ra.c 26.8 KB
Newer Older
Michael Matz committed
1
/* Graph coloring register allocator
2
   Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
Michael Matz committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
   Contributed by Michael Matz <matz@suse.de>
   and Daniel Berlin <dan@cgsoftware.com>.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it under the
   terms of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
   details.

   You should have received a copy of the GNU General Public License along
   with GCC; see the file COPYING.  If not, write to the Free Software
   Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
23 24
#include "coretypes.h"
#include "tm.h"
Michael Matz committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "reload.h"
#include "integrate.h"
#include "function.h"
#include "regs.h"
#include "obstack.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "df.h"
#include "expr.h"
#include "output.h"
#include "toplev.h"
#include "flags.h"
#include "ra.h"

/* This is the toplevel file of a graph coloring register allocator.
   It is able to act like a George & Appel allocator, i.e. with iterative
   coalescing plus spill coalescing/propagation.
   And it can act as a traditional Briggs allocator, although with
   optimistic coalescing.  Additionally it has a custom pass, which
   tries to reduce the overall cost of the colored graph.

   We support two modes of spilling: spill-everywhere, which is extremely
   fast, and interference region spilling, which reduces spill code to a
   large extent, but is slower.

   Helpful documents:

   Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph
   coloring register allocation. ACM Trans. Program. Lang. Syst. 16, 3 (May),
   428-455.

   Bergner, P., Dahl, P., Engebretsen, D., and O'Keefe, M. 1997. Spill code
   minimization via interference region spilling. In Proc. ACM SIGPLAN '97
   Conf. on Prog. Language Design and Implementation. ACM, 287-295.

   George, L., Appel, A.W. 1996.  Iterated register coalescing.
   ACM Trans. Program. Lang. Syst. 18, 3 (May), 300-324.

*/

/* This file contains the main entry point (reg_alloc), some helper routines
   used by more than one file of the register allocator, and the toplevel
   driver procedure (one_pass).  */

/* Things, one might do somewhen:

   * Lattice based rematerialization
   * create definitions of ever-life regs at the beginning of
     the insn chain
78
   * insert loads as soon, stores as late as possible
Michael Matz committed
79 80 81 82 83 84 85 86 87
   * insert spill insns as outward as possible (either looptree, or LCM)
   * reuse stack-slots
   * delete coalesced insns.  Partly done.  The rest can only go, when we get
     rid of reload.
   * don't destroy coalescing information completely when spilling
   * use the constraints from asms
  */

static struct obstack ra_obstack;
88 89 90 91 92 93 94 95
static void create_insn_info (struct df *);
static void free_insn_info (void);
static void alloc_mem (struct df *);
static void free_mem (struct df *);
static void free_all_mem (struct df *df);
static int one_pass (struct df *, int);
static void check_df (struct df *);
static void init_ra (void);
Michael Matz committed
96

97
void reg_alloc (void);
Michael Matz committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

/* These global variables are "internal" to the register allocator.
   They are all documented at their declarations in ra.h.  */

/* Somewhen we want to get rid of one of those sbitmaps.
   (for now I need the sup_igraph to note if there is any conflict between
   parts of webs at all.  I can't use igraph for this, as there only the real
   conflicts are noted.)  This is only used to prevent coalescing two
   conflicting webs, were only parts of them are in conflict.  */
sbitmap igraph;
sbitmap sup_igraph;

/* Note the insns not inserted by the allocator, where we detected any
   deaths of pseudos.  It is used to detect closeness of defs and uses.
   In the first pass this is empty (we could initialize it from REG_DEAD
   notes), in the other passes it is left from the pass before.  */
sbitmap insns_with_deaths;
int death_insns_max_uid;

struct web_part *web_parts;

unsigned int num_webs;
unsigned int num_subwebs;
unsigned int num_allwebs;
struct web **id2web;
struct web *hardreg2web[FIRST_PSEUDO_REGISTER];
struct web **def2web;
struct web **use2web;
struct move_list *wl_moves;
int ra_max_regno;
short *ra_reg_renumber;
struct df *df;
bitmap *live_at_end;
int ra_pass;
unsigned int max_normal_pseudo;
int an_unusable_color;

