dse.c 86.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/* RTL dead store elimination.
   Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.

   Contributed by Richard Sandiford <rsandifor@codesourcery.com>
   and Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12 13 14 15 16 17 18 19
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
20 21
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

#undef BASELINE

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "hashtab.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "df.h"
#include "cselib.h"
#include "timevar.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "alias.h"
#include "insn-config.h"
#include "expr.h"
#include "recog.h"
#include "dse.h"
#include "dbgcnt.h"

/* This file contains three techniques for performing Dead Store
   Elimination (dse).  

   * The first technique performs dse locally on any base address.  It
   is based on the cselib which is a local value numbering technique.
   This technique is local to a basic block but deals with a fairly
   general addresses.
 
   * The second technique performs dse globally but is restricted to
   base addresses that are either constant or are relative to the
   frame_pointer.

   * The third technique, (which is only done after register allocation)
   processes the spill spill slots.  This differs from the second
   technique because it takes advantage of the fact that spilling is
   completely free from the effects of aliasing.

   Logically, dse is a backwards dataflow problem.  A store can be
   deleted if it if cannot be reached in the backward direction by any
   use of the value being stored.  However, the local technique uses a
   forwards scan of the basic block because cselib requires that the
   block be processed in that order.

   The pass is logically broken into 7 steps:

   0) Initialization.

   1) The local algorithm, as well as scanning the insns for the two
   global algorithms.

   2) Analysis to see if the global algs are necessary.  In the case
   of stores base on a constant address, there must be at least two
   stores to that address, to make it possible to delete some of the
   stores.  In the case of stores off of the frame or spill related
   stores, only one store to an address is necessary because those
   stores die at the end of the function.

   3) Set up the global dataflow equations based on processing the 
   info parsed in the first step.

   4) Solve the dataflow equations.

   5) Delete the insns that the global analysis has indicated are
   unnecessary.

   6) Cleanup.

   This step uses cselib and canon_rtx to build the largest expression
   possible for each address.  This pass is a forwards pass through
   each basic block.  From the point of view of the global technique,
   the first pass could examine a block in either direction.  The
98
   forwards ordering is to accommodate cselib.
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

   We a simplifying assumption: addresses fall into four broad
   categories:

   1) base has rtx_varies_p == false, offset is constant.
   2) base has rtx_varies_p == false, offset variable.
   3) base has rtx_varies_p == true, offset constant.
   4) base has rtx_varies_p == true, offset variable.

   The local passes are able to process all 4 kinds of addresses.  The
   global pass only handles (1).

   The global problem is formulated as follows:

     A store, S1, to address A, where A is not relative to the stack
     frame, can be eliminated if all paths from S1 to the end of the
     of the function contain another store to A before a read to A.

     If the address A is relative to the stack frame, a store S2 to A
     can be eliminated if there are no paths from S1 that reach the
     end of the function that read A before another store to A.  In
     this case S2 can be deleted if there are paths to from S2 to the
     end of the function that have no reads or writes to A.  This
     second case allows stores to the stack frame to be deleted that
     would otherwise die when the function returns.  This cannot be
     done if stores_off_frame_dead_at_return is not true.  See the doc
     for that variable for when this variable is false.

     The global problem is formulated as a backwards set union
     dataflow problem where the stores are the gens and reads are the
     kills.  Set union problems are rare and require some special
     handling given our representation of bitmaps.  A straightforward
     implementation of requires a lot of bitmaps filled with 1s.
     These are expensive and cumbersome in our bitmap formulation so
     care has been taken to avoid large vectors filled with 1s.  See
     the comments in bb_info and in the dataflow confluence functions
     for details.  

   There are two places for further enhancements to this algorithm:
   
   1) The original dse which was embedded in a pass called flow also
   did local address forwarding.  For example in

   A <- r100
   ... <- A

   flow would replace the right hand side of the second insn with a
146
   reference to r100.  Most of the information is available to add this
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
   to this pass.  It has not done it because it is a lot of work in
   the case that either r100 is assigned to between the first and
   second insn and/or the second insn is a load of part of the value
   stored by the first insn.

   insn 5 in gcc.c-torture/compile/990203-1.c simple case.
   insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
   insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
   insn 44 in gcc.c-torture/execute/20010910-1.c simple case.

   2) The cleaning up of spill code is quite profitable.  It currently
   depends on reading tea leaves and chicken entrails left by reload.
   This pass depends on reload creating a singleton alias set for each
   spill slot and telling the next dse pass which of these alias sets
   are the singletons.  Rather than analyze the addresses of the
   spills, dse's spill processing just does analysis of the loads and
   stores that use those alias sets.  There are three cases where this
   falls short:

     a) Reload sometimes creates the slot for one mode of access, and
     then inserts loads and/or stores for a smaller mode.  In this
     case, the current code just punts on the slot.  The proper thing
     to do is to back out and use one bit vector position for each
     byte of the entity associated with the slot.  This depends on
     KNOWING that reload always generates the accesses for each of the
     bytes in some canonical (read that easy to understand several
     passes after reload happens) way.

     b) Reload sometimes decides that spill slot it allocated was not
     large enough for the mode and goes back and allocates more slots
     with the same mode and alias set.  The backout in this case is a
     little more graceful than (a).  In this case the slot is unmarked
     as being a spill slot and if final address comes out to be based
     off the frame pointer, the global algorithm handles this slot.  

     c) For any pass that may prespill, there is currently no
     mechanism to tell the dse pass that the slot being used has the
     special properties that reload uses.  It may be that all that is
185
     required is to have those passes make the same calls that reload
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
     does, assuming that the alias sets can be manipulated in the same
     way.  */

/* There are limits to the size of constant offsets we model for the
   global problem.  There are certainly test cases, that exceed this
   limit, however, it is unlikely that there are important programs
   that really have constant offsets this size.  */
#define MAX_OFFSET (64 * 1024)


static bitmap scratch = NULL;
struct insn_info;

/* This structure holds information about a candidate store.  */
struct store_info 
{

  /* False means this is a clobber.  */
  bool is_set;

  /* The id of the mem group of the base address.  If rtx_varies_p is
     true, this is -1.  Otherwise, it is the index into the group
     table.  */
  int group_id;
  
  /* This is the cselib value.  */
  cselib_val *cse_base;

  /* This canonized mem.  */
  rtx mem;

  /* The result of get_addr on mem.  */
  rtx mem_addr;

  /* If this is non-zero, it is the alias set of a spill location.  */
  HOST_WIDE_INT alias_set;

  /* The offset of the first and byte before the last byte associated
     with the operation.  */
  int begin, end;

  /* An bitmask as wide as the number of bytes in the word that
     contains a 1 if the byte may be needed.  The store is unused if
     all of the bits are 0.  */
  long positions_needed;

  /* The next store info for this insn.  */
  struct store_info *next;

  /* The right hand side of the store.  This is used if there is a
     subsequent reload of the mems address somewhere later in the
     basic block.  */
  rtx rhs;  
};

typedef struct store_info *store_info_t;
static alloc_pool cse_store_info_pool;
static alloc_pool rtx_store_info_pool;

/* This structure holds information about a load.  These are only
   built for rtx bases.  */
struct read_info 
{
  /* The id of the mem group of the base address.  */
  int group_id;

  /* If this is non-zero, it is the alias set of a spill location.  */
  HOST_WIDE_INT alias_set;

  /* The offset of the first and byte after the last byte associated
     with the operation.  If begin == end == 0, the read did not have
     a constant offset.  */
  int begin, end;

  /* The mem being read.  */
  rtx mem;

  /* The next read_info for this insn.  */
  struct read_info *next;
};
typedef struct read_info *read_info_t;
static alloc_pool read_info_pool;


/* One of these records is created for each insn.  */

struct insn_info 
{
  /* Set true if the insn contains a store but the insn itself cannot
     be deleted.  This is set if the insn is a parallel and there is
     more than one non dead output or if the insn is in some way
     volatile.  */
  bool cannot_delete;

  /* This field is only used by the global algorithm.  It is set true
     if the insn contains any read of mem except for a (1).  This is
     also set if the insn is a call or has a clobber mem.  If the insn
     contains a wild read, the use_rec will be null.  */
  bool wild_read;

  /* This field is set for const function calls.  Const functions
     cannot read memory, but they can read the stack because that is
     where they may get their parms.  So having this set is less
     severe than a wild read, it just means that all of the stores to
     the stack are killed rather than all stores.  */
  bool stack_read;

  /* This is true if any of the sets within the store contains a
     cselib base.  Such stores can only be deleted by the local
     algorithm.  */
  bool contains_cselib_groups;

  /* The insn. */
  rtx insn;

  /* The list of mem sets or mem clobbers that are contained in this
     insn.  If the insn is deletable, it contains only one mem set.
     But it could also contain clobbers.  Insns that contain more than
     one mem set are not deletable, but each of those mems are here in
305
     order to provide info to delete other insns.  */
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  store_info_t store_rec;

  /* The linked list of mem uses in this insn.  Only the reads from
     rtx bases are listed here.  The reads to cselib bases are
     completely processed during the first scan and so are never
     created.  */
  read_info_t read_rec;

  /* The prev insn in the basic block.  */
  struct insn_info * prev_insn;

  /* The linked list of insns that are in consideration for removal in
     the forwards pass thru the basic block.  This pointer may be
     trash as it is not cleared when a wild read occurs.  The only
     time it is guaranteed to be correct is when the traveral starts
     at active_local_stores.  */
  struct insn_info * next_local_store;
};

typedef struct insn_info *insn_info_t;
static alloc_pool insn_info_pool;

/* The linked list of stores that are under consideration in this
   basic block.  */   
static insn_info_t active_local_stores;

struct bb_info 
{

  /* Pointer to the insn info for the last insn in the block.  These
     are linked so this is how all of the insns are reached.  During
     scanning this is the current insn being scanned.  */
  insn_info_t last_insn;

