df.h 47 KB
Newer Older
Jeff Law committed
1
/* Form lists of pseudo register references for autoinc optimization
2
   for GNU compiler.  This is part of flow optimization.
Jakub Jelinek committed
3
   Copyright (C) 1999-2015 Free Software Foundation, Inc.
H.J. Lu committed
4
   Originally contributed by Michael P. Hayes
5 6 7
             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
             and Kenneth Zadeck (zadeck@naturalbridge.com).
Jeff Law committed
8

9
This file is part of GCC.
Jeff Law committed
10

11 12
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
13
Software Foundation; either version 3, or (at your option) any later
14
version.
Jeff Law committed
15

16 17 18 19
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeff Law committed
20 21

You should have received a copy of the GNU General Public License
22 23
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Jeff Law committed
24

25 26 27
#ifndef GCC_DF_H
#define GCC_DF_H

28
#include "regset.h"
29
#include "alloc-pool.h"
30
#include "timevar.h"
31 32

struct dataflow;
33
struct df_d;
34
struct df_problem;
35
struct df_link;
36 37
struct df_insn_info;
union df_ref_d;
38

H.J. Lu committed
39
/* Data flow problems.  All problems must have a unique id here.  */
40

41 42
/* Scanning is not really a dataflow problem, but it is useful to have
   the basic block functions in the vector so that things get done in
43 44 45
   a uniform manner.  The last four problems can be added or deleted
   at any time are always defined (though LIVE is always there at -O2
   or higher); the others are always there.  */
H.J. Lu committed
46
#define DF_SCAN    0
47 48 49 50
#define DF_LR      1      /* Live Registers backward. */
#define DF_LIVE    2      /* Live Registers & Uninitialized Registers */
#define DF_RD      3      /* Reaching Defs. */
#define DF_CHAIN   4      /* Def-Use and/or Use-Def Chains. */
51
#define DF_WORD_LR 5      /* Subreg tracking lr.  */
52
#define DF_NOTE    6      /* REG_DEAD and REG_UNUSED notes.  */
53
#define DF_MD      7      /* Multiple Definitions. */
54
#define DF_MIR     8      /* Must-initialized Registers.  */
55

56
#define DF_LAST_PROBLEM_PLUS1 (DF_MIR + 1)
Jeff Law committed
57

58 59 60 61 62 63 64
/* Dataflow direction.  */
enum df_flow_dir
  {
    DF_NONE,
    DF_FORWARD,
    DF_BACKWARD
  };
Jeff Law committed
65

66
/* Descriminator for the various df_ref types.  */
67
enum df_ref_class {DF_REF_BASE, DF_REF_ARTIFICIAL, DF_REF_REGULAR};
68

69 70 71 72 73
/* The first of these us a set of a registers.  The remaining three
   are all uses of a register (the mem_load and mem_store relate to
   how the register as an addressing operand).  */
enum df_ref_type {DF_REF_REG_DEF, DF_REF_REG_USE,
		  DF_REF_REG_MEM_LOAD, DF_REF_REG_MEM_STORE};
74 75 76

enum df_ref_flags
  {
77 78 79
    /* This flag is set if this ref occurs inside of a conditional
       execution instruction.  */
    DF_REF_CONDITIONAL = 1 << 0,
80 81 82 83 84

    /* If this flag is set for an artificial use or def, that ref
       logically happens at the top of the block.  If it is not set
       for an artificial use or def, that ref logically happens at the
       bottom of the block.  This is never set for regular refs.  */
85
    DF_REF_AT_TOP = 1 << 1,
86

87 88 89
    /* This flag is set if the use is inside a REG_EQUAL or REG_EQUIV
       note.  */
    DF_REF_IN_NOTE = 1 << 2,
90

91 92 93 94 95 96 97 98
    /* This bit is true if this ref can make regs_ever_live true for
       this regno.  */
    DF_HARD_REG_LIVE = 1 << 3,


    /* This flag is set if this ref is a partial use or def of the
       associated register.  */
    DF_REF_PARTIAL = 1 << 4,
H.J. Lu committed
99

100 101 102 103 104
    /* Read-modify-write refs generate both a use and a def and
       these are marked with this flag to show that they are not
       independent.  */
    DF_REF_READ_WRITE = 1 << 5,

105 106 107 108 109
    /* This flag is set if this ref, generally a def, may clobber the
       referenced register.  This is generally only set for hard
       registers that cross a call site.  With better information
       about calls, some of these could be changed in the future to
       DF_REF_MUST_CLOBBER.  */
110
    DF_REF_MAY_CLOBBER = 1 << 6,
111 112 113

    /* This flag is set if this ref, generally a def, is a real
       clobber. This is not currently set for registers live across a
H.J. Lu committed
114
       call because that clobbering may or may not happen.
115 116 117 118 119 120

       Most of the uses of this are with sets that have a
       GET_CODE(..)==CLOBBER.  Note that this is set even if the
       clobber is to a subreg.  So in order to tell if the clobber
       wipes out the entire register, it is necessary to also check
       the DF_REF_PARTIAL flag.  */
121
    DF_REF_MUST_CLOBBER = 1 << 7,
122 123


124 125 126
    /* If the ref has one of the following two flags set, then the
       struct df_ref can be cast to struct df_ref_extract to access
       the width and offset fields.  */
H.J. Lu committed
127

128 129
    /* This flag is set if the ref contains a SIGN_EXTRACT.  */
    DF_REF_SIGN_EXTRACT = 1 << 8,
130

131 132
    /* This flag is set if the ref contains a ZERO_EXTRACT.  */
    DF_REF_ZERO_EXTRACT = 1 << 9,
133

134 135
    /* This flag is set if the ref contains a STRICT_LOW_PART.  */
    DF_REF_STRICT_LOW_PART = 1 << 10,
136

137 138 139 140 141 142
    /* This flag is set if the ref contains a SUBREG.  */
    DF_REF_SUBREG = 1 << 11,


    /* This bit is true if this ref is part of a multiword hardreg.  */
    DF_REF_MW_HARDREG = 1 << 12,
143 144 145

    /* This flag is set if this ref is a usage of the stack pointer by
       a function call.  */
146
    DF_REF_CALL_STACK_USAGE = 1 << 13,
147 148

    /* This flag is used for verification of existing refs. */
149 150 151 152 153
    DF_REF_REG_MARKER = 1 << 14,

    /* This flag is set if this ref is inside a pre/post modify.  */
    DF_REF_PRE_POST_MODIFY = 1 << 15

154 155
  };

156 157 158
/* The possible ordering of refs within the df_ref_info.  */
enum df_ref_order
  {
H.J. Lu committed
159
    /* There is not table.  */
160 161 162 163 164 165
    DF_REF_ORDER_NO_TABLE,

    /* There is a table of refs but it is not (or no longer) organized
       by one of the following methods.  */
    DF_REF_ORDER_UNORDERED,
    DF_REF_ORDER_UNORDERED_WITH_NOTES,
H.J. Lu committed
166

167 168 169 170 171 172 173 174 175 176
    /* Organize the table by reg order, all of the refs with regno 0
       followed by all of the refs with regno 1 ... .  Within all of
       the regs for a particular regno, the refs are unordered.  */
    DF_REF_ORDER_BY_REG,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_REG.  */
    DF_REF_ORDER_BY_REG_WITH_NOTES,

    /* Organize the refs in insn order.  The insns are ordered within a
177
       block, and the blocks are ordered by FOR_ALL_BB_FN.  */
178 179 180 181 182 183
    DF_REF_ORDER_BY_INSN,