/* The different lists on which a web can be (based on the type).  */
struct dlist *web_lists[(int) LAST_NODE_TYPE];

unsigned int last_def_id;
unsigned int last_use_id;
unsigned int last_num_webs;
int last_max_uid;
sbitmap last_check_uses;
unsigned int remember_conflicts;

int orig_max_uid;

HARD_REG_SET never_use_colors;
HARD_REG_SET usable_regs[N_REG_CLASSES];
unsigned int num_free_regs[N_REG_CLASSES];
HARD_REG_SET hardregs_for_mode[NUM_MACHINE_MODES];
151
HARD_REG_SET invalid_mode_change_regs;
Michael Matz committed
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
unsigned char byte2bitcount[256];

unsigned int debug_new_regalloc = -1;
int flag_ra_biased = 0;
int flag_ra_improved_spilling = 0;
int flag_ra_ir_spilling = 0;
int flag_ra_optimistic_coalescing = 0;
int flag_ra_break_aliases = 0;
int flag_ra_merge_spill_costs = 0;
int flag_ra_spill_every_use = 0;
int flag_ra_dump_notes = 0;

/* Fast allocation of small objects, which live until the allocator
   is done.  Allocate an object of SIZE bytes.  */

void *
168
ra_alloc (size_t size)
Michael Matz committed
169 170 171 172 173 174 175
{
  return obstack_alloc (&ra_obstack, size);
}

/* Like ra_alloc(), but clear the returned memory.  */

void *
176
ra_calloc (size_t size)
Michael Matz committed
177 178 179 180 181 182 183 184 185
{
  void *p = obstack_alloc (&ra_obstack, size);
  memset (p, 0, size);
  return p;
}

/* Returns the number of hardregs in HARD_REG_SET RS.  */

int
186
hard_regs_count (HARD_REG_SET rs)
Michael Matz committed
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
  int count = 0;
#ifdef HARD_REG_SET
  while (rs)
    {
      unsigned char byte = rs & 0xFF;
      rs >>= 8;
      /* Avoid memory access, if nothing is set.  */
      if (byte)
        count += byte2bitcount[byte];
    }
#else
  unsigned int ofs;
  for (ofs = 0; ofs < HARD_REG_SET_LONGS; ofs++)
    {
      HARD_REG_ELT_TYPE elt = rs[ofs];
      while (elt)
	{
	  unsigned char byte = elt & 0xFF;
	  elt >>= 8;
	  if (byte)
	    count += byte2bitcount[byte];
	}
    }
#endif
  return count;
}

/* Basically like emit_move_insn (i.e. validifies constants and such),
   but also handle MODE_CC moves (but then the operands must already
   be basically valid.  */

rtx
220
ra_emit_move_insn (rtx x, rtx y)
Michael Matz committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
{
  enum machine_mode mode = GET_MODE (x);
  if (GET_MODE_CLASS (mode) == MODE_CC)
    return emit_insn (gen_move_insn (x, y));
  else
    return emit_move_insn (x, y);
}

int insn_df_max_uid;
struct ra_insn_info *insn_df;
static struct ref **refs_for_insn_df;

/* Create the insn_df structure for each insn to have fast access to
   all valid defs and uses in an insn.  */

