df.c 93.3 KB
Newer Older
Jeff Law committed
1
/* Dataflow support routines.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Jeff Law committed
3 4 5
   Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
                                    mhayes@redhat.com)

6
This file is part of GCC.
Jeff Law committed
7

8 9 10 11
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Jeff Law committed
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeff Law committed
17 18

You should have received a copy of the GNU General Public License
19 20 21
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
Jeff Law committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


OVERVIEW:

This file provides some dataflow routines for computing reaching defs,
upward exposed uses, live variables, def-use chains, and use-def
chains.  The global dataflow is performed using simple iterative
methods with a worklist and could be sped up by ordering the blocks
with a depth first search order.

A `struct ref' data structure (ref) is allocated for every register
reference (def or use) and this records the insn and bb the ref is
found within.  The refs are linked together in chains of uses and defs
for each insn and for each register.  Each ref also has a chain field
that links all the use refs for a def or all the def refs for a use.
This is used to create use-def or def-use chains.


USAGE:

Here's an example of using the dataflow routines.

      struct df *df;

      df = df_init ();

      df_analyse (df, 0, DF_ALL);

      df_dump (df, DF_ALL, stderr);

      df_finish (df);


df_init simply creates a poor man's object (df) that needs to be
passed to all the dataflow routines.  df_finish destroys this
57 58
object and frees up any allocated memory.   DF_ALL says to analyse
everything.
Jeff Law committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

df_analyse performs the following:

1. Records defs and uses by scanning the insns in each basic block
   or by scanning the insns queued by df_insn_modify.
2. Links defs and uses into insn-def and insn-use chains.
3. Links defs and uses into reg-def and reg-use chains.
4. Assigns LUIDs to each insn (for modified blocks).
5. Calculates local reaching definitions.
6. Calculates global reaching definitions.
7. Creates use-def chains.
8. Calculates local reaching uses (upwards exposed uses).
9. Calculates global reaching uses.
10. Creates def-use chains.
11. Calculates local live registers.
12. Calculates global live registers.
13. Calculates register lifetimes and determines local registers.


PHILOSOPHY:

Note that the dataflow information is not updated for every newly
deleted or created insn.  If the dataflow information requires
updating then all the changed, new, or deleted insns needs to be
marked with df_insn_modify (or df_insns_modify) either directly or
indirectly (say through calling df_insn_delete).  df_insn_modify
marks all the modified insns to get processed the next time df_analyse
 is called.

Beware that tinkering with insns may invalidate the dataflow information.
The philosophy behind these routines is that once the dataflow
90
information has been gathered, the user should store what they require
Jeff Law committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
before they tinker with any insn.  Once a reg is replaced, for example,
then the reg-def/reg-use chains will point to the wrong place.  Once a
whole lot of changes have been made, df_analyse can be called again
to update the dataflow information.  Currently, this is not very smart
with regard to propagating changes to the dataflow so it should not
be called very often.


DATA STRUCTURES:

The basic object is a REF (reference) and this may either be a DEF
(definition) or a USE of a register.

These are linked into a variety of lists; namely reg-def, reg-use,
  insn-def, insn-use, def-use, and use-def lists.  For example,
the reg-def lists contain all the refs that define a given register
while the insn-use lists contain all the refs used by an insn.

Note that the reg-def and reg-use chains are generally short (except for the
hard registers) and thus it is much faster to search these chains
111
rather than searching the def or use bitmaps.
Jeff Law committed
112 113 114 115

If the insns are in SSA form then the reg-def and use-def lists
should only contain the single defining ref.

116

Jeff Law committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
TODO:

1) Incremental dataflow analysis.

Note that if a loop invariant insn is hoisted (or sunk), we do not
need to change the def-use or use-def chains.  All we have to do is to
change the bb field for all the associated defs and uses and to
renumber the LUIDs for the original and new basic blocks of the insn.

When shadowing loop mems we create new uses and defs for new pseudos
so we do not affect the existing dataflow information.