    /* For uses, the refs within eq notes may be added for
       DF_REF_ORDER_BY_INSN.  */
    DF_REF_ORDER_BY_INSN_WITH_NOTES
  };
184

185
/* Function prototypes added to df_problem instance.  */
Jeff Law committed
186

187
/* Allocate the problem specific data.  */
188
typedef void (*df_alloc_function) (bitmap);
189

190 191 192 193 194 195
/* This function is called if the problem has global data that needs
   to be cleared when ever the set of blocks changes.  The bitmap
   contains the set of blocks that may require special attention.
   This call is only made if some of the blocks are going to change.
   If everything is to be deleted, the wholesale deletion mechanisms
   apply. */
196
typedef void (*df_reset_function) (bitmap);
197

198 199
/* Free the basic block info.  Called from the block reordering code
   to get rid of the blocks that have been squished down.   */
200
typedef void (*df_free_bb_function) (basic_block, void *);
201 202

/* Local compute function.  */
203
typedef void (*df_local_compute_function) (bitmap);
204 205

/* Init the solution specific data.  */
206
typedef void (*df_init_function) (bitmap);
207 208

/* Iterative dataflow function.  */
209
typedef void (*df_dataflow_function) (struct dataflow *, bitmap, int *, int);
210 211

/* Confluence operator for blocks with 0 out (or in) edges.  */
212
typedef void (*df_confluence_function_0) (basic_block);
213

214 215
/* Confluence operator for blocks with 1 or more out (or in) edges.
   Return true if BB input data has changed.  */
216
typedef bool (*df_confluence_function_n) (edge);
217

218 219
/* Transfer function for blocks. 
   Return true if BB output data has changed.  */
220
typedef bool (*df_transfer_function) (int);
221 222

/* Function to massage the information after the problem solving.  */
223
typedef void (*df_finalizer_function) (bitmap);
224 225

/* Function to free all of the problem specific datastructures.  */
226 227 228 229 230 231 232 233 234
typedef void (*df_free_function) (void);

/* Function to remove this problem from the stack of dataflow problems
   without effecting the other problems in the stack except for those
   that depend on this problem.  */
typedef void (*df_remove_problem_function) (void);

/* Function to dump basic block independent results to FILE.  */
typedef void (*df_dump_problem_function) (FILE *);
235

236 237
/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_dump_bb_problem_function) (basic_block, FILE *);
238

239
/* Function to dump before or after an insn to FILE.  */
240
typedef void (*df_dump_insn_problem_function) (const rtx_insn *, FILE *);
241

242 243 244 245 246
/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_start) (void);

/* Function to dump top or bottom of basic block results to FILE.  */
typedef void (*df_verify_solution_end) (void);
247

248 249 250 251 252 253
/* The static description of a dataflow problem to solve.  See above
   typedefs for doc for the function fields.  */

struct df_problem {
  /* The unique id of the problem.  This is used it index into
     df->defined_problems to make accessing the problem data easy.  */
H.J. Lu committed
254
  unsigned int id;
255 256
  enum df_flow_dir dir;			/* Dataflow direction.  */
  df_alloc_function alloc_fun;
257
  df_reset_function reset_fun;
258 259 260 261 262 263 264 265 266
  df_free_bb_function free_bb_fun;
  df_local_compute_function local_compute_fun;
  df_init_function init_fun;
  df_dataflow_function dataflow_fun;
  df_confluence_function_0 con_fun_0;
  df_confluence_function_n con_fun_n;
  df_transfer_function trans_fun;
  df_finalizer_function finalize_fun;
  df_free_function free_fun;
267 268 269 270
  df_remove_problem_function remove_problem_fun;
  df_dump_problem_function dump_start_fun;
  df_dump_bb_problem_function dump_top_fun;
  df_dump_bb_problem_function dump_bottom_fun;
271 272
  df_dump_insn_problem_function dump_insn_top_fun;
  df_dump_insn_problem_function dump_insn_bottom_fun;
273 274 275
  df_verify_solution_start verify_start_fun;
  df_verify_solution_end verify_end_fun;
  struct df_problem *dependent_problem;
276
  unsigned int block_info_elt_size;
277

278
  /* The timevar id associated with this pass.  */
279
  timevar_id_t tv_id;
280 281 282 283

  /* True if the df_set_blocks should null out the basic block info if
     this block drops out of df->blocks_to_analyze.  */
  bool free_blocks_on_set_blocks;
284 285 286 287 288
};


/* The specific instance of the problem to solve.  */
struct dataflow
Jeff Law committed
289
{
290 291 292 293
  struct df_problem *problem;           /* The problem to be solved.  */

  /* Array indexed by bb->index, that contains basic block problem and
     solution specific information.  */
294
  void *block_info;
295 296 297
  unsigned int block_info_size;

  /* The pool to allocate the block_info from. */
298
  object_allocator<df_link> *block_pool;
299

300 301 302 303 304 305
  /* The lr and live problems have their transfer functions recomputed
     only if necessary.  This is possible for them because, the
     problems are kept active for the entire backend and their
     transfer functions are indexed by the REGNO.  These are not
     defined for any other problem.  */
  bitmap out_of_date_transfer_functions;
306

307 308 309 310
  /* Other problem specific data that is not on a per basic block
     basis.  The structure is generally defined privately for the
     problem.  The exception being the scanning problem where it is
     fully public.  */
311 312 313 314
  void *problem_data;

  /* Local flags for some of the problems. */
  unsigned int local_flags;
H.J. Lu committed
315

316 317 318 319 320 321 322
  /* True if this problem of this instance has been initialized.  This
     is used by the dumpers to keep garbage out of the dumps if, for
     debugging a dump is produced before the first call to
     df_analyze after a new problem is added.  */
  bool computed;

  /* True if the something has changed which invalidates the dataflow
H.J. Lu committed
323
     solutions.  Note that this bit is always true for all problems except
324 325
     lr and live.  */
  bool solutions_dirty;
326 327 328 329 330

  /* If true, this pass is deleted by df_finish_pass.  This is never
     true for DF_SCAN and DF_LR.  It is true for DF_LIVE if optimize >
     1.  It is always true for the other problems.  */
  bool optional_p;
Jeff Law committed
331 332
};

333 334 335 336 337 338 339

/* The set of multiword hardregs used as operands to this
   instruction. These are factored into individual uses and defs but
   the aggregate is still needed to service the REG_DEAD and
   REG_UNUSED notes.  */
struct df_mw_hardreg
{
340
  df_mw_hardreg *next;		/* Next entry for this instruction.  */
H.J. Lu committed
341
  rtx mw_reg;                   /* The multiword hardreg.  */
342
  /* These two bitfields are intentionally oversized, in the hope that
343 344 345
     accesses to 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_type) type : 16;
				/* Used to see if the ref is read or write.  */
346
  int flags : 16;		/* Various df_ref_flags.  */
347 348 349
  unsigned int start_regno;     /* First word of the multi word subreg.  */
  unsigned int end_regno;       /* Last word of the multi word subreg.  */
  unsigned int mw_order;        /* Same as df_ref.ref_order.  */
350
};
H.J. Lu committed
351

352

353
/* Define a register reference structure.  One of these is allocated
354 355 356
    for every register reference (use or def).  Note some register
    references (e.g., post_inc, subreg) generate both a def and a use.  */
struct df_base_ref
Jeff Law committed
357
{
358 359 360
  /* These three bitfields are intentionally oversized, in the hope that
     accesses to 8 and 16-bit fields will usually be quicker.  */
  ENUM_BITFIELD(df_ref_class) cl : 8;
361