static void
237
create_insn_info (struct df *df)
Michael Matz committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
  rtx insn;
  struct ref **act_refs;
  insn_df_max_uid = get_max_uid ();
  insn_df = xcalloc (insn_df_max_uid, sizeof (insn_df[0]));
  refs_for_insn_df = xcalloc (df->def_id + df->use_id, sizeof (struct ref *));
  act_refs = refs_for_insn_df;
  /* We create those things backwards to mimic the order in which
     the insns are visited in rewrite_program2() and live_in().  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
      int uid = INSN_UID (insn);
      unsigned int n;
      struct df_link *link;
      if (!INSN_P (insn))
	continue;
      for (n = 0, link = DF_INSN_DEFS (df, insn); link; link = link->next)
        if (link->ref
	    && (DF_REF_REGNO (link->ref) >= FIRST_PSEUDO_REGISTER
		|| !TEST_HARD_REG_BIT (never_use_colors,
				       DF_REF_REGNO (link->ref))))
	  {
	    if (n == 0)
	      insn_df[uid].defs = act_refs;
	    insn_df[uid].defs[n++] = link->ref;
	  }
      act_refs += n;
      insn_df[uid].num_defs = n;
      for (n = 0, link = DF_INSN_USES (df, insn); link; link = link->next)
        if (link->ref
	    && (DF_REF_REGNO (link->ref) >= FIRST_PSEUDO_REGISTER
		|| !TEST_HARD_REG_BIT (never_use_colors,
				       DF_REF_REGNO (link->ref))))
	  {
	    if (n == 0)
	      insn_df[uid].uses = act_refs;
	    insn_df[uid].uses[n++] = link->ref;
	  }
      act_refs += n;
      insn_df[uid].num_uses = n;
    }
  if (refs_for_insn_df + (df->def_id + df->use_id) < act_refs)
    abort ();
}

/* Free the insn_df structures.  */

static void
286
free_insn_info (void)
Michael Matz committed
287 288 289 290 291 292 293 294 295 296 297 298 299
{
  free (refs_for_insn_df);
  refs_for_insn_df = NULL;
  free (insn_df);
  insn_df = NULL;
  insn_df_max_uid = 0;
}

/* Search WEB for a subweb, which represents REG.  REG needs to
   be a SUBREG, and the inner reg of it needs to be the one which is
   represented by WEB.  Returns the matching subweb or NULL.  */

struct web *
300
find_subweb (struct web *web, rtx reg)
Michael Matz committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
{
  struct web *w;
  if (GET_CODE (reg) != SUBREG)
    abort ();
  for (w = web->subreg_next; w; w = w->subreg_next)
    if (GET_MODE (w->orig_x) == GET_MODE (reg)
	&& SUBREG_BYTE (w->orig_x) == SUBREG_BYTE (reg))
      return w;
  return NULL;
}

/* Similar to find_subweb(), but matches according to SIZE_WORD,
   a collection of the needed size and offset (in bytes).  */

struct web *
316
find_subweb_2 (struct web *web, unsigned int size_word)
Michael Matz committed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
  struct web *w = web;
  if (size_word == GET_MODE_SIZE (GET_MODE (web->orig_x)))
    /* size_word == size means BYTE_BEGIN(size_word) == 0.  */
    return web;
  for (w = web->subreg_next; w; w = w->subreg_next)
    {
      unsigned int bl = rtx_to_bits (w->orig_x);
      if (size_word == bl)
        return w;
    }
  return NULL;
}

/* Returns the superweb for SUBWEB.  */

struct web *
334
find_web_for_subweb_1 (struct web *subweb)
Michael Matz committed
335 336 337 338 339 340 341 342 343 344
{
  while (subweb->parent_web)
    subweb = subweb->parent_web;
  return subweb;
}

/* Determine if two hard register sets intersect.
   Return 1 if they do.  */

int
345
hard_regs_intersect_p (HARD_REG_SET *a, HARD_REG_SET *b)
Michael Matz committed
346 347 348 349 350 351 352 353 354 355 356 357 358 359
{
  HARD_REG_SET c;
  COPY_HARD_REG_SET (c, *a);
  AND_HARD_REG_SET (c, *b);
  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
  return 1;
lose:
  return 0;
}

/* Allocate and initialize the memory necessary for one pass of the
   register allocator.  */

static void
360
alloc_mem (struct df *df)
Michael Matz committed
361 362 363 364 365
{
  int i;
  ra_build_realloc (df);
  if (!live_at_end)
    {
366
      live_at_end = xmalloc ((last_basic_block + 2) * sizeof (bitmap));
Michael Matz committed
367 368 369 370 371 372 373 374 375 376
      for (i = 0; i < last_basic_block + 2; i++)
	live_at_end[i] = BITMAP_XMALLOC ();
      live_at_end += 2;
    }
  create_insn_info (df);
}