My current strategy is to queue up all modified, created, or deleted
insns so when df_analyse is called we can easily determine all the new
or deleted refs.  Currently the global dataflow information is
recomputed from scratch but this could be propagated more efficiently.

134
2) Reduced memory requirements.
Jeff Law committed
135 136 137 138 139 140 141 142

We could operate a pool of ref structures.  When a ref is deleted it
gets returned to the pool (say by linking on to a chain of free refs).
This will require a pair of bitmaps for defs and uses so that we can
tell which ones have been changed.  Alternatively, we could
periodically squeeze the def and use tables and associated bitmaps and
renumber the def and use ids.

143
3) Ordering of reg-def and reg-use lists.
Jeff Law committed
144 145 146

Should the first entry in the def list be the first def (within a BB)?
Similarly, should the first entry in the use list be the last use
147
(within a BB)?
Jeff Law committed
148

149
4) Working with a sub-CFG.
Jeff Law committed
150

151
Often the whole CFG does not need to be analyzed, for example,
152
when optimizing a loop, only certain registers are of interest.
Jeff Law committed
153
Perhaps there should be a bitmap argument to df_analyse to specify
154
which registers should be analyzed?
155 156 157 158 159


NOTES:

Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
160
both a use and a def.  These are both marked read/write to show that they
161
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
162 163
will generate a use of reg 42 followed by a def of reg 42 (both marked
read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
164 165 166 167 168 169 170 171
generates a use of reg 41 then a def of reg 41 (both marked read/write),
even though reg 41 is decremented before it is used for the memory
address in this second example.

A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
a read-modify write operation.  We generate both a use and a def
and again mark them read/write.
*/
Jeff Law committed
172 173 174

#include "config.h"
#include "system.h"
175 176
#include "coretypes.h"
#include "tm.h"
177 178 179 180 181 182
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "regs.h"
183
#include "alloc-pool.h"
Jeff Law committed
184 185
#include "hard-reg-set.h"
#include "basic-block.h"
186
#include "sbitmap.h"
Jeff Law committed
187 188
#include "bitmap.h"
#include "df.h"
189
#include "fibheap.h"
Jeff Law committed
190

Kazu Hirata committed
191 192 193 194 195 196 197 198
#define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE)	\
  do							\
    {							\
      unsigned int node_;				\
      EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_,	\
      {(BB) = BASIC_BLOCK (node_); CODE;});		\
    }							\
  while (0)
Jeff Law committed
199

200 201
static alloc_pool df_ref_pool;
static alloc_pool df_link_pool;
Jeff Law committed
202 203
static struct df *ddf;

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void df_reg_table_realloc (struct df *, int);
static void df_insn_table_realloc (struct df *, unsigned int);
static void df_bitmaps_alloc (struct df *, int);
static void df_bitmaps_free (struct df *, int);
static void df_free (struct df *);
static void df_alloc (struct df *, int);

static rtx df_reg_clobber_gen (unsigned int);
static rtx df_reg_use_gen (unsigned int);

static inline struct df_link *df_link_create (struct ref *, struct df_link *);
static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
static void df_def_unlink (struct df *, struct ref *);
static void df_use_unlink (struct df *, struct ref *);
static void df_insn_refs_unlink (struct df *, basic_block, rtx);
Jeff Law committed
219
#if 0
220 221
static void df_bb_refs_unlink (struct df *, basic_block);
static void df_refs_unlink (struct df *, bitmap);
Jeff Law committed
222 223
#endif