362 363
  ENUM_BITFIELD(df_ref_type) type : 8;
				/* Type of ref.  */
364
  int flags : 16;		/* Various df_ref_flags.  */
365
  unsigned int regno;		/* The register number referenced.  */
366
  rtx reg;			/* The register referenced.  */
367
  union df_ref_d *next_loc;	/* Next ref for same insn or bb.  */
368
  struct df_link *chain;	/* Head of def-use, use-def.  */
H.J. Lu committed
369
  /* Pointer to the insn info of the containing instruction.  FIXME!
370
     Currently this is NULL for artificial refs but this will be used
H.J. Lu committed
371
     when FUDs are added.  */
372 373
  struct df_insn_info *insn_info;
  /* For each regno, there are three chains of refs, one for the uses,
Joseph Myers committed
374
     the eq_uses and the defs.  These chains go through the refs
375 376 377
     themselves rather than using an external structure.  */
  union df_ref_d *next_reg;     /* Next ref with same regno and type.  */
  union df_ref_d *prev_reg;     /* Prev ref with same regno and type.  */
H.J. Lu committed
378
  /* Location in the ref table.  This is only valid after a call to
379 380 381 382 383
     df_maybe_reorganize_[use,def]_refs which is an expensive operation.  */
  int id;
  /* The index at which the operand was scanned in the insn.  This is
     used to totally order the refs in an insn.  */
  unsigned int ref_order;
384
};
385

Jeff Law committed
386

387
/* The three types of df_refs.  Note that the df_ref_extract is an
H.J. Lu committed
388
   extension of the df_regular_ref, not the df_base_ref.  */
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
struct df_artificial_ref
{
  struct df_base_ref base;

  /* Artificial refs do not have an insn, so to get the basic block,
     it must be explicitly here.  */
  basic_block bb;
};


struct df_regular_ref
{
  struct df_base_ref base;
  /* The loc is the address in the insn of the reg.  This is not
     defined for special registers, such as clobbers and stack
     pointers that are also associated with call insns and so those
     just use the base.  */
  rtx *loc;
Jeff Law committed
407 408
};

409 410 411 412 413 414 415 416 417 418 419 420 421
/* Union of the different kinds of defs/uses placeholders.  */
union df_ref_d
{
  struct df_base_ref base;
  struct df_regular_ref regular_ref;
  struct df_artificial_ref artificial_ref;
};
typedef union df_ref_d *df_ref;


/* One of these structures is allocated for every insn.  */
struct df_insn_info
{
422
  rtx_insn *insn;	        /* The insn this info comes from.  */
423 424
  df_ref defs;	                /* Head of insn-def chain.  */
  df_ref uses;	                /* Head of insn-use chain.  */
425
  /* Head of insn-use chain for uses in REG_EQUAL/EQUIV notes.  */
426 427
  df_ref eq_uses;
  struct df_mw_hardreg *mw_hardregs;
428 429 430
  /* The logical uid of the insn in the basic block.  This is valid
     after any call to df_analyze but may rot after insns are added,
     deleted or moved. */
H.J. Lu committed
431
  int luid;
432
};
H.J. Lu committed
433

434 435
/* These links are used for ref-ref chains.  Currently only DEF-USE and
   USE-DEF chains can be built by DF.  */
436
struct df_link
Jeff Law committed
437
{
438
  df_ref ref;
439
  struct df_link *next;
Jeff Law committed
440 441
};

442 443 444 445

enum df_chain_flags
{
  /* Flags that control the building of chains.  */
H.J. Lu committed
446
  DF_DU_CHAIN      =  1, /* Build DU chains.  */
447 448 449
  DF_UD_CHAIN      =  2  /* Build UD chains.  */
};

H.J. Lu committed
450
enum df_changeable_flags
451 452 453
{
  /* Scanning flags.  */
  /* Flag to control the running of dce as a side effect of building LR.  */
454 455 456
  DF_LR_RUN_DCE           = 1 << 0, /* Run DCE.  */
  DF_NO_HARD_REGS         = 1 << 1, /* Skip hard registers in RD and CHAIN Building.  */

457 458
  DF_EQ_NOTES             = 1 << 2, /* Build chains with uses present in EQUIV/EQUAL notes. */
  DF_NO_REGS_EVER_LIVE    = 1 << 3, /* Do not compute the regs_ever_live.  */
459 460 461 462

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return immediately.  This is used by passes that know how to update
  the scanning them selves.  */
463
  DF_NO_INSN_RESCAN       = 1 << 4,
464 465 466 467

  /* Cause df_insn_rescan df_notes_rescan and df_insn_delete, to
  return after marking the insn for later processing.  This allows all
  rescans to be batched.  */
468
  DF_DEFER_INSN_RESCAN    = 1 << 5,
469

470 471 472 473 474 475
  /* Compute the reaching defs problem as "live and reaching defs" (LR&RD).
     A DEF is reaching and live at insn I if DEF reaches I and REGNO(DEF)
     is in LR_IN of the basic block containing I.  */
  DF_RD_PRUNE_DEAD_DEFS   = 1 << 6,

  DF_VERIFY_SCHEDULED     = 1 << 7
476 477 478 479 480
};

/* Two of these structures are inline in df, one for the uses and one
   for the defs.  This structure is only contains the refs within the
   boundary of the df_set_blocks if that has been defined.  */
481
struct df_ref_info
Jeff Law committed
482
{
483
  df_ref *refs;                 /* Ref table, indexed by id.  */
484 485
  unsigned int *begin;          /* First ref_index for this pseudo.  */
  unsigned int *count;          /* Count of refs for this pseudo.  */
486
  unsigned int refs_size;       /* Size of currently allocated refs table.  */
487 488 489 490 491 492 493 494 495 496 497

  /* Table_size is the number of elements in the refs table.  This
     will also be the width of the bitvectors in the rd and ru
     problems.  Total_size is the number of refs.  These will be the
     same if the focus has not been reduced by df_set_blocks.  If the
     focus has been reduced, table_size will be smaller since it only
     contains the refs in the set blocks.  */
  unsigned int table_size;
  unsigned int total_size;

  enum df_ref_order ref_order;
Jeff Law committed
498 499
};

500 501 502 503 504
/* Three of these structures are allocated for every pseudo reg. One
   for the uses, one for the eq_uses and one for the defs.  */
struct df_reg_info
{
  /* Head of chain for refs of that type and regno.  */
505
  df_ref reg_chain;
506 507 508 509 510
  /* Number of refs in the chain.  */
  unsigned int n_refs;
};


511 512 513 514 515
/*----------------------------------------------------------------------------
   Problem data for the scanning dataflow problem.  Unlike the other
   dataflow problems, the problem data for scanning is fully exposed and
   used by owners of the problem.
----------------------------------------------------------------------------*/
Jeff Law committed
516

517
struct df_d
Jeff Law committed
518
{
519 520 521 522 523 524 525 526 527

  /* The set of problems to be solved is stored in two arrays.  In
     PROBLEMS_IN_ORDER, the problems are stored in the order that they
     are solved.  This is an internally dense array that may have
     nulls at the end of it.  In PROBLEMS_BY_INDEX, the problem is
     stored by the value in df_problem.id.  These are used to access
     the problem local data without having to search the first
     array.  */

H.J. Lu committed
528 529
  struct dataflow *problems_in_order[DF_LAST_PROBLEM_PLUS1];
  struct dataflow *problems_by_index[DF_LAST_PROBLEM_PLUS1];
530