/* Free the memory which isn't necessary for the next pass.  */

static void
377
free_mem (struct df *df ATTRIBUTE_UNUSED)
Michael Matz committed
378 379 380 381 382 383 384 385 386
{
  free_insn_info ();
  ra_build_free ();
}

/* Free all memory allocated for the register allocator.  Used, when
   it's done.  */

static void
387
free_all_mem (struct df *df)
Michael Matz committed
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
{
  unsigned int i;
  live_at_end -= 2;
  for (i = 0; i < (unsigned)last_basic_block + 2; i++)
    BITMAP_XFREE (live_at_end[i]);
  free (live_at_end);

  ra_colorize_free_all ();
  ra_build_free_all (df);
  obstack_free (&ra_obstack, NULL);
}

static long ticks_build;
static long ticks_rebuild;

/* Perform one pass of allocation.  Returns nonzero, if some spill code
   was added, i.e. if the allocator needs to rerun.  */

static int
407
one_pass (struct df *df, int rebuild)
Michael Matz committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
  long ticks = clock ();
  int something_spilled;
  remember_conflicts = 0;

  /* Build the complete interference graph, or if this is not the first
     pass, rebuild it incrementally.  */
  build_i_graph (df);

  /* From now on, if we create new conflicts, we need to remember the
     initial list of conflicts per web.  */
  remember_conflicts = 1;
  if (!rebuild)
    dump_igraph_machine ();

  /* Colorize the I-graph.  This results in either a list of
     spilled_webs, in which case we need to run the spill phase, and
     rerun the allocator, or that list is empty, meaning we are done.  */
  ra_colorize_graph (df);

  last_max_uid = get_max_uid ();
  /* actual_spill() might change WEBS(SPILLED) and even empty it,
     so we need to remember it's state.  */
  something_spilled = !!WEBS(SPILLED);

  /* Add spill code if necessary.  */
  if (something_spilled)
    actual_spill ();

  ticks = clock () - ticks;
  if (rebuild)
    ticks_rebuild += ticks;
  else
    ticks_build += ticks;
  return something_spilled;
}

/* Initialize various arrays for the register allocator.  */

static void
448
init_ra (void)
Michael Matz committed
449 450 451 452
{
  int i;
  HARD_REG_SET rs;
#ifdef ELIMINABLE_REGS
453
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
Michael Matz committed
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  unsigned int j;
#endif
  int need_fp
    = (! flag_omit_frame_pointer
       || (current_function_calls_alloca && EXIT_IGNORE_STACK)
       || FRAME_POINTER_REQUIRED);

  ra_colorize_init ();

  /* We can't ever use any of the fixed regs.  */
  COPY_HARD_REG_SET (never_use_colors, fixed_reg_set);

  /* Additionally don't even try to use hardregs, which we already
     know are not eliminable.  This includes also either the
     hard framepointer or all regs which are eliminable into the
     stack pointer, if need_fp is set.  */
#ifdef ELIMINABLE_REGS
  for (j = 0; j < ARRAY_SIZE (eliminables); j++)
    {
      if (! CAN_ELIMINATE (eliminables[j].from, eliminables[j].to)
	  || (eliminables[j].to == STACK_POINTER_REGNUM && need_fp))
	for (i = HARD_REGNO_NREGS (eliminables[j].from, Pmode); i--;)
	  SET_HARD_REG_BIT (never_use_colors, eliminables[j].from + i);
    }
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
  if (need_fp)
    for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
      SET_HARD_REG_BIT (never_use_colors, HARD_FRAME_POINTER_REGNUM + i);
#endif

#else
  if (need_fp)
    for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
      SET_HARD_REG_BIT (never_use_colors, FRAME_POINTER_REGNUM + i);
#endif

