry.  Set only for roots.  */
  rtx reg;
  void* extra_info;
};

extern struct web_entry *unionfind_root (struct web_entry *);
extern bool unionfind_union (struct web_entry *, struct web_entry *);
962
extern void union_defs (struct df_ref *,
Razya Ladelsky committed
963 964 965
                        struct web_entry *, struct web_entry *,
			bool (*fun) (struct web_entry *, struct web_entry *));

966
#endif /* GCC_DF_H */