531 532 533
  /* If not NULL, this subset of blocks of the program to be
     considered for analysis.  At certain times, this will contain all
     the blocks in the function so it cannot be used as an indicator
H.J. Lu committed
534
     of if we are analyzing a subset.  See analyze_subset.  */
535 536 537 538 539 540 541
  bitmap blocks_to_analyze;

  /* The following information is really the problem data for the
     scanning instance but it is used too often by the other problems
     to keep getting it from there.  */
  struct df_ref_info def_info;   /* Def info.  */
  struct df_ref_info use_info;   /* Use info.  */
542 543 544 545 546 547 548 549 550 551

  /* The following three arrays are allocated in parallel.   They contain
     the sets of refs of each type for each reg.  */
  struct df_reg_info **def_regs;       /* Def reg info.  */
  struct df_reg_info **use_regs;       /* Eq_use reg info.  */
  struct df_reg_info **eq_use_regs;    /* Eq_use info.  */
  unsigned int regs_size;       /* Size of currently allocated regs table.  */
  unsigned int regs_inited;     /* Number of regs with reg_infos allocated.  */


552 553
  struct df_insn_info **insns;   /* Insn table, indexed by insn UID.  */
  unsigned int insns_size;       /* Size of insn table.  */
554 555 556

  int num_problems_defined;

557
  bitmap_head hardware_regs_used;     /* The set of hardware registers used.  */
558 559
  /* The set of hard regs that are in the artificial uses at the end
     of a regular basic block.  */
560
  bitmap_head regular_block_artificial_uses;
561 562
  /* The set of hard regs that are in the artificial uses at the end
     of a basic block that has an EH pred.  */
563
  bitmap_head eh_block_artificial_uses;
564 565
  /* The set of hardware registers live on entry to the function.  */
  bitmap entry_block_defs;
566
  bitmap exit_block_uses;        /* The set of hardware registers used in exit block.  */
567 568 569

  /* Insns to delete, rescan or reprocess the notes at next
     df_rescan_all or df_process_deferred_rescans. */
570 571 572
  bitmap_head insns_to_delete;
  bitmap_head insns_to_rescan;
  bitmap_head insns_to_notes_rescan;
H.J. Lu committed
573
  int *postorder;                /* The current set of basic blocks
574
                                    in reverse postorder.  */
H.J. Lu committed
575
  int *postorder_inverted;       /* The current set of basic blocks
576 577
                                    in reverse postorder of inverted CFG.  */
  int n_blocks;                  /* The number of blocks in reverse postorder.  */
H.J. Lu committed
578
  int n_blocks_inverted;         /* The number of blocks
579 580 581 582 583 584 585
                                    in reverse postorder of inverted CFG.  */

  /* An array [FIRST_PSEUDO_REGISTER], indexed by regno, of the number
     of refs that qualify as being real hard regs uses.  Artificial
     uses and defs as well as refs in eq notes are ignored.  If the
     ref is a def, it cannot be a MAY_CLOBBER def.  If the ref is a
     use, it cannot be the emim_reg_set or be the frame or arg pointer
586
     register.  Uses in debug insns are ignored.
587 588 589 590 591 592 593 594 595 596

     IT IS NOT ACCEPTABLE TO MANUALLY CHANGE THIS ARRAY.  This array
     always reflects the actual number of refs in the insn stream that
     satisfy the above criteria.  */
  unsigned int *hard_regs_live_count;

  /* This counter provides a way to totally order refs without using
     addresses.  It is incremented whenever a ref is created.  */
  unsigned int ref_order;

597 598 599
  /* Problem specific control information.  This is a combination of
     enum df_changeable_flags values.  */
  int changeable_flags : 8;
600 601 602 603 604 605 606 607

  /* If this is true, then only a subset of the blocks of the program
     is considered to compute the solutions of dataflow problems.  */
  bool analyze_subset;

  /* True if someone added or deleted something from regs_ever_live so
     that the entry and exit blocks need be reprocessed.  */
  bool redo_entry_and_exit;
Jeff Law committed
608 609
};

610 611 612 613 614 615
#define DF_SCAN_BB_INFO(BB) (df_scan_get_bb_info ((BB)->index))
#define DF_RD_BB_INFO(BB) (df_rd_get_bb_info ((BB)->index))
#define DF_LR_BB_INFO(BB) (df_lr_get_bb_info ((BB)->index))
#define DF_LIVE_BB_INFO(BB) (df_live_get_bb_info ((BB)->index))
#define DF_WORD_LR_BB_INFO(BB) (df_word_lr_get_bb_info ((BB)->index))
#define DF_MD_BB_INFO(BB) (df_md_get_bb_info ((BB)->index))
616
#define DF_MIR_BB_INFO(BB) (df_mir_get_bb_info ((BB)->index))
Jeff Law committed
617

618
/* Most transformations that wish to use live register analysis will
619
   use these macros.  This info is the and of the lr and live sets.  */
620 621
#define DF_LIVE_IN(BB) (&DF_LIVE_BB_INFO (BB)->in)
#define DF_LIVE_OUT(BB) (&DF_LIVE_BB_INFO (BB)->out)
Jeff Law committed
622

623 624 625
#define DF_MIR_IN(BB) (&DF_MIR_BB_INFO (BB)->in)
#define DF_MIR_OUT(BB) (&DF_MIR_BB_INFO (BB)->out)

626 627 628
/* These macros are used by passes that are not tolerant of
   uninitialized variables.  This intolerance should eventually
   be fixed.  */
629 630
#define DF_LR_IN(BB) (&DF_LR_BB_INFO (BB)->in)
#define DF_LR_OUT(BB) (&DF_LR_BB_INFO (BB)->out)
Jeff Law committed
631

632 633 634
/* These macros are used by passes that are not tolerant of
   uninitialized variables.  This intolerance should eventually
   be fixed.  */
635 636
#define DF_WORD_LR_IN(BB) (&DF_WORD_LR_BB_INFO (BB)->in)
#define DF_WORD_LR_OUT(BB) (&DF_WORD_LR_BB_INFO (BB)->out)
637

Jeff Law committed
638
/* Macros to access the elements within the ref structure.  */
639