  /* Stack and argument pointer are also rather useless to us.  */
  for (i = HARD_REGNO_NREGS (STACK_POINTER_REGNUM, Pmode); i--;)
    SET_HARD_REG_BIT (never_use_colors, STACK_POINTER_REGNUM + i);

  for (i = HARD_REGNO_NREGS (ARG_POINTER_REGNUM, Pmode); i--;)
    SET_HARD_REG_BIT (never_use_colors, ARG_POINTER_REGNUM + i);

  for (i = 0; i < 256; i++)
    {
      unsigned char byte = ((unsigned) i) & 0xFF;
      unsigned char count = 0;
      while (byte)
	{
	  if (byte & 1)
	    count++;
	  byte >>= 1;
	}
      byte2bitcount[i] = count;
    }

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      int size;
      COPY_HARD_REG_SET (rs, reg_class_contents[i]);
      AND_COMPL_HARD_REG_SET (rs, never_use_colors);
      size = hard_regs_count (rs);
      num_free_regs[i] = size;
      COPY_HARD_REG_SET (usable_regs[i], rs);
    }

  /* Setup hardregs_for_mode[].
     We are not interested only in the beginning of a multi-reg, but in
     all the hardregs involved.  Maybe HARD_REGNO_MODE_OK() only ok's
     for beginnings.  */
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      int reg, size;
      CLEAR_HARD_REG_SET (rs);
      for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
	if (HARD_REGNO_MODE_OK (reg, i)
	    /* Ignore VOIDmode and similar things.  */
	    && (size = HARD_REGNO_NREGS (reg, i)) != 0
	    && (reg + size) <= FIRST_PSEUDO_REGISTER)
	  {
	    while (size--)
	      SET_HARD_REG_BIT (rs, reg + size);
	  }
      COPY_HARD_REG_SET (hardregs_for_mode[i], rs);
    }

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
  CLEAR_HARD_REG_SET (invalid_mode_change_regs);
#ifdef CANNOT_CHANGE_MODE_CLASS
  if (0)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      enum machine_mode from = (enum machine_mode) i;
      enum machine_mode to;
      for (to = VOIDmode; to < MAX_MACHINE_MODE; ++to)
	{
	  int r;
	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
	    if (REG_CANNOT_CHANGE_MODE_P (from, to, r))
	      SET_HARD_REG_BIT (invalid_mode_change_regs, r);
	}
    }
#endif

Michael Matz committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
  for (an_unusable_color = 0; an_unusable_color < FIRST_PSEUDO_REGISTER;
       an_unusable_color++)
    if (TEST_HARD_REG_BIT (never_use_colors, an_unusable_color))
      break;
  if (an_unusable_color == FIRST_PSEUDO_REGISTER)
    abort ();

  orig_max_uid = get_max_uid ();
  compute_bb_for_insn ();
  ra_reg_renumber = NULL;
  insns_with_deaths = sbitmap_alloc (orig_max_uid);
  death_insns_max_uid = orig_max_uid;
  sbitmap_ones (insns_with_deaths);
  gcc_obstack_init (&ra_obstack);
}

/* Check the consistency of DF.  This aborts if it violates some
   invariances we expect.  */

static void
577
check_df (struct df *df)
Michael Matz committed
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
{
  struct df_link *link;
  rtx insn;
  int regno;
  unsigned int ui;
  bitmap b = BITMAP_XMALLOC ();
  bitmap empty_defs = BITMAP_XMALLOC ();
  bitmap empty_uses = BITMAP_XMALLOC ();

  /* Collect all the IDs of NULL references in the ID->REF arrays,
     as df.c leaves them when updating the df structure.  */
  for (ui = 0; ui < df->def_id; ui++)
    if (!df->defs[ui])
      bitmap_set_bit (empty_defs, ui);
  for (ui = 0; ui < df->use_id; ui++)
    if (!df->uses[ui])
      bitmap_set_bit (empty_uses, ui);