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
				  enum df_ref_type, enum df_ref_flags);
static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
			     enum df_ref_flags);
static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
			   enum df_ref_flags);
static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
static void df_defs_record (struct df *, rtx, basic_block, rtx);
static void df_uses_record (struct df *, rtx *, enum df_ref_type,
			    basic_block, rtx, enum df_ref_flags);
static void df_insn_refs_record (struct df *, basic_block, rtx);
static void df_bb_refs_record (struct df *, basic_block);
static void df_refs_record (struct df *, bitmap);

static void df_bb_reg_def_chain_create (struct df *, basic_block);
static void df_reg_def_chain_create (struct df *, bitmap);
static void df_bb_reg_use_chain_create (struct df *, basic_block);
static void df_reg_use_chain_create (struct df *, bitmap);
static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
static void df_du_chain_create (struct df *, bitmap);
static void df_bb_ud_chain_create (struct df *, basic_block);
static void df_ud_chain_create (struct df *, bitmap);
static void df_bb_rd_local_compute (struct df *, basic_block);
static void df_rd_local_compute (struct df *, bitmap);
static void df_bb_ru_local_compute (struct df *, basic_block);
static void df_ru_local_compute (struct df *, bitmap);
static void df_bb_lr_local_compute (struct df *, basic_block);
static void df_lr_local_compute (struct df *, bitmap);
static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
static void df_reg_info_compute (struct df *, bitmap);

static int df_bb_luids_set (struct df *df, basic_block);
static int df_luids_set (struct df *df, bitmap);

static int df_modified_p (struct df *, bitmap);
static int df_refs_queue (struct df *);
static int df_refs_process (struct df *);
static int df_bb_refs_update (struct df *, basic_block);
static int df_refs_update (struct df *);
static void df_analyse_1 (struct df *, bitmap, int, int);

static void df_insns_modify (struct df *, basic_block, rtx, rtx);
static int df_rtx_mem_replace (rtx *, void *);
static int df_rtx_reg_replace (rtx *, void *);
void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);

static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
static struct ref *df_bb_regno_last_use_find (struct df *, basic_block,
					      unsigned int);
static struct ref *df_bb_regno_first_def_find (struct df *, basic_block,
					       unsigned int);
static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
						   rtx, unsigned int);
static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
						    rtx, unsigned int);

static void df_chain_dump (struct df_link *, FILE *file);
static void df_chain_dump_regno (struct df_link *, FILE *file);
static void df_regno_debug (struct df *, unsigned int, FILE *);
static void df_ref_debug (struct df *, struct ref *, FILE *);
static void df_rd_transfer_function (int, int *, bitmap, bitmap, bitmap,
				     bitmap, void *);
static void df_ru_transfer_function (int, int *, bitmap, bitmap, bitmap,
				     bitmap, void *);
static void df_lr_transfer_function (int, int *, bitmap, bitmap, bitmap,
				     bitmap, void *);
static void hybrid_search_bitmap (basic_block, bitmap *, bitmap *,
				  bitmap *, bitmap *, enum df_flow_dir,
				  enum df_confluence_op,
				  transfer_function_bitmap,
				  sbitmap, sbitmap, void *);
static void hybrid_search_sbitmap (basic_block, sbitmap *, sbitmap *,
				   sbitmap *, sbitmap *, enum df_flow_dir,
				   enum df_confluence_op,
				   transfer_function_sbitmap,
				   sbitmap, sbitmap, void *);
Jeff Law committed
301 302 303 304 305


/* Local memory allocation/deallocation routines.  */


306 307
/* Increase the insn info table to have space for at least SIZE + 1
   elements.  */
Jeff Law committed
308
static void
309
df_insn_table_realloc (struct df *df, unsigned int size)
Jeff Law committed
310
{
311 312 313
  size++;
  if (size <= df->insn_size)
    return;
Jeff Law committed
314

315
  /* Make the table a little larger than requested, so we do not need
316 317
     to enlarge it so often.  */
  size += df->insn_size / 4;
318

319
  df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
320 321

  memset (df->insns + df->insn_size, 0,
Jeff Law committed
322 323 324 325 326 327 328 329 330 331 332 333 334 335
	  (size - df->insn_size) * sizeof (struct insn_info));

  df->insn_size = size;

  if (! df->insns_modified)
    {
      df->insns_modified = BITMAP_XMALLOC ();
      bitmap_zero (df->insns_modified);
    }
}