  /* The info for the global dataflow problem.  */


  /* This is set if the transfer function should and in the wild_read
     bitmap before applying the kill and gen sets.  That vector knocks
     out most of the bits in the bitmap and thus speeds up the
     operations.  */
  bool apply_wild_read;

  /* The set of store positions that exist in this block before a wild read.  */
  bitmap gen;
  
  /* The set of load positions that exist in this block above the
     same position of a store.  */
  bitmap kill;

  /* The set of stores that reach the top of the block without being
     killed by a read.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill set, this is too
     expensive.  So initially, the in set will only be created for the
     exit block and any block that contains a wild read.  */
  bitmap in;

  /* The set of stores that reach the bottom of the block from it's
     successors.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill and in set, this is
     too expensive.  So what is done is that the confluence operator
     just initializes the vector from one of the out sets of the
     successors of the block.  */
  bitmap out;
};

typedef struct bb_info *bb_info_t;
static alloc_pool bb_info_pool;

/* Table to hold all bb_infos.  */
static bb_info_t *bb_table;

/* There is a group_info for each rtx base that is used to reference
   memory.  There are also not many of the rtx bases because they are
   very limited in scope.  */

struct group_info 
{
  /* The actual base of the address.  */
  rtx rtx_base;

  /* The sequential id of the base.  This allows us to have a
     canonical ordering of these that is not based on addresses.  */
  int id;

  /* A mem wrapped around the base pointer for the group in order to
     do read dependency.  */
  rtx base_mem;
  
  /* Canonized version of base_mem, most likely the same thing.  */
  rtx canon_base_mem;

  /* These two sets of two bitmaps are used to keep track of how many
405
     stores are actually referencing that position from this base.  We
406
     only do this for rtx bases as this will be used to assign
407
     positions in the bitmaps for the global problem.  Bit N is set in
408 409 410 411 412 413 414 415 416 417 418 419 420 421
     store1 on the first store for offset N.  Bit N is set in store2
     for the second store to offset N.  This is all we need since we
     only care about offsets that have two or more stores for them.

     The "_n" suffix is for offsets less than 0 and the "_p" suffix is
     for 0 and greater offsets.

     There is one special case here, for stores into the stack frame,
     we will or store1 into store2 before deciding which stores look
     at globally.  This is because stores to the stack frame that have
     no other reads before the end of the function can also be
     deleted.  */
  bitmap store1_n, store1_p, store2_n, store2_p;

422
  /* The positions in this bitmap have the same assignments as the in,
423
     out, gen and kill bitmaps.  This bitmap is all zeros except for
424
     the positions that are occupied by stores for this group.  */
425 426 427 428 429 430 431 432 433 434 435
  bitmap group_kill;

  /* True if there are any positions that are to be processed
     globally.  */
  bool process_globally;

  /* True if the base of this group is either the frame_pointer or
     hard_frame_pointer.  */
  bool frame_related;

  /* The offset_map is used to map the offsets from this base into
436
     positions in the global bitmaps.  It is only created after all of
437 438 439 440 441 442
     the all of stores have been scanned and we know which ones we
     care about.  */
  int *offset_map_n, *offset_map_p; 
  int offset_map_size_n, offset_map_size_p; 
};
typedef struct group_info *group_info_t;
443
typedef const struct group_info *const_group_info_t;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static alloc_pool rtx_group_info_pool;

/* Tables of group_info structures, hashed by base value.  */
static htab_t rtx_group_table;

/* Index into the rtx_group_vec.  */
static int rtx_group_next_id;

DEF_VEC_P(group_info_t);
DEF_VEC_ALLOC_P(group_info_t,heap);

static VEC(group_info_t,heap) *rtx_group_vec;


/* This structure holds the set of changes that are being deferred
   when removing read operation.  See replace_read.  */
struct deferred_change 
{

  /* The mem that is being replaced.  */
  rtx *loc;

  /* The reg it is being replaced with.  */
  rtx reg;

  struct deferred_change *next;
};

typedef struct deferred_change *deferred_change_t;
static alloc_pool deferred_change_pool;

static deferred_change_t deferred_change_list = NULL;

/* This are used to hold the alias sets of spill variables.  Since
   these are never aliased and there may be a lot of them, it makes
   sense to treat them specially.  This bitvector is only allocated in
   calls from dse_record_singleton_alias_set which currently is only
   made during reload1.  So when dse is called before reload this
   mechanism does nothing.  */

static bitmap clear_alias_sets = NULL;

/* The set of clear_alias_sets that have been disqualified because
   there are loads or stores using a different mode than the alias set
   was registered with.  */ 
static bitmap disqualified_clear_alias_sets = NULL;

/* The group that holds all of the clear_alias_sets.  */
static group_info_t clear_alias_group;

/* The modes of the clear_alias_sets.  */
static htab_t clear_alias_mode_table;

/* Hash table element to look up the mode for an alias set.  */
struct clear_alias_mode_holder
{
  HOST_WIDE_INT alias_set;
  enum machine_mode mode;
};

static alloc_pool clear_alias_mode_pool;

/* This is true except for two cases:
   (1) current_function_stdarg -- i.e. we cannot do this 
       for vararg functions because they play games with the frame.  
   (2) In ada, it is sometimes not safe to do assume that any stores
       based off the stack frame go dead at the exit to a function.  */
static bool stores_off_frame_dead_at_return;

/* Counter for stats.  */
static int globally_deleted; 
static int locally_deleted; 
static int spill_deleted; 
      
static bitmap all_blocks;

/* The number of bits used in the global bitmaps.  */
static unsigned int current_position;


static bool gate_dse (void);


/*----------------------------------------------------------------------------
   Zeroth step.

   Initialization.  
----------------------------------------------------------------------------*/

/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

static int
clear_alias_mode_eq (const void *p1, const void *p2)
{
  const struct clear_alias_mode_holder * h1 
    = (const struct clear_alias_mode_holder *) p1;
  const struct clear_alias_mode_holder * h2 
    = (const struct clear_alias_mode_holder *) p2;
  return h1->alias_set == h2->alias_set;
}


static hashval_t
clear_alias_mode_hash (const void *p)
{
  const struct clear_alias_mode_holder *holder 
    = (const struct clear_alias_mode_holder *) p;
  return holder->alias_set;
}


/* Find the entry associated with ALIAS_SET.  */

static struct clear_alias_mode_holder *
clear_alias_set_lookup (HOST_WIDE_INT alias_set)
{
  struct clear_alias_mode_holder tmp_holder;
  void **slot;
  
  tmp_holder.alias_set = alias_set;
  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
  gcc_assert (*slot);
  
  return *slot;
}


/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

static int
invariant_group_base_eq (const void *p1, const void *p2)
{
578 579
  const_group_info_t gi1 = (const_group_info_t) p1;
  const_group_info_t gi2 = (const_group_info_t) p2;
580 581 582 583 584 585 586
  return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}


static hashval_t
invariant_group_base_hash (const void *p)
{
587
  const_group_info_t gi = (const_group_info_t) p;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  int do_not_record;
  return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}


/* Get the GROUP for BASE.  Add a new group if it is not there.  */

static group_info_t
get_group_info (rtx base)
{
  struct group_info tmp_gi; 
  group_info_t gi; 
  void **slot;

  if (base)
    {
      /* Find the store_base_info structure for BASE, creating a new one
	 if necessary.  */
      tmp_gi.rtx_base = base;
      slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
      gi = (group_info_t) *slot;
    }
  else
    {
      if (!clear_alias_group)
	{
	  clear_alias_group = gi = pool_alloc (rtx_group_info_pool);
	  memset (gi, 0, sizeof (struct group_info));
	  gi->id = rtx_group_next_id++;
	  gi->store1_n = BITMAP_ALLOC (NULL);
	  gi->store1_p = BITMAP_ALLOC (NULL);
	  gi->store2_n = BITMAP_ALLOC (NULL);
	  gi->store2_p = BITMAP_ALLOC (NULL);
	  gi->group_kill = BITMAP_ALLOC (NULL);
	  gi->process_globally = false;
	  gi->offset_map_size_n = 0;
	  gi->offset_map_size_p = 0;
	  gi->offset_map_n = NULL;
	  gi->offset_map_p = NULL;
	  VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
	}
      return clear_alias_group;
    }

  if (gi == NULL)
    {
      *slot = gi = pool_alloc (rtx_group_info_pool);
      gi->rtx_base = base;
      gi->id = rtx_group_next_id++;
      gi->base_mem = gen_rtx_MEM (QImode, base);
      gi->canon_base_mem = canon_rtx (gi->base_mem);
      gi->store1_n = BITMAP_ALLOC (NULL);
      gi->store1_p = BITMAP_ALLOC (NULL);
      gi->store2_n = BITMAP_ALLOC (NULL);
      gi->store2_p = BITMAP_ALLOC (NULL);
      gi->group_kill = BITMAP_ALLOC (NULL);
      gi->process_globally = false;
      gi->frame_related = 
	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
      gi->offset_map_size_n = 0;
      gi->offset_map_size_p = 0;
      gi->offset_map_n = NULL;
      gi->offset_map_p = NULL;
      VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
    }

  return gi;
}


/* Initialization of data structures.  */

static void
dse_step0 (void)
{
  locally_deleted = 0;
  globally_deleted = 0;
  spill_deleted = 0;

  scratch = BITMAP_ALLOC (NULL);

  rtx_store_info_pool
    = create_alloc_pool ("rtx_store_info_pool", 
			 sizeof (struct store_info), 100);
  read_info_pool
    = create_alloc_pool ("read_info_pool", 
			 sizeof (struct read_info), 100);
  insn_info_pool
    = create_alloc_pool ("insn_info_pool", 
			 sizeof (struct insn_info), 100);
  bb_info_pool
    = create_alloc_pool ("bb_info_pool", 
			 sizeof (struct bb_info), 100);
  rtx_group_info_pool
    = create_alloc_pool ("rtx_group_info_pool", 
			 sizeof (struct group_info), 100);
  deferred_change_pool
    = create_alloc_pool ("deferred_change_pool", 
			 sizeof (struct deferred_change), 10);

  rtx_group_table = htab_create (11, invariant_group_base_hash,
				 invariant_group_base_eq, NULL);

  bb_table = XCNEWVEC (bb_info_t, last_basic_block);
  rtx_group_next_id = 0;

  stores_off_frame_dead_at_return = 
    (!(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
       && (TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))))
    && (!current_function_stdarg);

  init_alias_analysis ();
  
  if (clear_alias_sets)
    clear_alias_group = get_group_info (NULL);
  else
    clear_alias_group = NULL;
}



/*----------------------------------------------------------------------------
   First step.