  /* For each insn we check if the chain of references contain each
     ref only once, doesn't contain NULL refs, or refs whose ID is invalid
     (it df->refs[id] element is NULL).  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	bitmap_clear (b);
	for (link = DF_INSN_DEFS (df, insn); link; link = link->next)
	  if (!link->ref || bitmap_bit_p (empty_defs, DF_REF_ID (link->ref))
	      || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	    abort ();
	  else
	    bitmap_set_bit (b, DF_REF_ID (link->ref));

	bitmap_clear (b);
	for (link = DF_INSN_USES (df, insn); link; link = link->next)
	  if (!link->ref || bitmap_bit_p (empty_uses, DF_REF_ID (link->ref))
	      || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	    abort ();
	  else
	    bitmap_set_bit (b, DF_REF_ID (link->ref));
      }

  /* Now the same for the chains per register number.  */
  for (regno = 0; regno < max_reg_num (); regno++)
    {
      bitmap_clear (b);
      for (link = df->regs[regno].defs; link; link = link->next)
	if (!link->ref || bitmap_bit_p (empty_defs, DF_REF_ID (link->ref))
	    || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	  abort ();
	else
	  bitmap_set_bit (b, DF_REF_ID (link->ref));

      bitmap_clear (b);
      for (link = df->regs[regno].uses; link; link = link->next)
	if (!link->ref || bitmap_bit_p (empty_uses, DF_REF_ID (link->ref))
	    || bitmap_bit_p (b, DF_REF_ID (link->ref)))
	  abort ();
	else
	  bitmap_set_bit (b, DF_REF_ID (link->ref));
    }

  BITMAP_XFREE (empty_uses);
  BITMAP_XFREE (empty_defs);
  BITMAP_XFREE (b);
}

/* Main register allocator entry point.  */

void
647
reg_alloc (void)
Michael Matz committed
648 649 650 651 652 653 654 655 656 657
{
  int changed;
  FILE *ra_dump_file = rtl_dump_file;
  rtx last = get_last_insn ();

  if (! INSN_P (last))
    last = prev_real_insn (last);
  /* If this is an empty function we shouldn't do all the following,
     but instead just setup what's necessary, and return.  */

658
  /* We currently rely on the existence of the return value USE as
Michael Matz committed
659 660 661 662 663 664 665
     one of the last insns.  Add it if it's not there anymore.  */
  if (last)
    {
      edge e;
      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
	{
	  basic_block bb = e->src;
666
	  last = BB_END (bb);
Michael Matz committed
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	  if (!INSN_P (last) || GET_CODE (PATTERN (last)) != USE)
	    {
	      rtx insns;
	      start_sequence ();
	      use_return_register ();
	      insns = get_insns ();
	      end_sequence ();
	      emit_insn_after (insns, last);
	    }
	}
    }

  /* Setup debugging levels.  */
  switch (0)
    {
682
      /* Some useful presets of the debug level, I often use.  */
Michael Matz committed
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
      case 0: debug_new_regalloc = DUMP_EVER; break;
      case 1: debug_new_regalloc = DUMP_COSTS; break;
      case 2: debug_new_regalloc = DUMP_IGRAPH_M; break;
      case 3: debug_new_regalloc = DUMP_COLORIZE + DUMP_COSTS; break;
      case 4: debug_new_regalloc = DUMP_COLORIZE + DUMP_COSTS + DUMP_WEBS;
	      break;
      case 5: debug_new_regalloc = DUMP_FINAL_RTL + DUMP_COSTS +
	      DUMP_CONSTRAINTS;
	      break;
      case 6: debug_new_regalloc = DUMP_VALIDIFY; break;
    }
  if (!rtl_dump_file)
    debug_new_regalloc = 0;

  /* Run regclass first, so we know the preferred and alternate classes
     for each pseudo.  Deactivate emitting of debug info, if it's not
699
     explicitly requested.  */
Michael Matz committed
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  if ((debug_new_regalloc & DUMP_REGCLASS) == 0)
    rtl_dump_file = NULL;
  regclass (get_insns (), max_reg_num (), rtl_dump_file);
  rtl_dump_file = ra_dump_file;