/* Increase the reg info table by SIZE more elements.  */
static void
336
df_reg_table_realloc (struct df *df, int size)
Jeff Law committed
337 338 339 340 341 342
{
  /* Make table 25 percent larger by default.  */
  if (! size)
    size = df->reg_size / 4;

  size += df->reg_size;
343 344
  if (size < max_reg_num ())
    size = max_reg_num ();
Jeff Law committed
345

346
  df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
Jeff Law committed
347 348

  /* Zero the new entries.  */
349
  memset (df->regs + df->reg_size, 0,
Jeff Law committed
350 351 352 353 354 355 356 357
	  (size - df->reg_size) * sizeof (struct reg_info));

  df->reg_size = size;
}


/* Allocate bitmaps for each basic block.  */
static void
358
df_bitmaps_alloc (struct df *df, int flags)
Jeff Law committed
359 360
{
  int dflags = 0;
361
  basic_block bb;
Jeff Law committed
362 363

  /* Free the bitmaps if they need resizing.  */
Kazu Hirata committed
364
  if ((flags & DF_LR) && df->n_regs < (unsigned int) max_reg_num ())
Jeff Law committed
365 366 367 368 369 370 371 372 373 374 375 376
    dflags |= DF_LR | DF_RU;
  if ((flags & DF_RU) && df->n_uses < df->use_id)
    dflags |= DF_RU;
  if ((flags & DF_RD) && df->n_defs < df->def_id)
    dflags |= DF_RD;

  if (dflags)
    df_bitmaps_free (df, dflags);

  df->n_defs = df->def_id;
  df->n_uses = df->use_id;

377
  FOR_EACH_BB (bb)
Jeff Law committed
378 379
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);
380

Jeff Law committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
      if (flags & DF_RD && ! bb_info->rd_in)
	{
	  /* Allocate bitmaps for reaching definitions.  */
	  bb_info->rd_kill = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->rd_kill);
	  bb_info->rd_gen = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->rd_gen);
	  bb_info->rd_in = BITMAP_XMALLOC ();
	  bb_info->rd_out = BITMAP_XMALLOC ();
	  bb_info->rd_valid = 0;
	}

      if (flags & DF_RU && ! bb_info->ru_in)
	{
	  /* Allocate bitmaps for upward exposed uses.  */
	  bb_info->ru_kill = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->ru_kill);
	  /* Note the lack of symmetry.  */
	  bb_info->ru_gen = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->ru_gen);
	  bb_info->ru_in = BITMAP_XMALLOC ();
	  bb_info->ru_out = BITMAP_XMALLOC ();
	  bb_info->ru_valid = 0;
	}

      if (flags & DF_LR && ! bb_info->lr_in)
	{
	  /* Allocate bitmaps for live variables.  */
	  bb_info->lr_def = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->lr_def);
	  bb_info->lr_use = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->lr_use);
	  bb_info->lr_in = BITMAP_XMALLOC ();
	  bb_info->lr_out = BITMAP_XMALLOC ();
	  bb_info->lr_valid = 0;
	}
    }
}


/* Free bitmaps for each basic block.  */
static void
423
df_bitmaps_free (struct df *df, int flags)
Jeff Law committed
424
{
425
  basic_block bb;
Jeff Law committed
426

427
  FOR_EACH_BB (bb)
Jeff Law committed
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);

      if (!bb_info)
	continue;

      if ((flags & DF_RD) && bb_info->rd_in)
	{
	  /* Free bitmaps for reaching definitions.  */
	  BITMAP_XFREE (bb_info->rd_kill);
	  bb_info->rd_kill = NULL;
	  BITMAP_XFREE (bb_info->rd_gen);
	  bb_info->rd_gen = NULL;
	  BITMAP_XFREE (bb_info->rd_in);
	  bb_info->rd_in = NULL;
	  BITMAP_XFREE (bb_info->rd_out);
	  bb_info->rd_out = NULL;
	}