   Scan all of the insns.  Any random ordering of the blocks is fine.
713
   Each block is scanned in forward order to accommodate cselib which
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
   is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/

/* Delete all of the store_info recs from INSN_INFO.  */

static void 
free_store_info (insn_info_t insn_info)
{
  store_info_t store_info = insn_info->store_rec;
  while (store_info)
    {
      store_info_t next = store_info->next;
      if (store_info->cse_base)
	pool_free (cse_store_info_pool, store_info);
      else
	pool_free (rtx_store_info_pool, store_info);
      store_info = next;
    }

  insn_info->cannot_delete = true;
  insn_info->contains_cselib_groups = false;
  insn_info->store_rec = NULL;
}


struct insn_size {
  int size;
  rtx insn;
};


/* Add an insn to do the add inside a x if it is a
   PRE/POST-INC/DEC/MODIFY.  D is an structure containing the insn and
   the size of the mode of the MEM that this is inside of.  */

static int
replace_inc_dec (rtx *r, void *d)
{
  rtx x = *r;
  struct insn_size *data = (struct insn_size *)d;
  switch (GET_CODE (x))
    {
    case PRE_INC:
    case POST_INC:
      {
	rtx r1 = XEXP (x, 0);
	rtx c = gen_int_mode (Pmode, data->size);
	add_insn_before (data->insn, 
			 gen_rtx_SET (Pmode, r1, 
				      gen_rtx_PLUS (Pmode, r1, c)),
			 NULL);
	return -1;
      }
		 
    case PRE_DEC:
    case POST_DEC:
      {
	rtx r1 = XEXP (x, 0);
	rtx c = gen_int_mode (Pmode, -data->size);
	add_insn_before (data->insn, 
			 gen_rtx_SET (Pmode, r1, 
				      gen_rtx_PLUS (Pmode, r1, c)),
			 NULL);
	return -1;
      }
	
    case PRE_MODIFY:
    case POST_MODIFY:
      {
783
	/* We can reuse the add because we are about to delete the
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	   insn that contained it.  */
	rtx add = XEXP (x, 0);
	rtx r1 = XEXP (add, 0);
	add_insn_before (data->insn, 
			 gen_rtx_SET (Pmode, r1, add), NULL);
	return -1;
      }

    default:
      return 0;
    }
}
			 

/* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
   and generate an add to replace that.  */

static int
replace_inc_dec_mem (rtx *r, void *d)
{
  rtx x = *r;
  if (GET_CODE (x) == MEM)
    {
      struct insn_size data;

      data.size = GET_MODE_SIZE (GET_MODE (x));
      data.insn = (rtx)d;

      for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
	
      return -1;
    }
  return 0;
}

/* Before we delete INSN, make sure that the auto inc/dec, if it is
   there, is split into a separate insn.  */

static void
check_for_inc_dec (rtx insn)
{
  rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
    for_each_rtx (&insn, replace_inc_dec_mem, insn);
}


/* Delete the insn and free all of the fields inside INSN_INFO.  */ 

static void
delete_dead_store_insn (insn_info_t insn_info)
{
  read_info_t read_info;

  if (!dbg_cnt (dse))
    return;

  check_for_inc_dec (insn_info->insn);
  if (dump_file)
    {
      fprintf (dump_file, "Locally deleting insn %d ", 
	       INSN_UID (insn_info->insn));
      if (insn_info->store_rec->alias_set)
	fprintf (dump_file, "alias set %d\n", 
		 (int)insn_info->store_rec->alias_set);
      else
	fprintf (dump_file, "\n");
    }

  free_store_info (insn_info);
  read_info = insn_info->read_rec;
	
  while (read_info)
    {
      read_info_t next = read_info->next;
      pool_free (read_info_pool, read_info);
      read_info = next;
    }
  insn_info->read_rec = NULL;

  delete_insn (insn_info->insn);
  locally_deleted++;
  insn_info->insn = NULL;

  insn_info->wild_read = false;
}


/* Set the store* bitmaps offset_map_size* fields in GROUP based on
   OFFSET and WIDTH.  */

static void
set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
{
  HOST_WIDE_INT i;

  if ((offset > -MAX_OFFSET) && (offset < MAX_OFFSET))
    for (i=offset; i<offset+width; i++)
      {
	bitmap store1;
	bitmap store2;
	int ai;
	if (i < 0)
	  {
	    store1 = group->store1_n;
	    store2 = group->store2_n;
	    ai = -i;
	  }
	else
	  {
	    store1 = group->store1_p;
	    store2 = group->store2_p;
	    ai = i;
	  }
	
	if (bitmap_bit_p (store1, ai))
	  bitmap_set_bit (store2, ai);
	else 
	  {
	    bitmap_set_bit (store1, ai);
	    if (i < 0)
	      {
		if (group->offset_map_size_n < ai)
		  group->offset_map_size_n = ai;
	      }
	    else
	      {
		if (group->offset_map_size_p < ai)
		  group->offset_map_size_p = ai;
	      }
	  }
      }
}


/* Set the BB_INFO so that the last insn is marked as a wild read.  */

static void
add_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  read_info_t *ptr = &insn_info->read_rec;

  while (*ptr)
    {
      read_info_t next = (*ptr)->next;
      if ( (*ptr)->alias_set == 0 )
        {
          pool_free (read_info_pool, *ptr);
          *ptr = next;
	}
      else 
	ptr = &(*ptr)->next;
    }
  insn_info->wild_read = true;
  active_local_stores = NULL;
}


/* Return true if X is a constant or one of the registers that behaves
   as a constant over the life of a function.  */

static bool
const_or_frame_p (rtx x)
{
  switch (GET_CODE (x))
    {
    case MEM:
      return MEM_READONLY_P (x);

    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
      return true;

    case REG:
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || x == pic_offset_table_rtx)
	return true;
      return false;

    default:
      return false;
    }
}

/* Take all reasonable action to put the address of MEM into the form 
   that we can do analysis on.  

   The gold standard is to get the address into the form: address +
   OFFSET where address is something that rtx_varies_p considers a
   constant.  When we can get the address in this form, we can do
   global analysis on it.  Note that for constant bases, address is
   not actually returned, only the group_id.  The address can be
   obtained from that.

   If that fails, we try cselib to get a value we can at least use
   locally.  If that fails we return false.  
   
   The GROUP_ID is set to -1 for cselib bases and the index of the
   group for non_varying bases.

   FOR_READ is true if this is a mem read and false if not.  */

static bool
canon_address (rtx mem,
	       HOST_WIDE_INT *alias_set_out,
	       int *group_id,
	       HOST_WIDE_INT *offset, 
	       cselib_val **base)
{
  rtx mem_address = XEXP (mem, 0);
  rtx expanded_address, address;
  /* Make sure that cselib is has initialized all of the operands of
     the address before asking it to do the subst.  */

  if (clear_alias_sets)
    {
      /* If this is a spill, do not do any further processing.  */
      HOST_WIDE_INT alias_set = MEM_ALIAS_SET (mem);
      if (dump_file)
	fprintf (dump_file, "found alias set %d\n", (int)alias_set);
      if (bitmap_bit_p (clear_alias_sets, alias_set))
	{
	  struct clear_alias_mode_holder *entry 
	    = clear_alias_set_lookup (alias_set);

	  /* If the modes do not match, we cannot process this set.  */
	  if (entry->mode != GET_MODE (mem))
	    {
	      if (dump_file)
		fprintf (dump_file, 
			 "disqualifying alias set %d, (%s) != (%s)\n", 
			 (int)alias_set, GET_MODE_NAME (entry->mode), 
			 GET_MODE_NAME (GET_MODE (mem)));
	      
	      bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
	      return false;
	    }

	  *alias_set_out = alias_set;
	  *group_id = clear_alias_group->id;
	  return true;
	}
    }

  *alias_set_out = 0;

  cselib_lookup (mem_address, Pmode, 1);

  if (dump_file)
    {
      fprintf (dump_file, "  mem: ");
      print_inline_rtx (dump_file, mem_address, 0);
      fprintf (dump_file, "\n");
    }

  /* Use cselib to replace all of the reg references with the full
     expression.  This will take care of the case where we have 

     r_x = base + offset;
     val = *r_x;
   
     by making it into 

     val = *(base + offset);  
  */

  expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5);

  /* If this fails, just go with the mem_address.  */
  if (!expanded_address)
    expanded_address = mem_address;

  /* Split the address into canonical BASE + OFFSET terms.  */
  address = canon_rtx (expanded_address);