640

641 642 643 644 645 646
#define DF_REF_REAL_REG(REF) (GET_CODE ((REF)->base.reg) == SUBREG \
				? SUBREG_REG ((REF)->base.reg) : ((REF)->base.reg))
#define DF_REF_REGNO(REF) ((REF)->base.regno)
#define DF_REF_REAL_LOC(REF) (GET_CODE (*((REF)->regular_ref.loc)) == SUBREG \
                               ? &SUBREG_REG (*((REF)->regular_ref.loc)) : ((REF)->regular_ref.loc))
#define DF_REF_REG(REF) ((REF)->base.reg)
647
#define DF_REF_LOC(REF) (DF_REF_CLASS (REF) == DF_REF_REGULAR ? \
648
			 (REF)->regular_ref.loc : NULL)
649 650 651
#define DF_REF_BB(REF) (DF_REF_IS_ARTIFICIAL (REF) \
			? (REF)->artificial_ref.bb \
			: BLOCK_FOR_INSN (DF_REF_INSN (REF)))
652
#define DF_REF_BBNO(REF) (DF_REF_BB (REF)->index)
653
#define DF_REF_INSN_INFO(REF) ((REF)->base.insn_info)
654
#define DF_REF_INSN(REF) ((REF)->base.insn_info->insn)
655
#define DF_REF_INSN_UID(REF) (INSN_UID (DF_REF_INSN(REF)))
656 657 658 659 660
#define DF_REF_CLASS(REF) ((REF)->base.cl)
#define DF_REF_TYPE(REF) ((REF)->base.type)
#define DF_REF_CHAIN(REF) ((REF)->base.chain)
#define DF_REF_ID(REF) ((REF)->base.id)
#define DF_REF_FLAGS(REF) ((REF)->base.flags)
661 662 663
#define DF_REF_FLAGS_IS_SET(REF, v) ((DF_REF_FLAGS (REF) & (v)) != 0)
#define DF_REF_FLAGS_SET(REF, v) (DF_REF_FLAGS (REF) |= (v))
#define DF_REF_FLAGS_CLEAR(REF, v) (DF_REF_FLAGS (REF) &= ~(v))
664 665 666 667
#define DF_REF_ORDER(REF) ((REF)->base.ref_order)
/* If DF_REF_IS_ARTIFICIAL () is true, this is not a real
   definition/use, but an artificial one created to model always live
   registers, eh uses, etc.  */
668
#define DF_REF_IS_ARTIFICIAL(REF) (DF_REF_CLASS (REF) == DF_REF_ARTIFICIAL)
669 670 671
#define DF_REF_REG_MARK(REF) (DF_REF_FLAGS_SET ((REF),DF_REF_REG_MARKER))
#define DF_REF_REG_UNMARK(REF) (DF_REF_FLAGS_CLEAR ((REF),DF_REF_REG_MARKER))
#define DF_REF_IS_REG_MARKED(REF) (DF_REF_FLAGS_IS_SET ((REF),DF_REF_REG_MARKER))
672
#define DF_REF_NEXT_LOC(REF) ((REF)->base.next_loc)
673 674
#define DF_REF_NEXT_REG(REF) ((REF)->base.next_reg)
#define DF_REF_PREV_REG(REF) ((REF)->base.prev_reg)
H.J. Lu committed
675 676
/* The following two macros may only be applied if one of
   DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT is true. */
677 678 679
#define DF_REF_EXTRACT_WIDTH(REF) ((REF)->extract_ref.width)
#define DF_REF_EXTRACT_OFFSET(REF) ((REF)->extract_ref.offset)
#define DF_REF_EXTRACT_MODE(REF) ((REF)->extract_ref.mode)
Jeff Law committed
680

681
/* Macros to determine the reference type.  */
Jeff Law committed
682
#define DF_REF_REG_DEF_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_DEF)
683
#define DF_REF_REG_USE_P(REF) (!DF_REF_REG_DEF_P (REF))
Jeff Law committed
684 685 686
#define DF_REF_REG_MEM_STORE_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_STORE)
#define DF_REF_REG_MEM_LOAD_P(REF) (DF_REF_TYPE (REF) == DF_REF_REG_MEM_LOAD)
#define DF_REF_REG_MEM_P(REF) (DF_REF_REG_MEM_STORE_P (REF) \
687
                               || DF_REF_REG_MEM_LOAD_P (REF))
Jeff Law committed
688

689
#define DF_MWS_REG_DEF_P(MREF) (DF_MWS_TYPE (MREF) == DF_REF_REG_DEF)
690
#define DF_MWS_REG_USE_P(MREF) (!DF_MWS_REG_DEF_P (MREF))
691
#define DF_MWS_NEXT(MREF) ((MREF)->next)
692 693
#define DF_MWS_TYPE(MREF) ((MREF)->type)

694 695 696
/* Macros to get the refs out of def_info or use_info refs table.  If
   the focus of the dataflow has been set to some subset of blocks
   with df_set_blocks, these macros will only find the uses and defs
H.J. Lu committed
697
   in that subset of blocks.
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

   These macros should be used with care.  The def macros are only
   usable after a call to df_maybe_reorganize_def_refs and the use
   macros are only usable after a call to
   df_maybe_reorganize_use_refs.  HOWEVER, BUILDING AND USING THESE
   ARRAYS ARE A CACHE LOCALITY KILLER.  */

#define DF_DEFS_TABLE_SIZE() (df->def_info.table_size)
#define DF_DEFS_GET(ID) (df->def_info.refs[(ID)])
#define DF_DEFS_SET(ID,VAL) (df->def_info.refs[(ID)]=(VAL))
#define DF_DEFS_COUNT(ID) (df->def_info.count[(ID)])
#define DF_DEFS_BEGIN(ID) (df->def_info.begin[(ID)])
#define DF_USES_TABLE_SIZE() (df->use_info.table_size)
#define DF_USES_GET(ID) (df->use_info.refs[(ID)])
#define DF_USES_SET(ID,VAL) (df->use_info.refs[(ID)]=(VAL))
#define DF_USES_COUNT(ID) (df->use_info.count[(ID)])
#define DF_USES_BEGIN(ID) (df->use_info.begin[(ID)])
715 716 717

/* Macros to access the register information from scan dataflow record.  */

718 719 720 721 722 723 724 725 726 727
#define DF_REG_SIZE(DF) (df->regs_inited)
#define DF_REG_DEF_GET(REG) (df->def_regs[(REG)])
#define DF_REG_DEF_CHAIN(REG) (df->def_regs[(REG)]->reg_chain)
#define DF_REG_DEF_COUNT(REG) (df->def_regs[(REG)]->n_refs)
#define DF_REG_USE_GET(REG) (df->use_regs[(REG)])
#define DF_REG_USE_CHAIN(REG) (df->use_regs[(REG)]->reg_chain)
#define DF_REG_USE_COUNT(REG) (df->use_regs[(REG)]->n_refs)
#define DF_REG_EQ_USE_GET(REG) (df->eq_use_regs[(REG)])
#define DF_REG_EQ_USE_CHAIN(REG) (df->eq_use_regs[(REG)]->reg_chain)
#define DF_REG_EQ_USE_COUNT(REG) (df->eq_use_regs[(REG)]->n_refs)
Jeff Law committed
728 729 730

/* Macros to access the elements within the reg_info structure table.  */

731
#define DF_REGNO_FIRST_DEF(REGNUM) \
732
(DF_REG_DEF_GET(REGNUM) ? DF_REG_DEF_GET (REGNUM) : 0)
733
#define DF_REGNO_LAST_USE(REGNUM) \
734
(DF_REG_USE_GET(REGNUM) ? DF_REG_USE_GET (REGNUM) : 0)
Jeff Law committed
735 736 737

/* Macros to access the elements within the insn_info structure table.  */

738
#define DF_INSN_SIZE() ((df)->insns_size)
739
#define DF_INSN_INFO_GET(INSN) (df->insns[(INSN_UID (INSN))])
740 741 742 743 744
#define DF_INSN_INFO_SET(INSN,VAL) (df->insns[(INSN_UID (INSN))]=(VAL))
#define DF_INSN_INFO_LUID(II) ((II)->luid)
#define DF_INSN_INFO_DEFS(II) ((II)->defs)
#define DF_INSN_INFO_USES(II) ((II)->uses)
#define DF_INSN_INFO_EQ_USES(II) ((II)->eq_uses)
745
#define DF_INSN_INFO_MWS(II) ((II)->mw_hardregs)
746

747 748 749 750
#define DF_INSN_LUID(INSN) (DF_INSN_INFO_LUID (DF_INSN_INFO_GET (INSN)))
#define DF_INSN_DEFS(INSN) (DF_INSN_INFO_DEFS (DF_INSN_INFO_GET (INSN)))
#define DF_INSN_USES(INSN) (DF_INSN_INFO_USES (DF_INSN_INFO_GET (INSN)))
#define DF_INSN_EQ_USES(INSN) (DF_INSN_INFO_EQ_USES (DF_INSN_INFO_GET (INSN)))
751 752 753