  /* We don't use those NOTEs, and as we anyway change all registers,
     they only make problems later.  */
  count_or_remove_death_notes (NULL, 1);

  /* Initialize the different global arrays and regsets.  */
  init_ra ();

  /* And some global variables.  */
  ra_pass = 0;
  no_new_pseudos = 0;
  max_normal_pseudo = (unsigned) max_reg_num ();
  ra_rewrite_init ();
  last_def_id = 0;
  last_use_id = 0;
  last_num_webs = 0;
  last_max_uid = 0;
  last_check_uses = NULL;
  live_at_end = NULL;
  WEBS(INITIAL) = NULL;
  WEBS(FREE) = NULL;
  memset (hardreg2web, 0, sizeof (hardreg2web));
  ticks_build = ticks_rebuild = 0;

  /* The default is to use optimistic coalescing with interference
     region spilling, without biased coloring.  */
  flag_ra_biased = 0;
  flag_ra_spill_every_use = 0;
  flag_ra_improved_spilling = 1;
  flag_ra_ir_spilling = 1;
  flag_ra_break_aliases = 0;
  flag_ra_optimistic_coalescing = 1;
  flag_ra_merge_spill_costs = 1;
  if (flag_ra_optimistic_coalescing)
    flag_ra_break_aliases = 1;
  flag_ra_dump_notes = 0;

  /* Allocate the global df structure.  */
  df = df_init ();

  /* This is the main loop, calling one_pass as long as there are still
     some spilled webs.  */
  do
    {
      ra_debug_msg (DUMP_NEARLY_EVER, "RegAlloc Pass %d\n\n", ra_pass);
      if (ra_pass++ > 40)
	internal_error ("Didn't find a coloring.\n");

      /* First collect all the register refs and put them into
	 chains per insn, and per regno.  In later passes only update
         that info from the new and modified insns.  */
      df_analyse (df, (ra_pass == 1) ? 0 : (bitmap) -1,
756
		  DF_HARD_REGS | DF_RD_CHAIN | DF_RU_CHAIN | DF_FOR_REGALLOC);
Michael Matz committed
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

      if ((debug_new_regalloc & DUMP_DF) != 0)
	{
	  rtx insn;
	  df_dump (df, DF_HARD_REGS, rtl_dump_file);
	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
            if (INSN_P (insn))
	      df_insn_debug_regno (df, insn, rtl_dump_file);
	}
      check_df (df);

      /* Now allocate the memory needed for this pass, or (if it's not the
	 first pass), reallocate only additional memory.  */
      alloc_mem (df);

      /* Build and colorize the interference graph, and possibly emit
	 spill insns.  This also might delete certain move insns.  */
      changed = one_pass (df, ra_pass > 1);

      /* If that produced no changes, the graph was colorizable.  */
      if (!changed)
	{
	  /* Change the insns to refer to the new pseudos (one per web).  */
          emit_colors (df);
	  /* Already setup a preliminary reg_renumber[] array, but don't
	     free our own version.  reg_renumber[] will again be destroyed
	     later.  We right now need it in dump_constraints() for
	     constrain_operands(1) whose subproc sometimes reference
	     it (because we are checking strictly, i.e. as if
	     after reload).  */
	  setup_renumber (0);
	  /* Delete some more of the coalesced moves.  */
	  delete_moves ();
	  dump_constraints ();
	}
      else
	{
	  /* If there were changes, this means spill code was added,
	     therefore repeat some things, including some initialization
	     of global data structures.  */
	  if ((debug_new_regalloc & DUMP_REGCLASS) == 0)
	    rtl_dump_file = NULL;
	  /* We have new pseudos (the stackwebs).  */
	  allocate_reg_info (max_reg_num (), FALSE, FALSE);
	  /* And new insns.  */
	  compute_bb_for_insn ();
	  /* Some of them might be dead.  */
	  delete_trivially_dead_insns (get_insns (), max_reg_num ());
	  /* Those new pseudos need to have their REFS count set.  */
	  reg_scan_update (get_insns (), NULL, max_regno);
	  max_regno = max_reg_num ();
808
	  /* And they need useful classes too.  */
Michael Matz committed
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	  regclass (get_insns (), max_reg_num (), rtl_dump_file);
	  rtl_dump_file = ra_dump_file;