  *offset = 0;

  if (dump_file)
    {
      fprintf (dump_file, "\n   after cselib_expand address: ");
      print_inline_rtx (dump_file, expanded_address, 0);
      fprintf (dump_file, "\n");

      fprintf (dump_file, "\n   after canon_rtx address: ");
      print_inline_rtx (dump_file, address, 0);
      fprintf (dump_file, "\n");
    }

  if (GET_CODE (address) == CONST)
    address = XEXP (address, 0);

  if (GET_CODE (address) == PLUS && GET_CODE (XEXP (address, 1)) == CONST_INT)
    {
      *offset = INTVAL (XEXP (address, 1));
      address = XEXP (address, 0);
    }

  if (const_or_frame_p (address))
    {
      group_info_t group = get_group_info (address);

      if (dump_file)
	fprintf (dump_file, "  gid=%d offset=%d \n", group->id, (int)*offset);
      *base = NULL;
      *group_id = group->id;
    }
  else
    {
      *base = cselib_lookup (address, Pmode, true);
      *group_id = -1;

      if (*base == NULL)
	{
	  if (dump_file)
	    fprintf (dump_file, " no cselib val - should be a wild read.\n");
	  return false;
	}
      if (dump_file)
	fprintf (dump_file, "  varying cselib base=%d offset = %d\n", 
		 (*base)->value, (int)*offset);
    }
  return true;
}


/* Clear the rhs field from the active_local_stores array.  */

static void
clear_rhs_from_active_local_stores (void)
{
  insn_info_t ptr = active_local_stores;

  while (ptr)
    {
      store_info_t store_info = ptr->store_rec;
      /* Skip the clobbers.  */
      while (!store_info->is_set)
	store_info = store_info->next;

      store_info->rhs = NULL;

      ptr = ptr->next_local_store;
    }
}


/* BODY is an instruction pattern that belongs to INSN.  Return 1 if
   there is a candidate store, after adding it to the appropriate
   local store group if so.  */

static int
record_store (rtx body, bb_info_t bb_info)
{
  rtx mem;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
  HOST_WIDE_INT spill_alias_set;
  insn_info_t insn_info = bb_info->last_insn;
  store_info_t store_info = NULL;
  int group_id;
  cselib_val *base = NULL;
  insn_info_t ptr, last;
  bool store_is_unused;

  if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
    return 0;

  /* If this is not used, then this cannot be used to keep the insn
     from being deleted.  On the other hand, it does provide something
     that can be used to prove that another store is dead.  */
  store_is_unused
    = (find_reg_note (insn_info->insn, REG_UNUSED, body) != NULL);

  /* Check whether that value is a suitable memory location.  */
  mem = SET_DEST (body);
  if (!MEM_P (mem))
    {
      /* If the set or clobber is unused, then it does not effect our
	 ability to get rid of the entire insn.  */
      if (!store_is_unused)
	insn_info->cannot_delete = true;
      return 0;
    }

  /* At this point we know mem is a mem. */
  if (GET_MODE (mem) == BLKmode)
    {
      if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
	{
	  if (dump_file) 
	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
	  add_wild_read (bb_info);
	  insn_info->cannot_delete = true;
	}
      else if (!store_is_unused)
	{
	  /* If the set or clobber is unused, then it does not effect our
	     ability to get rid of the entire insn.  */
	  insn_info->cannot_delete = true;
	  clear_rhs_from_active_local_stores ();
	}
      return 0;
    }

  /* We can still process a volatile mem, we just cannot delete it.  */
  if (MEM_VOLATILE_P (mem))
      insn_info->cannot_delete = true;

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      clear_rhs_from_active_local_stores ();
      return 0;
    }

  width = GET_MODE_SIZE (GET_MODE (mem));

  if (spill_alias_set)
    {
      bitmap store1 = clear_alias_group->store1_p;
      bitmap store2 = clear_alias_group->store2_p;
      
      if (bitmap_bit_p (store1, spill_alias_set))
	bitmap_set_bit (store2, spill_alias_set);
      else 
	bitmap_set_bit (store1, spill_alias_set);
	
      if (clear_alias_group->offset_map_size_p < spill_alias_set)
	clear_alias_group->offset_map_size_p = spill_alias_set;
  
      store_info = pool_alloc (rtx_store_info_pool);

      if (dump_file)
	fprintf (dump_file, " processing spill store %d(%s)\n",
		 (int)spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
    }
  else if (group_id >= 0)
    {
      /* In the restrictive case where the base is a constant or the
	 frame pointer we can do global analysis.  */
      
      group_info_t group 
	= VEC_index (group_info_t, rtx_group_vec, group_id);
      
      store_info = pool_alloc (rtx_store_info_pool);
      set_usage_bits (group, offset, width);

      if (dump_file)
	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
		 group_id, (int)offset, (int)(offset+width));
    }
  else
    {
      store_info = pool_alloc (cse_store_info_pool);
      insn_info->contains_cselib_groups = true;
      group_id = -1;

      if (dump_file)
	fprintf (dump_file, " processing cselib store [%d..%d)\n",
		 (int)offset, (int)(offset+width));
    }

  /* Check to see if this stores causes some other stores to be
     dead.  */
  ptr = active_local_stores;
  last = NULL;

  while (ptr)
    {
      insn_info_t next = ptr->next_local_store;
      store_info_t s_info = ptr->store_rec;
      bool delete = true;

      /* Skip the clobbers. We delete the active insn if this insn
1268
	 shadows the set.  To have been put on the active list, it
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	 has exactly on set. */
      while (!s_info->is_set)
	s_info = s_info->next;

      if (s_info->alias_set != spill_alias_set)
	delete = false;
      else if (s_info->alias_set)
	{
	  struct clear_alias_mode_holder *entry 
	    = clear_alias_set_lookup (s_info->alias_set);
	  /* Generally, spills cannot be processed if and of the
	     references to the slot have a different mode.  But if
	     we are in the same block and mode is exactly the same
	     between this store and one before in the same block,
	     we can still delete it.  */
	  if ((GET_MODE (mem) == GET_MODE (s_info->mem))
	      && (GET_MODE (mem) == entry->mode))
	    {
	      delete = true;
	      s_info->positions_needed = 0;
	    }
	  if (dump_file)
	    fprintf (dump_file, "    trying spill store in insn=%d alias_set=%d\n",
		     INSN_UID (ptr->insn), (int)s_info->alias_set);
	}
      else if ((s_info->group_id == group_id) 
	       && (s_info->cse_base == base))
	{
	  HOST_WIDE_INT i;
	  if (dump_file)
	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
		     INSN_UID (ptr->insn), s_info->group_id, 
		     (int)s_info->begin, (int)s_info->end);
	  for (i = offset; i < offset+width; i++)
	    if (i >= s_info->begin && i < s_info->end)
	      s_info->positions_needed &= ~(1L << (i - s_info->begin));
	}
      else if (s_info->rhs)
	/* Need to see if it is possible for this store to overwrite
	   the value of store_info.  If it is, set the rhs to NULL to
	   keep it from being used to remove a load.  */
	{
	  if (canon_true_dependence (s_info->mem, 
				     GET_MODE (s_info->mem),
				     s_info->mem_addr,
				     mem, rtx_varies_p))
	    s_info->rhs = NULL;
	}
      
      /* An insn can be deleted if every position of every one of
	 its s_infos is zero.  */
      if (s_info->positions_needed != 0)
	delete = false;
      
      if (delete)
	{
	  insn_info_t insn_to_delete = ptr;
	  
	  if (last)
	    last->next_local_store = ptr->next_local_store;
	  else
	    active_local_stores = ptr->next_local_store;
	  
	  delete_dead_store_insn (insn_to_delete);
	}
      else
	last = ptr;
      
      ptr = next;
    }
  
  gcc_assert ((unsigned) width < sizeof (store_info->positions_needed) * CHAR_BIT);
  
  /* Finish filling in the store_info.  */
  store_info->next = insn_info->store_rec;
  insn_info->store_rec = store_info;
  store_info->mem = canon_rtx (mem);
  store_info->alias_set = spill_alias_set;
  store_info->mem_addr = get_addr (XEXP (mem, 0));
  store_info->cse_base = base;
  store_info->positions_needed = (1L << width) - 1;
  store_info->group_id = group_id;
  store_info->begin = offset;
  store_info->end = offset + width;
  store_info->is_set = GET_CODE (body) == SET;

  if (store_info->is_set 
      /* No place to keep the value after ra.  */
      && !reload_completed
      /* The careful reviewer may wish to comment my checking that the
	 rhs of a store is always a reg.  */
      && REG_P (SET_SRC (body))
      /* Sometimes the store and reload is used for truncation and
	 rounding.  */
      && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
    store_info->rhs = SET_SRC (body);
  else
    store_info->rhs = NULL;
  
  /* If this is a clobber, we return 0.  We will only be able to
     delete this insn if there is only one store USED store, but we
     can use the clobber to delete other stores earlier.  */
  return store_info->is_set ? 1 : 0;
}


static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
  fprintf (dump_file, "%s insn=%d %s\n", start, 
	   INSN_UID (insn_info->insn),
	   insn_info->store_rec ? "has store" : "naked");
}


/* Take a sequence of:
     A <- r1
     ...
     ... <- A

   and change it into 
   r2 <- r1
   A <- r1
   ...
   ... <- r2

   The STORE_INFO and STORE_INFO are for the store and the READ_INFO
   and READ_INSN are for the read.  Return true if the replacement
   went ok.  */

static bool
replace_read (store_info_t store_info, insn_info_t store_insn, 
	      read_info_t read_info, insn_info_t read_insn, rtx *loc)
{
  if (!dbg_cnt (dse))
    return false;

  if (dump_file)
    fprintf (dump_file, "generating move to replace load at %d from store at %d\n", 
	     INSN_UID (read_insn->insn), INSN_UID (store_insn->insn)); 
  if (GET_MODE (store_info->mem) == GET_MODE (read_info->mem))
    {
      rtx new_reg = gen_reg_rtx (GET_MODE (store_info->mem));
      if (validate_change (read_insn->insn, loc, new_reg, 0))
	{
	  rtx insns;
	  deferred_change_t deferred_change = pool_alloc (deferred_change_pool);

	  start_sequence ();
	  emit_move_insn (new_reg, store_info->rhs);
	  insns = get_insns ();
	  end_sequence ();
	  emit_insn_before (insns, store_insn->insn);

	  if (dump_file)
	    fprintf (dump_file, " -- adding move insn %d: r%d = r%d\n", 
		     INSN_UID (insns), REGNO (new_reg), REGNO (store_info->rhs)); 

	  /* And now for the cludge part: cselib croaks if you just
	     return at this point.  There are two reasons for this:

	     1) Cselib has an idea of how many pseudos there are and
	     that does not include the new one we just added.  