      if ((flags & DF_RU) && bb_info->ru_in)
	{
	  /* Free bitmaps for upward exposed uses.  */
	  BITMAP_XFREE (bb_info->ru_kill);
	  bb_info->ru_kill = NULL;
	  BITMAP_XFREE (bb_info->ru_gen);
	  bb_info->ru_gen = NULL;
	  BITMAP_XFREE (bb_info->ru_in);
	  bb_info->ru_in = NULL;
	  BITMAP_XFREE (bb_info->ru_out);
	  bb_info->ru_out = NULL;
	}

      if ((flags & DF_LR) && bb_info->lr_in)
	{
	  /* Free bitmaps for live variables.  */
	  BITMAP_XFREE (bb_info->lr_def);
	  bb_info->lr_def = NULL;
	  BITMAP_XFREE (bb_info->lr_use);
	  bb_info->lr_use = NULL;
	  BITMAP_XFREE (bb_info->lr_in);
	  bb_info->lr_in = NULL;
	  BITMAP_XFREE (bb_info->lr_out);
	  bb_info->lr_out = NULL;
	}
    }
  df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
}


477
/* Allocate and initialize dataflow memory.  */
Jeff Law committed
478
static void
479
df_alloc (struct df *df, int n_regs)
Jeff Law committed
480 481
{
  int n_insns;
482
  basic_block bb;
Jeff Law committed
483

484 485 486
  df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
				    100);
  df_ref_pool  = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
Jeff Law committed
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

  /* Perhaps we should use LUIDs to save memory for the insn_refs
     table.  This is only a small saving; a few pointers.  */
  n_insns = get_max_uid () + 1;

  df->def_id = 0;
  df->n_defs = 0;
  /* Approximate number of defs by number of insns.  */
  df->def_size = n_insns;
  df->defs = xmalloc (df->def_size * sizeof (*df->defs));

  df->use_id = 0;
  df->n_uses = 0;
  /* Approximate number of uses by twice number of insns.  */
  df->use_size = n_insns * 2;
  df->uses = xmalloc (df->use_size * sizeof (*df->uses));

  df->n_regs = n_regs;
505
  df->n_bbs = last_basic_block;
Jeff Law committed
506 507 508 509 510 511 512 513 514 515 516 517 518

  /* Allocate temporary working array used during local dataflow analysis.  */
  df->reg_def_last = xmalloc (df->n_regs * sizeof (struct ref *));

  df_insn_table_realloc (df, n_insns);

  df_reg_table_realloc (df, df->n_regs);

  df->bbs_modified = BITMAP_XMALLOC ();
  bitmap_zero (df->bbs_modified);

  df->flags = 0;

519
  df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
Jeff Law committed
520 521

  df->all_blocks = BITMAP_XMALLOC ();
522 523
  FOR_EACH_BB (bb)
    bitmap_set_bit (df->all_blocks, bb->index);
Jeff Law committed
524 525 526 527 528
}


/* Free all the dataflow info.  */
static void
529
df_free (struct df *df)
Jeff Law committed
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
{
  df_bitmaps_free (df, DF_ALL);

  if (df->bbs)
    free (df->bbs);
  df->bbs = 0;

  if (df->insns)
    free (df->insns);
  df->insns = 0;
  df->insn_size = 0;

  if (df->defs)
    free (df->defs);
  df->defs = 0;
  df->def_size = 0;
  df->def_id = 0;

  if (df->uses)
    free (df->uses);
  df->uses = 0;
  df->use_size = 0;
  df->use_id = 0;

  if (df->regs)
    free (df->regs);
  df->regs = 0;
  df->reg_size = 0;

  if (df->bbs_modified)
    BITMAP_XFREE (df->bbs_modified);
  df->bbs_modified = 0;

  if (df->insns_modified)
    BITMAP_XFREE (df->insns_modified);
  df->insns_modified = 0;

  BITMAP_XFREE (df->all_blocks);
  df->all_blocks = 0;