#define DF_INSN_UID_GET(UID) (df->insns[(UID)])
#define DF_INSN_UID_SET(UID,VAL) (df->insns[(UID)]=(VAL))
754
#define DF_INSN_UID_SAFE_GET(UID) (((unsigned)(UID) < DF_INSN_SIZE ())	\
755 756
                                     ? DF_INSN_UID_GET (UID) \
                                     : NULL)
757 758 759 760 761
#define DF_INSN_UID_LUID(INSN) (DF_INSN_UID_GET (INSN)->luid)
#define DF_INSN_UID_DEFS(INSN) (DF_INSN_UID_GET (INSN)->defs)
#define DF_INSN_UID_USES(INSN) (DF_INSN_UID_GET (INSN)->uses)
#define DF_INSN_UID_EQ_USES(INSN) (DF_INSN_UID_GET (INSN)->eq_uses)
#define DF_INSN_UID_MWS(INSN) (DF_INSN_UID_GET (INSN)->mw_hardregs)
762

763
#define FOR_EACH_INSN_INFO_DEF(ITER, INSN) \
764
  for (ITER = DF_INSN_INFO_DEFS (INSN); ITER; ITER = DF_REF_NEXT_LOC (ITER))
765 766

#define FOR_EACH_INSN_INFO_USE(ITER, INSN) \
767
  for (ITER = DF_INSN_INFO_USES (INSN); ITER; ITER = DF_REF_NEXT_LOC (ITER))
768 769

#define FOR_EACH_INSN_INFO_EQ_USE(ITER, INSN) \
770
  for (ITER = DF_INSN_INFO_EQ_USES (INSN); ITER; ITER = DF_REF_NEXT_LOC (ITER))
771

772
#define FOR_EACH_INSN_INFO_MW(ITER, INSN) \
773
  for (ITER = DF_INSN_INFO_MWS (INSN); ITER; ITER = DF_MWS_NEXT (ITER))
774

775 776 777 778 779 780 781 782 783
#define FOR_EACH_INSN_DEF(ITER, INSN) \
  FOR_EACH_INSN_INFO_DEF(ITER, DF_INSN_INFO_GET (INSN))

#define FOR_EACH_INSN_USE(ITER, INSN) \
  FOR_EACH_INSN_INFO_USE(ITER, DF_INSN_INFO_GET (INSN))

#define FOR_EACH_INSN_EQ_USE(ITER, INSN) \
  FOR_EACH_INSN_INFO_EQ_USE(ITER, DF_INSN_INFO_GET (INSN))

784
#define FOR_EACH_ARTIFICIAL_USE(ITER, BB_INDEX) \
785 786
  for (ITER = df_get_artificial_uses (BB_INDEX); ITER; \
       ITER = DF_REF_NEXT_LOC (ITER))
787 788

#define FOR_EACH_ARTIFICIAL_DEF(ITER, BB_INDEX) \
789 790
  for (ITER = df_get_artificial_defs (BB_INDEX); ITER; \
       ITER = DF_REF_NEXT_LOC (ITER))
791

792 793 794 795 796
/* An obstack for bitmap not related to specific dataflow problems.
   This obstack should e.g. be used for bitmaps with a short life time
   such as temporary bitmaps.  This obstack is declared in df-core.c.  */

extern bitmap_obstack df_bitmap_obstack;
Jeff Law committed
797 798


799 800 801
/* One of these structures is allocated for every basic block.  */
struct df_scan_bb_info
{
802 803 804 805 806 807 808 809 810
  /* The entry block has many artificial defs and these are at the
     bottom of the block.

     Blocks that are targets of exception edges may have some
     artificial defs.  These are logically located at the top of the
     block.

     Blocks that are the targets of non-local goto's have the hard
     frame pointer defined at the top of the block.  */
811
  df_ref artificial_defs;
Jeff Law committed
812

813 814 815 816
  /* Blocks that are targets of exception edges may have some
     artificial uses.  These are logically at the top of the block.

     Most blocks have artificial uses at the bottom of the block.  */
817
  df_ref artificial_uses;
818
};
Jeff Law committed
819 820


821
/* Reaching definitions.  All bitmaps are indexed by the id field of
822 823 824
   the ref except sparse_kill which is indexed by regno.  For the
   LR&RD problem, the kill set is not complete: It does not contain
   DEFs killed because the set register has died in the LR set.  */
H.J. Lu committed
825
struct df_rd_bb_info
826
{
827
  /* Local sets to describe the basic blocks.   */
828 829 830
  bitmap_head kill;
  bitmap_head sparse_kill;
  bitmap_head gen;   /* The set of defs generated in this block.  */
831

832
  /* The results of the dataflow problem.  */
833 834
  bitmap_head in;    /* At the top of the block.  */
  bitmap_head out;   /* At the bottom of the block.  */
835
};
Ayal Zaks committed
836 837


838 839 840
/* Multiple reaching definitions.  All bitmaps are referenced by the
   register number.  */

H.J. Lu committed
841
struct df_md_bb_info
842 843
{
  /* Local sets to describe the basic blocks.  */
844 845 846
  bitmap_head gen;    /* Partial/conditional definitions live at BB out.  */
  bitmap_head kill;   /* Other definitions that are live at BB out.  */
  bitmap_head init;   /* Definitions coming from dominance frontier edges. */
847 848

  /* The results of the dataflow problem.  */
849 850
  bitmap_head in;    /* Just before the block itself. */
  bitmap_head out;   /* At the bottom of the block.  */
851 852 853
};


854 855
/* Live registers, a backwards dataflow problem.  All bitmaps are
   referenced by the register number.  */
856

H.J. Lu committed
857
struct df_lr_bb_info
858
{
859
  /* Local sets to describe the basic blocks.  */
860 861 862
  bitmap_head def;   /* The set of registers set in this block
                        - except artificial defs at the top.  */
  bitmap_head use;   /* The set of registers used in this block.  */
863 864

  /* The results of the dataflow problem.  */
865 866
  bitmap_head in;    /* Just before the block itself. */
  bitmap_head out;   /* At the bottom of the block.  */
867
};
Ayal Zaks committed
868 869


870 871 872 873
/* Uninitialized registers.  All bitmaps are referenced by the
   register number.  Anded results of the forwards and backward live
   info.  Note that the forwards live information is not available
   separately.  */
H.J. Lu committed
874
struct df_live_bb_info
875
{
876
  /* Local sets to describe the basic blocks.  */
877 878 879
  bitmap_head kill;  /* The set of registers unset in this block.  Calls,
		        for instance, unset registers.  */
  bitmap_head gen;   /* The set of registers set in this block.  */
880 881

  /* The results of the dataflow problem.  */
882 883
  bitmap_head in;    /* At the top of the block.  */
  bitmap_head out;   /* At the bottom of the block.  */
884
};
885

886

887
/* Live registers, a backwards dataflow problem.  These bitmaps are
888 889 890
   indexed by 2 * regno for each pseudo and have two entries for each
   pseudo.  Only pseudos that have a size of 2 * UNITS_PER_WORD are
   meaningfully tracked.  */
891

892
struct df_word_lr_bb_info
893 894
{
  /* Local sets to describe the basic blocks.  */
895 896 897
  bitmap_head def;   /* The set of registers set in this block
                        - except artificial defs at the top.  */
  bitmap_head use;   /* The set of registers used in this block.  */
898 899