	     2) Cselib does not know about the move insn we added
	     above the store_info, and there is no way to tell it
	     about it, because it has "moved on".

	     So we are just going to have to lie.  The move insn is
	     not really an issue, cselib did not see it.  But the use
	     of the new pseudo read_insn is a real problem.  The way
	     that we solve this problem is that we are just going to
	     put the mem back keep a table of mems to get rid of.  At
	     the end of the basic block we can put it back.  */

	  *loc = read_info->mem;
	  deferred_change->next = deferred_change_list;
	  deferred_change_list = deferred_change;
	  deferred_change->loc = loc;
	  deferred_change->reg = new_reg;

	  /* Get rid of the read_info, from the point of view of the
	     rest of dse, play like this read never happened.  */
	  read_insn->read_rec = read_info->next;
	  pool_free (read_info_pool, read_info);
	  return true;
	}
      else 
	{
	  if (dump_file)
	    fprintf (dump_file, " -- validation failure\n"); 
	  return false;
	}
    }
  else
    {
      /* Someone with excellent rtl skills needs to fill this in.  You
	 are guaranteed that the read is of the same size or smaller
	 than the store, and that the read does not hang off one of
	 the ends of the store.  But the offsets of each must be
	 checked because the read does not have to line up on either
	 end of the store so the begin fields need to be examined in
	 both the store_info and read_info.  */
      if (dump_file)
	fprintf (dump_file, " -- complex load, currently unsupported.\n"); 
      return false;
    }
}


/* A for_each_rtx callback in which DATA is the bb_info.  Check to see
   if LOC is a mem and if it is look at the address and kill any
   appropriate stores that may be active.  */

static int
check_mem_read_rtx (rtx *loc, void *data)
{
  rtx mem = *loc;
  bb_info_t bb_info;
  insn_info_t insn_info;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
  HOST_WIDE_INT spill_alias_set = 0;
  cselib_val *base = NULL;  
  int group_id;
  read_info_t read_info;

  if (!mem || !MEM_P (mem))
    return 0;

  bb_info = (bb_info_t) data;
  insn_info = bb_info->last_insn;

  if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
      || (MEM_VOLATILE_P (mem)))
    {
      if (dump_file)
	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
      return 0;
    }

  /* If it is reading readonly mem, then there can be no conflict with
     another write. */
  if (MEM_READONLY_P (mem))
    return 0;

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      if (dump_file)
	fprintf (dump_file, " adding wild read, canon_address failure.\n");
      add_wild_read (bb_info);
      return 0;
    }

  if (GET_MODE (mem) == BLKmode)
    width = -1;
  else
    width = GET_MODE_SIZE (GET_MODE (mem));

  read_info = pool_alloc (read_info_pool);
  read_info->group_id = group_id;
  read_info->mem = mem;
  read_info->alias_set = spill_alias_set;
  read_info->begin = offset;
  read_info->end = offset + width;
  read_info->next = insn_info->read_rec;
  insn_info->read_rec = read_info;

1539
  /* We ignore the clobbers in store_info.  The is mildly aggressive,
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
     but there really should not be a clobber followed by a read.  */

  if (spill_alias_set)
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;

      if (dump_file)
	fprintf (dump_file, " processing spill load %d\n",
		 (int)spill_alias_set);

      while (i_ptr)
	{
	  store_info_t store_info = i_ptr->store_rec;

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
	  
	  if (store_info->alias_set == spill_alias_set)
	    {
	      if (dump_file)
		dump_insn_info ("removing from active", i_ptr);

	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  else if (group_id >= 0)
    {
      /* This is the restricted case where the base is a constant or
	 the frame pointer and offset is a constant.  */
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
      
      if (dump_file)
	{
	  if (width == -1)
	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
		     group_id);
	  else
	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
		     group_id, (int)offset, (int)(offset+width));
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
	  
	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
	  
	  /* There are three cases here.  */
	  if (store_info->group_id < 0)
	    /* We have a cselib store followed by a read from a
	       const base. */
	    remove 
	      = canon_true_dependence (store_info->mem, 
				       GET_MODE (store_info->mem),
				       store_info->mem_addr,
				       mem, rtx_varies_p);
	  
	  else if (group_id == store_info->group_id)
	    {
	      /* This is a block mode load.  We may get lucky and
		 canon_true_dependence may save the day.  */
	      if (width == -1)
		remove 
		  = canon_true_dependence (store_info->mem, 
					   GET_MODE (store_info->mem),
					   store_info->mem_addr,
					   mem, rtx_varies_p);
	      
	      /* If this read is just reading back something that we just
		 stored, rewrite the read.  */
	      else 
		{
		  if (store_info->rhs
		      && (offset >= store_info->begin)
		      && (offset + width <= store_info->end))
		    {
		      int mask = ((1L << width) - 1) << (offset - store_info->begin);
		      
		      if ((store_info->positions_needed & mask) == mask
			  && replace_read (store_info, i_ptr, 
					   read_info, insn_info, loc))
			return 0;
		    }
		  /* The bases are the same, just see if the offsets
		     overlap.  */
		  if ((offset < store_info->end) 
		      && (offset + width > store_info->begin))
		    remove = true;
		}
	    }
	  
	  /* else 
	     The else case that is missing here is that the
	     bases are constant but different.  There is nothing
	     to do here because there is no overlap.  */
	  
	  if (remove)
	    {
	      if (dump_file)
		dump_insn_info ("removing from active", i_ptr);

	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  else 
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
      if (dump_file)
	{
	  fprintf (dump_file, " processing cselib load mem:");
	  print_inline_rtx (dump_file, mem, 0);
	  fprintf (dump_file, "\n");
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
	  
	  if (dump_file)
	    fprintf (dump_file, " processing cselib load against insn %d\n",
		     INSN_UID (i_ptr->insn));

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;

	  /* If this read is just reading back something that we just
	     stored, rewrite the read.  */
	  if (store_info->rhs
	      && store_info->group_id == -1
	      && store_info->cse_base == base
	      && (offset >= store_info->begin)
	      && (offset + width <= store_info->end))
	    {
	      int mask = ((1L << width) - 1) << (offset - store_info->begin);
	      
	      if ((store_info->positions_needed & mask) == mask
		  && replace_read (store_info, i_ptr, 
				   read_info, insn_info, loc))
		return 0;
	    }

	  if (!store_info->alias_set)
	    remove = canon_true_dependence (store_info->mem, 
					    GET_MODE (store_info->mem),
					    store_info->mem_addr,
					    mem, rtx_varies_p);
	  
	  if (remove)
	    {
	      if (dump_file)
		dump_insn_info ("removing from active", i_ptr);
	      
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  return 0;
}

/* A for_each_rtx callback in which DATA points the INSN_INFO for 
   as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
   true for any part of *LOC.  */

static void
check_mem_read_use (rtx *loc, void *data)
{
  for_each_rtx (loc, check_mem_read_rtx, data);
}

/* Apply record_store to all candidate stores in INSN.  Mark INSN
   if some part of it is not a candidate store and assigns to a
   non-register target.  */

static void
scan_insn (bb_info_t bb_info, rtx insn)
{
  rtx body;
  insn_info_t insn_info = pool_alloc (insn_info_pool);
  int mems_found = 0;
  memset (insn_info, 0, sizeof (struct insn_info));

  if (dump_file)
    fprintf (dump_file, "\n**scanning insn=%d\n",
	     INSN_UID (insn));

  insn_info->prev_insn = bb_info->last_insn;
  insn_info->insn = insn;
  bb_info->last_insn = insn_info;
  

1759
  /* Cselib clears the table for this case, so we have to essentially
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
     do the same.  */
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    {
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
      return;
    }

  /* Look at all of the uses in the insn.  */
  note_uses (&PATTERN (insn), check_mem_read_use, bb_info);

  if (CALL_P (insn))
    {
      insn_info->cannot_delete = true;
      /* Const functions cannot do anything bad i.e. read memory,
	 however, they can read their parameters which may have been
	 pushed onto the stack.  */
      if (CONST_OR_PURE_CALL_P (insn) && !pure_call_p (insn))
	{
	  insn_info_t i_ptr = active_local_stores;
	  insn_info_t last = NULL;

	  if (dump_file)
	    fprintf (dump_file, "const call %d\n", INSN_UID (insn));

	  while (i_ptr)
	    {
	      store_info_t store_info = i_ptr->store_rec;

	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

	      /* Remove the frame related stores.  */
	      if (store_info->group_id >= 0
		  && VEC_index (group_info_t, rtx_group_vec, store_info->group_id)->frame_related)
		{
		  if (dump_file)
		    dump_insn_info ("removing from active", i_ptr);
		  
		  if (last)
		    last->next_local_store = i_ptr->next_local_store;
		  else
		    active_local_stores = i_ptr->next_local_store;
		}
	      else
		last = i_ptr;
	      i_ptr = i_ptr->next_local_store;
	    }

	  insn_info->stack_read = true;
	  
	  return;
	}

      /* Every other call, including pure functions may read memory.  */
      add_wild_read (bb_info);
      return;
    }