	  /* Remember the number of defs and uses, so we can distinguish
	     new from old refs in the next pass.  */
	  last_def_id = df->def_id;
	  last_use_id = df->use_id;
	}

      /* Output the graph, and possibly the current insn sequence.  */
      dump_ra (df);
      if (changed && (debug_new_regalloc & DUMP_RTL) != 0)
	{
	  ra_print_rtl_with_bb (rtl_dump_file, get_insns ());
	  fflush (rtl_dump_file);
	}

      /* Reset the web lists.  */
      reset_lists ();
      free_mem (df);
    }
  while (changed);

  /* We are done with allocation, free all memory and output some
     debug info.  */
  free_all_mem (df);
  df_finish (df);
  if ((debug_new_regalloc & DUMP_RESULTS) == 0)
    dump_cost (DUMP_COSTS);
  ra_debug_msg (DUMP_COSTS, "ticks for build-phase: %ld\n", ticks_build);
  ra_debug_msg (DUMP_COSTS, "ticks for rebuild-phase: %ld\n", ticks_rebuild);
  if ((debug_new_regalloc & (DUMP_FINAL_RTL | DUMP_RTL)) != 0)
    ra_print_rtl_with_bb (rtl_dump_file, get_insns ());

  /* We might have new pseudos, so allocate the info arrays for them.  */
  if ((debug_new_regalloc & DUMP_SM) == 0)
    rtl_dump_file = NULL;
  no_new_pseudos = 0;
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
  no_new_pseudos = 1;
  rtl_dump_file = ra_dump_file;

  /* Some spill insns could've been inserted after trapping calls, i.e.
     at the end of a basic block, which really ends at that call.
     Fixup that breakages by adjusting basic block boundaries.  */
  fixup_abnormal_edges ();

  /* Cleanup the flow graph.  */
  if ((debug_new_regalloc & DUMP_LAST_FLOW) == 0)
    rtl_dump_file = NULL;
  life_analysis (get_insns (), rtl_dump_file,
		 PROP_DEATH_NOTES | PROP_LOG_LINKS  | PROP_REG_INFO);
  cleanup_cfg (CLEANUP_EXPENSIVE);
  recompute_reg_usage (get_insns (), TRUE);
  if (rtl_dump_file)
    dump_flow_info (rtl_dump_file);
  rtl_dump_file = ra_dump_file;

  /* update_equiv_regs() can't be called after register allocation.
     It might delete some pseudos, and insert other insns setting
     up those pseudos in different places.  This of course screws up
     the allocation because that may destroy a hardreg for another
     pseudo.
     XXX we probably should do something like that on our own.  I.e.
     creating REG_EQUIV notes.  */
  /*update_equiv_regs ();*/

  /* Setup the reg_renumber[] array for reload.  */
  setup_renumber (1);
  sbitmap_free (insns_with_deaths);

  /* Remove REG_DEAD notes which are incorrectly set.  See the docu
     of that function.  */
  remove_suspicious_death_notes ();

  if ((debug_new_regalloc & DUMP_LAST_RTL) != 0)
    ra_print_rtl_with_bb (rtl_dump_file, get_insns ());
  dump_static_insn_cost (rtl_dump_file,
			 "after allocation/spilling, before reload", NULL);

  /* Allocate the reg_equiv_memory_loc array for reload.  */
890
  reg_equiv_memory_loc = xcalloc (max_regno, sizeof (rtx));
Michael Matz committed
891 892 893 894 895 896 897 898 899
  /* And possibly initialize it.  */
  allocate_initial_values (reg_equiv_memory_loc);
  /* And one last regclass pass just before reload.  */
  regclass (get_insns (), max_reg_num (), rtl_dump_file);
}

/*
vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4:
*/