  /* The results of the dataflow problem.  */
900 901
  bitmap_head in;    /* Just before the block itself. */
  bitmap_head out;   /* At the bottom of the block.  */
902 903
};

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/* Must-initialized registers.  All bitmaps are referenced by the
   register number.  */
struct df_mir_bb_info
{
  /* Local sets to describe the basic blocks.  */
  bitmap_head kill;  /* The set of registers unset in this block.  Calls,
		        for instance, unset registers.  */
  bitmap_head gen;   /* The set of registers set in this block, excluding the
			ones killed later on in this block.  */

  /* The results of the dataflow problem.  */
  bitmap_head in;    /* At the top of the block.  */
  bitmap_head out;   /* At the bottom of the block.  */
};

919

920 921
/* This is used for debugging and for the dumpers to find the latest
   instance so that the df info can be added to the dumps.  This
H.J. Lu committed
922
   should not be used by regular code.  */
923
extern struct df_d *df;
924 925 926 927 928
#define df_scan    (df->problems_by_index[DF_SCAN])
#define df_rd      (df->problems_by_index[DF_RD])
#define df_lr      (df->problems_by_index[DF_LR])
#define df_live    (df->problems_by_index[DF_LIVE])
#define df_chain   (df->problems_by_index[DF_CHAIN])
929
#define df_word_lr (df->problems_by_index[DF_WORD_LR])
930
#define df_note    (df->problems_by_index[DF_NOTE])
931
#define df_md      (df->problems_by_index[DF_MD])
932
#define df_mir     (df->problems_by_index[DF_MIR])
933

934
/* This symbol turns on checking that each modification of the cfg has
935 936 937 938 939 940 941 942 943 944
  been identified to the appropriate df routines.  It is not part of
  verification per se because the check that the final solution has
  not changed covers this.  However, if the solution is not being
  properly recomputed because the cfg is being modified, adding in
  calls to df_check_cfg_clean can be used to find the source of that
  kind of problem.  */
#if 0
#define DF_DEBUG_CFG
#endif

945 946 947

/* Functions defined in df-core.c.  */

948
extern void df_add_problem (struct df_problem *);
949 950
extern int df_set_flags (int);
extern int df_clear_flags (int);
951 952
extern void df_set_blocks (bitmap);
extern void df_remove_problem (struct dataflow *);
953
extern void df_finish_pass (bool);
954
extern void df_analyze_problem (struct dataflow *, bitmap, int *, int);
955 956
extern void df_analyze ();
extern void df_analyze_loop (struct loop *);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
extern int df_get_n_blocks (enum df_flow_dir);
extern int *df_get_postorder (enum df_flow_dir);
extern void df_simple_dataflow (enum df_flow_dir, df_init_function,
				df_confluence_function_0, df_confluence_function_n,
				df_transfer_function, bitmap, int *, int);
extern void df_mark_solutions_dirty (void);
extern bool df_get_bb_dirty (basic_block);
extern void df_set_bb_dirty (basic_block);
extern void df_compact_blocks (void);
extern void df_bb_replace (int, basic_block);
extern void df_bb_delete (int);
extern void df_verify (void);
#ifdef DF_DEBUG_CFG
extern void df_check_cfg_clean (void);
#endif
972 973
extern df_ref df_bb_regno_first_def_find (basic_block, unsigned int);
extern df_ref df_bb_regno_last_def_find (basic_block, unsigned int);
974 975 976 977
extern df_ref df_find_def (rtx_insn *, rtx);
extern bool df_reg_defined (rtx_insn *, rtx);
extern df_ref df_find_use (rtx_insn *, rtx);
extern bool df_reg_used (rtx_insn *, rtx);
978 979
extern void df_worklist_dataflow (struct dataflow *,bitmap, int *, int);
extern void df_print_regset (FILE *file, bitmap r);
980
extern void df_print_word_regset (FILE *file, bitmap r);
981
extern void df_dump (FILE *);
982
extern void df_dump_region (FILE *);
983 984 985
extern void df_dump_start (FILE *);
extern void df_dump_top (basic_block, FILE *);
extern void df_dump_bottom (basic_block, FILE *);
986 987
extern void df_dump_insn_top (const rtx_insn *, FILE *);
extern void df_dump_insn_bottom (const rtx_insn *, FILE *);
988
extern void df_refs_chain_dump (df_ref, bool, FILE *);
989
extern void df_regs_chain_dump (df_ref,  FILE *);
990 991
extern void df_insn_debug (rtx_insn *, bool, FILE *);
extern void df_insn_debug_regno (rtx_insn *, FILE *);
992
extern void df_regno_debug (unsigned int, FILE *);
993
extern void df_ref_debug (df_ref, FILE *);
994
extern void debug_df_insn (rtx_insn *);
995 996 997 998
extern void debug_df_regno (unsigned int);
extern void debug_df_reg (rtx);
extern void debug_df_defno (unsigned int);
extern void debug_df_useno (unsigned int);
999
extern void debug_df_ref (df_ref);
1000
extern void debug_df_chain (struct df_link *);
1001 1002 1003

/* Functions defined in df-problems.c. */

1004 1005 1006
extern struct df_link *df_chain_create (df_ref, df_ref);
extern void df_chain_unlink (df_ref);
extern void df_chain_copy (df_ref, struct df_link *);
1007
extern void df_grow_bb_info (struct dataflow *);
1008
extern void df_chain_dump (struct df_link *, FILE *);
1009
extern void df_print_bb_index (basic_block bb, FILE *file);
1010
extern void df_rd_add_problem (void);
1011
extern void df_rd_simulate_artificial_defs_at_top (basic_block, bitmap);
1012
extern void df_rd_simulate_one_insn (basic_block, rtx_insn *, bitmap);
1013 1014 1015 1016
extern void df_lr_add_problem (void);
extern void df_lr_verify_transfer_functions (void);
extern void df_live_verify_transfer_functions (void);
extern void df_live_add_problem (void);
1017
extern void df_live_set_all_dirty (void);
1018
extern void df_chain_add_problem (unsigned int);
1019 1020
extern void df_word_lr_add_problem (void);
extern bool df_word_lr_mark_ref (df_ref, bool, bitmap);
1021 1022
extern bool df_word_lr_simulate_defs (rtx_insn *, bitmap);
extern void df_word_lr_simulate_uses (rtx_insn *, bitmap);
1023 1024
extern void df_word_lr_simulate_artificial_refs_at_top (basic_block, bitmap);
extern void df_word_lr_simulate_artificial_refs_at_end (basic_block, bitmap);
1025
extern void df_note_add_problem (void);
1026 1027
extern void df_md_add_problem (void);
extern void df_md_simulate_artificial_defs_at_top (basic_block, bitmap);
1028
extern void df_md_simulate_one_insn (basic_block, rtx_insn *, bitmap);
1029 1030
extern void df_mir_add_problem (void);
extern void df_mir_simulate_one_insn (basic_block, rtx_insn *, bitmap, bitmap);
1031 1032 1033 1034
extern void df_simulate_find_noclobber_defs (rtx_insn *, bitmap);
extern void df_simulate_find_defs (rtx_insn *, bitmap);
extern void df_simulate_defs (rtx_insn *, bitmap);
extern void df_simulate_uses (rtx_insn *, bitmap);
1035
extern void df_simulate_initialize_backwards (basic_block, bitmap);
1036
extern void df_simulate_one_insn_backwards (basic_block, rtx_insn *, bitmap);
1037 1038
extern void df_simulate_finalize_backwards (basic_block, bitmap);
extern void df_simulate_initialize_forwards (basic_block, bitmap);
1039
extern void df_simulate_one_insn_forwards (basic_block, rtx_insn *, bitmap);
1040
extern void simulate_backwards_to_point (basic_block, regset, rtx);
1041 1042 1043 1044
extern bool can_move_insns_across (rtx_insn *, rtx_insn *,
				   rtx_insn *, rtx_insn *,
				   basic_block, regset,
				   regset, rtx_insn **);
1045 1046
/* Functions defined in df-scan.c.  */