  /* Assuming that there are sets in these insns, we cannot delete
     them.  */
  if ((GET_CODE (PATTERN (insn)) == CLOBBER)
      || volatile_insn_p (PATTERN (insn))
      || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
      || (RTX_FRAME_RELATED_P (insn))
      || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
    insn_info->cannot_delete = true;
  
  body = PATTERN (insn);
  if (GET_CODE (body) == PARALLEL)
    {
      int i;
      for (i = 0; i < XVECLEN (body, 0); i++)
	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
    }
  else
    mems_found += record_store (body, bb_info);

  if (dump_file)
    fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n", 
	     mems_found, insn_info->cannot_delete ? "true" : "false");

  /* If we found some sets of mems, and the insn has not been marked
     cannot delete, add it into the active_local_stores so that it can
     be locally deleted if found dead.  Otherwise mark it as cannot
     delete.  This simplifies the processing later.  */ 
  if (mems_found == 1 && !insn_info->cannot_delete)
    {
      insn_info->next_local_store = active_local_stores;
      active_local_stores = insn_info;
    }
  else
    insn_info->cannot_delete = true;
}


/* Remove BASE from the set of active_local_stores.  This is a
   callback from cselib that is used to get rid of the stores in
   active_local_stores.  */

static void
remove_useless_values (cselib_val *base)
{
  insn_info_t insn_info = active_local_stores;
  insn_info_t last = NULL;

  while (insn_info)
    {
      store_info_t store_info = insn_info->store_rec;
      bool delete = false;

      /* If ANY of the store_infos match the cselib group that is
	 being deleted, then the insn can not be deleted.  */
      while (store_info)
	{
	  if ((store_info->group_id == -1) 
	      && (store_info->cse_base == base))
	    {
	      delete = true;
	      break;
	    }
	  store_info = store_info->next;
	}

      if (delete)
	{
	  if (last)
	    last->next_local_store = insn_info->next_local_store;
	  else
	    active_local_stores = insn_info->next_local_store;
	  free_store_info (insn_info);
	}
      else
	last = insn_info;
  
      insn_info = insn_info->next_local_store;
    }
}


/* Do all of step 1.  */

static void
dse_step1 (void)
{
  basic_block bb;

  cselib_init (false);
  all_blocks = BITMAP_ALLOC (NULL);
  bitmap_set_bit (all_blocks, ENTRY_BLOCK);
  bitmap_set_bit (all_blocks, EXIT_BLOCK);

  FOR_ALL_BB (bb)
    {
      insn_info_t ptr;
      bb_info_t bb_info = pool_alloc (bb_info_pool);

      memset (bb_info, 0, sizeof (struct bb_info));
      bitmap_set_bit (all_blocks, bb->index);

      bb_table[bb->index] = bb_info;
      cselib_discard_hook = remove_useless_values;

      if (bb->index >= NUM_FIXED_BLOCKS)
	{
	  rtx insn;

	  cse_store_info_pool
	    = create_alloc_pool ("cse_store_info_pool", 
				 sizeof (struct store_info), 100);
	  active_local_stores = NULL;
	  cselib_clear_table ();
	  
	  /* Scan the insns.  */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		scan_insn (bb_info, insn);
	      cselib_process_insn (insn);
	    }
	  
	  /* This is something of a hack, because the global algorithm
	     is supposed to take care of the case where stores go dead
	     at the end of the function.  However, the global
	     algorithm must take a more conservative view of block
	     mode reads than the local alg does.  So to get the case
	     where you have a store to the frame followed by a non
1950
	     overlapping block more read, we look at the active local
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	     stores at the end of the function and delete all of the
	     frame and spill based ones.  */
	  if (stores_off_frame_dead_at_return
	      && (EDGE_COUNT (bb->succs) == 0
		  || (single_succ_p (bb)
		      && single_succ (bb) == EXIT_BLOCK_PTR
		      && ! current_function_calls_eh_return)))
	    {
	      insn_info_t i_ptr = active_local_stores;
	      while (i_ptr)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;
		  if (store_info->alias_set)
		    delete_dead_store_insn (i_ptr);
		  else 
		    if (store_info->group_id >= 0)
		      {
			group_info_t group 
			  = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
			if (group->frame_related)
			  delete_dead_store_insn (i_ptr);
		      }

		  i_ptr = i_ptr->next_local_store;
		}
	    }

	  /* Get rid of the loads that were discovered in
	     replace_read.  Cselib is finished with this block.  */
	  while (deferred_change_list)
	    {
	      deferred_change_t next = deferred_change_list->next;

	      /* There is no reason to validate this change.  That was
		 done earlier.  */
	      *deferred_change_list->loc = deferred_change_list->reg;
	      pool_free (deferred_change_pool, deferred_change_list);
	      deferred_change_list = next;
	    }

	  /* Get rid of all of the cselib based store_infos in this
	     block and mark the containing insns as not being
	     deletable.  */
	  ptr = bb_info->last_insn;
	  while (ptr)
	    {
	      if (ptr->contains_cselib_groups)
		free_store_info (ptr);
	      ptr = ptr->prev_insn;
	    }

	  free_alloc_pool (cse_store_info_pool);
	}
    }

  cselib_finish ();
  htab_empty (rtx_group_table);
}


/*----------------------------------------------------------------------------
   Second step.

   Assign each byte position in the stores that we are going to
   analyze globally to a position in the bitmaps.  Returns true if
2020
   there are any bit positions assigned.
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
----------------------------------------------------------------------------*/

static void
dse_step2_init (void)
{
  unsigned int i;
  group_info_t group;

  for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
    {
      /* For all non stack related bases, we only consider a store to
	 be deletable if there are two or more stores for that
	 position.  This is because it takes one store to make the
	 other store redundant.  However, for the stores that are
	 stack related, we consider them if there is only one store
	 for the position.  We do this because the stack related
	 stores can be deleted if their is no read between them and
	 the end of the function.
	 
	 To make this work in the current framework, we take the stack
	 related bases add all of the bits from store1 into store2.
	 This has the effect of making the eligible even if there is
	 only one store.   */

      if (stores_off_frame_dead_at_return && group->frame_related)
	{
	  bitmap_ior_into (group->store2_n, group->store1_n);
	  bitmap_ior_into (group->store2_p, group->store1_p);
	  if (dump_file)
	    fprintf (dump_file, "group %d is frame related ", i); 
	}

      group->offset_map_size_n++;
      group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
      group->offset_map_size_p++;
      group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
      group->process_globally = false;
      if (dump_file)
	{
	  fprintf (dump_file, "group %d(%d+%d): ", i, 
		   (int)bitmap_count_bits (group->store2_n),
		   (int)bitmap_count_bits (group->store2_p));
	  bitmap_print (dump_file, group->store2_n, "n ", " ");
	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
	}
    }
}


/* Init the offset tables for the normal case.  */

static bool
dse_step2_nospill (void)
{
  unsigned int i;
  group_info_t group;
  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;

  for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
    {
      bitmap_iterator bi;
      unsigned int j;

      if (group == clear_alias_group)
	continue;

      memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
      memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
      bitmap_clear (group->group_kill);

      EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position);
	  group->offset_map_n[j] = current_position++;
	  group->process_globally = true;
	}
      EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position); 
	  group->offset_map_p[j] = current_position++;
	  group->process_globally = true;
	}
    }
  return current_position != 1;
}


/* Init the offset tables for the spill case.  */

static bool
dse_step2_spill (void)
{
  unsigned int j;
  group_info_t group = clear_alias_group;
  bitmap_iterator bi;

  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;

  if (dump_file)
    {
      bitmap_print (dump_file, clear_alias_sets, 
		    "clear alias sets              ", "\n");
      bitmap_print (dump_file, disqualified_clear_alias_sets, 
		    "disqualified clear alias sets ", "\n");
    }

  memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
  memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
  bitmap_clear (group->group_kill);
  
  /* Remove the disqualified positions from the store2_p set.  */
  bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
  
  /* We do not need to process the store2_n set because
     alias_sets are always positive.  */
  EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
    {
      bitmap_set_bit (group->group_kill, current_position); 
      group->offset_map_p[j] = current_position++;
      group->process_globally = true;
    }

  return current_position != 1;
}



/*----------------------------------------------------------------------------
  Third step.
  
  Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/


/* Note that this is NOT a general purpose function.  Any mem that has
   an alias set registered here expected to be COMPLETELY unaliased:
   i.e it's addresses are not and need not be examined.  

   It is known that all references to this address will have this
   alias set and there are NO other references to this address in the
   function.  

   Currently the only place that is known to be clean enough to use
   this interface is the code that assigns the spill locations.  

   All of the mems that have alias_sets registered are subjected to a
   very powerful form of dse where function calls, volatile reads and
   writes, and reads from random location are not taken into account.  

   It is also assumed that these locations go dead when the function
   returns.  This assumption could be relaxed if there were found to
   be places that this assumption was not correct.

   The MODE is passed in and saved.  The mode of each load or store to
   a mem with ALIAS_SET is checked against MEM.  If the size of that
   load or store is different from MODE, processing is halted on this
   alias set.  For the vast majority of aliases sets, all of the loads
   and stores will use the same mode.  But vectors are treated
   differently: the alias set is established for the entire vector,
   but reload will insert loads and stores for individual elements and
   we do not necessarily have the information to track those separate
   elements.  So when we see a mode mismatch, we just bail.  */


void 
dse_record_singleton_alias_set (HOST_WIDE_INT alias_set, 
				enum machine_mode mode)
{
  struct clear_alias_mode_holder tmp_holder;
  struct clear_alias_mode_holder *entry;
  void **slot;

  /* If we are not going to run dse, we need to return now or there
     will be problems with allocating the bitmaps.  */
  if ((!gate_dse()) || !alias_set)
    return;

  if (!clear_alias_sets)
    {
      clear_alias_sets = BITMAP_ALLOC (NULL);
      disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
      clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
					    clear_alias_mode_eq, NULL);
      clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool", 
						 sizeof (struct clear_alias_mode_holder), 100);
    }

  bitmap_set_bit (clear_alias_sets, alias_set);

  tmp_holder.alias_set = alias_set;

  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
  gcc_assert (*slot == NULL);

  *slot = entry = pool_alloc (clear_alias_mode_pool);
  entry->alias_set = alias_set;
  entry->mode = mode;
}


/* Remove ALIAS_SET from the sets of stack slots being considered.  */

void 
dse_invalidate_singleton_alias_set (HOST_WIDE_INT alias_set)
{
  if ((!gate_dse()) || !alias_set)
    return;

  bitmap_clear_bit (clear_alias_sets, alias_set);
}


/* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
   there, return 0.  */

static int
get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
{
  if (offset < 0)
    {
      HOST_WIDE_INT offset_p = -offset;
      if (offset_p >= group_info->offset_map_size_n)
	return 0;
      return group_info->offset_map_n[offset_p];
    }
  else
    {
      if (offset >= group_info->offset_map_size_p)
	return 0;
      return group_info->offset_map_p[offset];
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

static void 
scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      HOST_WIDE_INT i;
      group_info_t group_info 
	= VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
      if (group_info->process_globally)
	for (i = store_info->begin; i < store_info->end; i++)
	  {
	    int index = get_bitmap_index (group_info, i);
	    if (index != 0)
	      {
		bitmap_set_bit (gen, index);
		if (kill)
		  bitmap_clear_bit (kill, index);
	      }
	  }
      store_info = store_info->next;
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

static void 
scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      if (store_info->alias_set)
	{
	  int index = get_bitmap_index (clear_alias_group, 
					store_info->alias_set);
	  if (index != 0)
	    {
	      bitmap_set_bit (gen, index);
	      if (kill)
		bitmap_clear_bit (kill, index);
	    }
	}
      store_info = store_info->next;
    }
}


/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
{
  read_info_t read_info = insn_info->read_rec;
  int i;
  group_info_t group;

  /* For const function calls kill the stack related stores.  */
  if (insn_info->stack_read)
    {
      for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
	if (group->process_globally && group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
	    bitmap_and_compl_into (gen, group->group_kill); 
	  }
    }

  while (read_info)
    {
      for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
	{
	  if (group->process_globally)
	    {
	      if (i == read_info->group_id)
		{
		  if (read_info->begin > read_info->end)
		    {
		      /* Begin > end for block mode reads.  */
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		  else
		    {
		      /* The groups are the same, just process the
			 offsets.  */
		      HOST_WIDE_INT j;
		      for (j = read_info->begin; j < read_info->end; j++)
			{
			  int index = get_bitmap_index (group, j);
			  if (index != 0)
			    {
			      if (kill)
				bitmap_set_bit (kill, index);
			      bitmap_clear_bit (gen, index);
			    }
			}
		    }
		}
	      else
		{
		  /* The groups are different, if the alias sets
		     conflict, clear the entire group.  We only need
		     to apply this test if the read_info is a cselib
		     read.  Anything with a constant base cannot alias
		     something else with a different constant
		     base.  */
		  if ((read_info->group_id < 0)
		      && canon_true_dependence (group->base_mem, 
						QImode,
						group->canon_base_mem,
						read_info->mem, rtx_varies_p))
		    {
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		}
	    }
	}
      
      read_info = read_info->next;
    }
}

/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
{
  while (read_info)
    {
      if (read_info->alias_set)
	{
	  int index = get_bitmap_index (clear_alias_group, 
					read_info->alias_set);
	  if (index != 0)
	    {
	      if (kill)
		bitmap_set_bit (kill, index);
	      bitmap_clear_bit (gen, index);
	    }
	}
      
      read_info = read_info->next;
    }
}


/* Return the insn in BB_INFO before the first wild read or if there
   are no wild reads in the block, return the last insn.  */

static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info_t last_wild_read = NULL;

  while (insn_info)
    {
      if (insn_info->wild_read)
	{
	  last_wild_read = insn_info->prev_insn;
	  /* Block starts with wild read.  */
	  if (!last_wild_read)
	    return NULL;
	}

      insn_info = insn_info->prev_insn;
    }

  if (last_wild_read)
    return last_wild_read;
  else
    return bb_info->last_insn;
}


/* Scan the insns in BB_INFO starting at PTR and going to the top of
   the block in order to build the gen and kill sets for the block.
   We start at ptr which may be the last insn in the block or may be
   the first insn with a wild read.  In the latter case we are able to
   skip the rest of the block because it just does not matter:
   anything that happens is hidden by the wild read.  */

static void
dse_step3_scan (bool for_spills, basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];
  insn_info_t insn_info;

  if (for_spills)
    /* There are no wild reads in the spill case.  */
    insn_info = bb_info->last_insn;
  else
    insn_info = find_insn_before_first_wild_read (bb_info);
    
  /* In the spill case or in the no_spill case if there is no wild
     read in the block, we will need a kill set.  */
  if (insn_info == bb_info->last_insn)
    {
      if (bb_info->kill)
	bitmap_clear (bb_info->kill);
      else
	bb_info->kill = BITMAP_ALLOC (NULL);
    }
  else 
    if (bb_info->kill)
      BITMAP_FREE (bb_info->kill);

  while (insn_info)
    {
      /* There may have been code deleted by the dce pass run before
	 this phase.  */
      if (insn_info->insn && INSN_P (insn_info->insn))
	{
	  /* Process the read(s) last.  */ 
	  if (for_spills)
	    {
	      scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
	    }
	  else
	    {
	      scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
	    }
	}	  

      insn_info = insn_info->prev_insn;
    }
}


/* Set the gen set of the exit block, and also any block with no
   successors that does not have a wild read.  */

static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
  /* The gen set is all 0's for the exit block except for the
     frame_pointer_group.  */
  
  if (stores_off_frame_dead_at_return)
    {
      unsigned int i;
      group_info_t group;
      
      for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
	{
	  if (group->process_globally && group->frame_related)
	    bitmap_ior_into (bb_info->gen, group->group_kill);
	}
    }
}


/* Find all of the blocks that are not backwards reachable from the
   exit block or any block with no successors (BB).  These are the
   infinite loops or infinite self loops.  These blocks will still
   have their bits set in UNREACHABLE_BLOCKS.  */

static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
  edge e;
  edge_iterator ei;

  if (TEST_BIT (unreachable_blocks, bb->index))
    {
      RESET_BIT (unreachable_blocks, bb->index);
      FOR_EACH_EDGE (e, ei, bb->preds)
	{								
	  mark_reachable_blocks (unreachable_blocks, e->src);
	}								
    }
}

/* Build the transfer functions for the function.  */

static void
dse_step3 (bool for_spills)
{
  basic_block bb;
  sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
  sbitmap_iterator sbi;
  bitmap all_ones = NULL;
  unsigned int i;
  
  sbitmap_ones (unreachable_blocks);

  FOR_ALL_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      if (bb_info->gen)
	bitmap_clear (bb_info->gen);
      else
	bb_info->gen = BITMAP_ALLOC (NULL);

      if (bb->index == ENTRY_BLOCK)
	;
      else if (bb->index == EXIT_BLOCK)
	dse_step3_exit_block_scan (bb_info);
      else
	dse_step3_scan (for_spills, bb);
      if (EDGE_COUNT (bb->succs) == 0)
	mark_reachable_blocks (unreachable_blocks, bb);

      /* If this is the second time dataflow is run, delete the old
	 sets.  */
      if (bb_info->in)
	BITMAP_FREE (bb_info->in);
      if (bb_info->out)
	BITMAP_FREE (bb_info->out);
    }

  /* For any block in an infinite loop, we must initialize the out set
     to all ones.  This could be expensive, but almost never occurs in
     practice. However, it is common in regression tests.  */
  EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
    {
      if (bitmap_bit_p (all_blocks, i))
	{
	  bb_info_t bb_info = bb_table[i];
	  if (!all_ones)
	    {
	      unsigned int j;
	      group_info_t group;

	      all_ones = BITMAP_ALLOC (NULL);
	      for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
		bitmap_ior_into (all_ones, group->group_kill);
	    }
	  if (!bb_info->out)
	    {
	      bb_info->out = BITMAP_ALLOC (NULL);
	      bitmap_copy (bb_info->out, all_ones);
	    }
	}
    }

  if (all_ones)
    BITMAP_FREE (all_ones);
  sbitmap_free (unreachable_blocks);
}



/*----------------------------------------------------------------------------
   Fourth step.

   Solve the bitvector equations.
----------------------------------------------------------------------------*/


/* Confluence function for blocks with no successors.  Create an out
   set from the gen set of the exit block.  This block logically has
   the exit block as a successor.  */



static void
dse_confluence_0 (basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];

  if (bb->index == EXIT_BLOCK)
    return;

  if (!bb_info->out)
    {
      bb_info->out = BITMAP_ALLOC (NULL);
      bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
    }
}

/* Propagate the information from the in set of the dest of E to the
   out set of the src of E.  If the various in or out sets are not
   there, that means they are all ones.  */

static void
dse_confluence_n (edge e)
{
  bb_info_t src_info = bb_table[e->src->index];
  bb_info_t dest_info = bb_table[e->dest->index];

  if (dest_info->in)
    {
      if (src_info->out)
	bitmap_and_into (src_info->out, dest_info->in);
      else
	{
	  src_info->out = BITMAP_ALLOC (NULL);
	  bitmap_copy (src_info->out, dest_info->in);
	}
    }
}


/* Propagate the info from the out to the in set of BB_INDEX's basic
   block.  There are three cases:  

   1) The block has no kill set.  In this case the kill set is all
   ones.  It does not matter what the out set of the block is, none of
   the info can reach the top.  The only thing that reaches the top is
   the gen set and we just copy the set.