1047 1048 1049 1050 1051
extern void df_scan_alloc (bitmap);
extern void df_scan_add_problem (void);
extern void df_grow_reg_info (void);
extern void df_grow_insn_info (void);
extern void df_scan_blocks (void);
1052 1053 1054
extern void df_uses_create (rtx *, rtx_insn *, int);
extern struct df_insn_info * df_insn_create_insn_record (rtx_insn *);
extern void df_insn_delete (rtx_insn *);
1055
extern void df_bb_refs_record (int, bool);
1056 1057
extern bool df_insn_rescan (rtx_insn *);
extern bool df_insn_rescan_debug_internal (rtx_insn *);
1058 1059 1060
extern void df_insn_rescan_all (void);
extern void df_process_deferred_rescans (void);
extern void df_recompute_luids (basic_block);
1061
extern void df_insn_change_bb (rtx_insn *, basic_block);
1062 1063
extern void df_maybe_reorganize_use_refs (enum df_ref_order);
extern void df_maybe_reorganize_def_refs (enum df_ref_order);
1064
extern void df_ref_change_reg_with_loc (rtx, unsigned int);
1065
extern void df_notes_rescan (rtx_insn *);
1066
extern void df_hard_reg_init (void);
1067 1068 1069 1070 1071 1072 1073 1074
extern void df_update_entry_block_defs (void);
extern void df_update_exit_block_uses (void);
extern void df_update_entry_exit_and_calls (void);
extern bool df_hard_reg_used_p (unsigned int);
extern unsigned int df_hard_reg_used_count (unsigned int);
extern bool df_regs_ever_live_p (unsigned int);
extern void df_set_regs_ever_live (unsigned int, bool);
extern void df_compute_regs_ever_live (bool);
1075
extern bool df_read_modify_subreg_p (rtx);
1076 1077
extern void df_scan_verify (void);

1078 1079 1080 1081

/*----------------------------------------------------------------------------
   Public functions access functions for the dataflow problems.
----------------------------------------------------------------------------*/
1082 1083 1084 1085 1086

static inline struct df_scan_bb_info *
df_scan_get_bb_info (unsigned int index)
{
  if (index < df_scan->block_info_size)
1087
    return &((struct df_scan_bb_info *) df_scan->block_info)[index];
1088 1089 1090 1091 1092 1093 1094 1095
  else
    return NULL;
}

static inline struct df_rd_bb_info *
df_rd_get_bb_info (unsigned int index)
{
  if (index < df_rd->block_info_size)
1096
    return &((struct df_rd_bb_info *) df_rd->block_info)[index];
1097 1098 1099 1100 1101 1102 1103 1104
  else
    return NULL;
}

static inline struct df_lr_bb_info *
df_lr_get_bb_info (unsigned int index)
{
  if (index < df_lr->block_info_size)
1105
    return &((struct df_lr_bb_info *) df_lr->block_info)[index];
1106 1107 1108 1109
  else
    return NULL;
}

1110 1111 1112 1113
static inline struct df_md_bb_info *
df_md_get_bb_info (unsigned int index)
{
  if (index < df_md->block_info_size)
1114
    return &((struct df_md_bb_info *) df_md->block_info)[index];
1115 1116 1117 1118
  else
    return NULL;
}

1119 1120 1121 1122
static inline struct df_live_bb_info *
df_live_get_bb_info (unsigned int index)
{
  if (index < df_live->block_info_size)
1123
    return &((struct df_live_bb_info *) df_live->block_info)[index];
1124 1125 1126 1127
  else
    return NULL;
}

1128 1129
static inline struct df_word_lr_bb_info *
df_word_lr_get_bb_info (unsigned int index)
1130
{
1131 1132
  if (index < df_word_lr->block_info_size)
    return &((struct df_word_lr_bb_info *) df_word_lr->block_info)[index];
1133 1134 1135 1136
  else
    return NULL;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145
static inline struct df_mir_bb_info *
df_mir_get_bb_info (unsigned int index)
{
  if (index < df_mir->block_info_size)
    return &((struct df_mir_bb_info *) df_mir->block_info)[index];
  else
    return NULL;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/* Get the live at out set for BB no matter what problem happens to be
   defined.  This function is used by the register allocators who
   choose different dataflow problems depending on the optimization
   level.  */

static inline bitmap
df_get_live_out (basic_block bb)
{
  gcc_checking_assert (df_lr);

  if (df_live)
    return DF_LIVE_OUT (bb);
  else
    return DF_LR_OUT (bb);
}

/* Get the live at in set for BB no matter what problem happens to be
   defined.  This function is used by the register allocators who
   choose different dataflow problems depending on the optimization
   level.  */

static inline bitmap
df_get_live_in (basic_block bb)
{
  gcc_checking_assert (df_lr);

  if (df_live)
    return DF_LIVE_IN (bb);
  else
    return DF_LR_IN (bb);
}

/* Get basic block info.  */
1179 1180
/* Get the artificial defs for a basic block.  */

1181
static inline df_ref
1182 1183 1184 1185 1186 1187 1188 1189
df_get_artificial_defs (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_defs;
}


/* Get the artificial uses for a basic block.  */

1190
static inline df_ref
1191 1192 1193 1194
df_get_artificial_uses (unsigned int bb_index)
{
  return df_scan_get_bb_info (bb_index)->artificial_uses;
}
1195

1196 1197 1198 1199 1200 1201
/* If INSN defines exactly one register, return the associated reference,
   otherwise return null.  */

static inline df_ref
df_single_def (const df_insn_info *info)
{
1202 1203
  df_ref defs = DF_INSN_INFO_DEFS (info);
  return defs && !DF_REF_NEXT_LOC (defs) ? defs : NULL;
1204 1205 1206 1207 1208 1209 1210 1211
}

/* If INSN uses exactly one register, return the associated reference,
   otherwise return null.  */

static inline df_ref
df_single_use (const df_insn_info *info)
{
1212 1213
  df_ref uses = DF_INSN_INFO_USES (info);
  return uses && !DF_REF_NEXT_LOC (uses) ? uses : NULL;
1214
}
1215

Razya Ladelsky committed
1216 1217
/* web */

1218
class web_entry_base
Razya Ladelsky committed
1219
{
1220 1221 1222 1223 1224 1225 1226 1227
 private:
  /* Reference to the parent in the union/find tree.  */
  web_entry_base *pred_pvt;

 public:
  /* Accessors.  */
  web_entry_base *pred () { return pred_pvt; }
  void set_pred (web_entry_base *p) { pred_pvt = p; }
Razya Ladelsky committed
1228

1229 1230 1231 1232 1233 1234
  /* Find representative in union-find tree.  */
  web_entry_base *unionfind_root ();

  /* Union with another set, returning TRUE if they are already unioned.  */
  friend bool unionfind_union (web_entry_base *first, web_entry_base *second);
};
Razya Ladelsky committed
1235

1236
#endif /* GCC_DF_H */