   2) There is a kill set but no out set and bb has successors.  In
   this case we just return. Eventually an out set will be created and
   it is better to wait than to create a set of ones.

   3) There is both a kill and out set.  We apply the obvious transfer
   function.
*/

static bool
dse_transfer_function (int bb_index)
{
  bb_info_t bb_info = bb_table[bb_index];

  if (bb_info->kill)
    {
      if (bb_info->out)
	{
	  /* Case 3 above.  */
	  if (bb_info->in)
	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen, 
					 bb_info->out, bb_info->kill);
	  else
	    {
	      bb_info->in = BITMAP_ALLOC (NULL);
	      bitmap_ior_and_compl (bb_info->in, bb_info->gen, 
				    bb_info->out, bb_info->kill);
	      return true;
	    }
	}
      else
	/* Case 2 above.  */
	return false;
    }
  else
    {
      /* Case 1 above.  If there is already an in set, nothing
	 happens.  */
      if (bb_info->in)
	return false;
      else
	{
	  bb_info->in = BITMAP_ALLOC (NULL);
	  bitmap_copy (bb_info->in, bb_info->gen);
	  return true;
	}
    }
}

/* Solve the dataflow equations.  */

static void
dse_step4 (void)
{
  df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0, 
		      dse_confluence_n, dse_transfer_function, 
	   	      all_blocks, df_get_postorder (DF_BACKWARD), 
		      df_get_n_blocks (DF_BACKWARD));
  if (dump_file)
    {
      basic_block bb;

      fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
      FOR_ALL_BB (bb)
	{
	  bb_info_t bb_info = bb_table[bb->index];

	  df_print_bb_index (bb, dump_file);
	  if (bb_info->in)
	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
	  else
	    fprintf (dump_file, "  in:   *MISSING*\n");
	  if (bb_info->gen)
	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
	  else
	    fprintf (dump_file, "  gen:  *MISSING*\n");
	  if (bb_info->kill)
	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
	  else
	    fprintf (dump_file, "  kill: *MISSING*\n");
	  if (bb_info->out)
	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
	  else
	    fprintf (dump_file, "  out:  *MISSING*\n\n");
	}
    }
}



/*----------------------------------------------------------------------------
   Fifth step.

2765
   Delete the stores that can only be deleted using the global information.
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
----------------------------------------------------------------------------*/


static void
dse_step5_nospill (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  if (dump_file && insn_info->insn)
	    {
	      fprintf (dump_file, "starting to process insn %d\n",
		       INSN_UID (insn_info->insn));
	      bitmap_print (dump_file, v, "  v:  ", "\n");
	    }

	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn 
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      store_info_t store_info = insn_info->store_rec;

	      /* Try to delete the current insn.  */
	      deleted = true;
	      
	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

	      if (store_info->alias_set)
		deleted = false;
	      else
		{
		  HOST_WIDE_INT i;
		  group_info_t group_info 
		    = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
		  
		  for (i = store_info->begin; i < store_info->end; i++)
		    {
		      int index = get_bitmap_index (group_info, i);
		      
		      if (dump_file)
			fprintf (dump_file, "i = %d, index = %d\n", (int)i, index); 
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
			  if (dump_file)
			    fprintf (dump_file, "failing at i = %d\n", (int)i); 
			  deleted = false;
			  break;
			}
		    }
		}
	      if (deleted)
		{
		  if (dbg_cnt (dse))
		    {
		      check_for_inc_dec (insn_info->insn);
		      delete_insn (insn_info->insn);
		      insn_info->insn = NULL;
		      globally_deleted++;
		    }
		}
	    }
	  /* We do want to process the local info if the insn was
2840
	     deleted.  For instance, if the insn did a wild read, we
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	     no longer need to trash the info.  */
	  if (insn_info->insn 
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_nospill (insn_info->store_rec, v, NULL);
	      if (insn_info->wild_read)
		{
		  if (dump_file)
		    fprintf (dump_file, "wild read\n");
		  bitmap_clear (v);
		}
	      else if (insn_info->read_rec)
		{
		  if (dump_file)
		    fprintf (dump_file, "regular read\n");
		  scan_reads_nospill (insn_info, v, NULL);
		}
	    }
	      
	  insn_info = insn_info->prev_insn;
	}
    }
}


static void
dse_step5_spill (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn 
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      /* Try to delete the current insn.  */
	      store_info_t store_info = insn_info->store_rec;
	      deleted = true;
	      
	      while (store_info)
		{
		  if (store_info->alias_set)
		    {
		      int index = get_bitmap_index (clear_alias_group, 
						    store_info->alias_set);
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
			  deleted = false;
			  break;
			}
		    }
		  else 
		    deleted = false;
		  store_info = store_info->next;
		}
	      if (deleted && dbg_cnt (dse))
		{
		  if (dump_file)
		    fprintf (dump_file, "Spill deleting insn %d\n", 
			     INSN_UID (insn_info->insn));
		  check_for_inc_dec (insn_info->insn);
		  delete_insn (insn_info->insn);
		  spill_deleted++;
		  insn_info->insn = NULL;
		}
	    }
	  
	  if (insn_info->insn 
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_spill (insn_info->store_rec, v, NULL);
	      scan_reads_spill (insn_info->read_rec, v, NULL);
	    }
	      
	  insn_info = insn_info->prev_insn;
	}
    }
}



/*----------------------------------------------------------------------------
   Sixth step.

   Destroy everything left standing. 
----------------------------------------------------------------------------*/

static void 
dse_step6 (bool global_done)
{
  unsigned int i;
  group_info_t group;
  basic_block bb;
  
  if (global_done)
    {
      for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
	{
	  free (group->offset_map_n);
	  free (group->offset_map_p);
	  BITMAP_FREE (group->store1_n);
	  BITMAP_FREE (group->store1_p);
	  BITMAP_FREE (group->store2_n);
	  BITMAP_FREE (group->store2_p);
	  BITMAP_FREE (group->group_kill);
	}

      FOR_ALL_BB (bb)
	{
	  bb_info_t bb_info = bb_table[bb->index];
	  BITMAP_FREE (bb_info->gen);
	  if (bb_info->kill)
	    BITMAP_FREE (bb_info->kill);
	  if (bb_info->in)
	    BITMAP_FREE (bb_info->in);
	  if (bb_info->out)
	    BITMAP_FREE (bb_info->out);
	}
    }
  else
    {
      for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
	{
	  BITMAP_FREE (group->store1_n);
	  BITMAP_FREE (group->store1_p);
	  BITMAP_FREE (group->store2_n);
	  BITMAP_FREE (group->store2_p);
	  BITMAP_FREE (group->group_kill);
	}
    }

  if (clear_alias_sets)
    {
      BITMAP_FREE (clear_alias_sets);
      BITMAP_FREE (disqualified_clear_alias_sets);
      free_alloc_pool (clear_alias_mode_pool);
      htab_delete (clear_alias_mode_table);
    }

  end_alias_analysis ();
  free (bb_table);
  htab_delete (rtx_group_table);
  VEC_free (group_info_t, heap, rtx_group_vec);
  BITMAP_FREE (all_blocks);
  BITMAP_FREE (scratch);

  free_alloc_pool (rtx_store_info_pool);
  free_alloc_pool (read_info_pool);
  free_alloc_pool (insn_info_pool);
  free_alloc_pool (bb_info_pool);
  free_alloc_pool (rtx_group_info_pool);
  free_alloc_pool (deferred_change_pool);
}



/* -------------------------------------------------------------------------
   DSE
   ------------------------------------------------------------------------- */

/* Callback for running pass_rtl_dse.  */

static unsigned int
rest_of_handle_dse (void)
{
  bool did_global = false;

  df_set_flags (DF_DEFER_INSN_RESCAN);

  dse_step0 ();
  dse_step1 ();
  dse_step2_init ();
  if (dse_step2_nospill ())
    {
      df_set_flags (DF_LR_RUN_DCE);
      df_analyze ();
      did_global = true;
      if (dump_file)
	fprintf (dump_file, "doing global processing\n");
      dse_step3 (false);
      dse_step4 ();
      dse_step5_nospill ();
    }

  /* For the instance of dse that runs after reload, we make a special
     pass to process the spills.  These are special in that they are
     totally transparent, i.e, there is no aliasing issues that need
     to be considered.  This means that the wild reads that kill
     everything else do not apply here.  */ 
  if (clear_alias_sets && dse_step2_spill ())
    {
      if (!did_global)
	{
	  df_set_flags (DF_LR_RUN_DCE);
	  df_analyze ();
	}
      did_global = true;
      if (dump_file)
	fprintf (dump_file, "doing global spill processing\n");
      dse_step3 (true);
      dse_step4 ();
      dse_step5_spill ();
    }
  
  dse_step6 (did_global);

  if (dump_file)
    fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
	     locally_deleted, globally_deleted, spill_deleted);
  return 0;
}

static bool
gate_dse (void)
{
  return optimize > 0 && flag_dse;
}

struct tree_opt_pass pass_rtl_dse1 =
{
  "dse1",                               /* name */
  gate_dse,                             /* gate */
  rest_of_handle_dse,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_DSE1,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_df_finish |
  TODO_ggc_collect,                     /* todo_flags_finish */
  'w'                                   /* letter */
};

struct tree_opt_pass pass_rtl_dse2 =
{
  "dse2",                               /* name */
  gate_dse,                             /* gate */
  rest_of_handle_dse,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_DSE2,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func |
  TODO_df_finish |
  TODO_ggc_collect,                     /* todo_flags_finish */
  'w'                                   /* letter */
};