570 571 572
  free_alloc_pool (df_ref_pool);
  free_alloc_pool (df_link_pool);

Jeff Law committed
573 574 575 576 577
}

/* Local miscellaneous routines.  */

/* Return a USE for register REGNO.  */
578
static rtx df_reg_use_gen (unsigned int regno)
Jeff Law committed
579 580 581 582
{
  rtx reg;
  rtx use;

583
  reg = regno_reg_rtx[regno];
584

Jeff Law committed
585 586 587 588 589 590
  use = gen_rtx_USE (GET_MODE (reg), reg);
  return use;
}


/* Return a CLOBBER for register REGNO.  */
591
static rtx df_reg_clobber_gen (unsigned int regno)
Jeff Law committed
592 593 594 595
{
  rtx reg;
  rtx use;

596
  reg = regno_reg_rtx[regno];
Jeff Law committed
597 598 599 600 601 602 603 604 605

  use = gen_rtx_CLOBBER (GET_MODE (reg), reg);
  return use;
}

/* Local chain manipulation routines.  */

/* Create a link in a def-use or use-def chain.  */
static inline struct df_link *
606
df_link_create (struct ref *ref, struct df_link *next)
Jeff Law committed
607 608 609
{
  struct df_link *link;

610
  link = pool_alloc (df_link_pool);
Jeff Law committed
611 612 613 614 615 616 617 618
  link->next = next;
  link->ref = ref;
  return link;
}


/* Add REF to chain head pointed to by PHEAD.  */
static struct df_link *
619
df_ref_unlink (struct df_link **phead, struct ref *ref)
Jeff Law committed
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
  struct df_link *link = *phead;

  if (link)
    {
      if (! link->next)
	{
	  /* Only a single ref.  It must be the one we want.
	     If not, the def-use and use-def chains are likely to
	     be inconsistent.  */
	  if (link->ref != ref)
	    abort ();
	  /* Now have an empty chain.  */
	  *phead = NULL;
	}
      else
	{
	  /* Multiple refs.  One of them must be us.  */
	  if (link->ref == ref)
	    *phead = link->next;
	  else
	    {
	      /* Follow chain.  */
	      for (; link->next; link = link->next)
		{
		  if (link->next->ref == ref)
		    {
		      /* Unlink from list.  */
		      link->next = link->next->next;
		      return link->next;
		    }
		}
	    }
	}
    }
  return link;
}


/* Unlink REF from all def-use/use-def chains, etc.  */
int
661
df_ref_remove (struct df *df, struct ref *ref)
Jeff Law committed
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
{
  if (DF_REF_REG_DEF_P (ref))
    {
      df_def_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
    }
  else
    {
      df_use_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
    }
  return 1;
}


/* Unlink DEF from use-def and reg-def chains.  */
678
static void
679
df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
Jeff Law committed
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
{
  struct df_link *du_link;
  unsigned int dregno = DF_REF_REGNO (def);

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;

      /* Unlink this def from the use-def chain.  */
      df_ref_unlink (&DF_REF_CHAIN (use), def);
    }
  DF_REF_CHAIN (def) = 0;

  /* Unlink def from reg-def chain.  */
  df_ref_unlink (&df->regs[dregno].defs, def);

  df->defs[DF_REF_ID (def)] = 0;
}


/* Unlink use from def-use and reg-use chains.  */
702
static void
703
df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
Jeff Law committed
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
  struct df_link *ud_link;
  unsigned int uregno = DF_REF_REGNO (use);

  /* Follow use-def chain to find all the defs of this use.  */
  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
    {
      struct ref *def = ud_link->ref;

      /* Unlink this use from the def-use chain.  */
      df_ref_unlink (&DF_REF_CHAIN (def), use);
    }
  DF_REF_CHAIN (use) = 0;

  /* Unlink use from reg-use chain.  */
  df_ref_unlink (&df->regs[uregno].uses, use);

  df->uses[DF_REF_ID (use)] = 0;
}

/* Local routines for recording refs.  */


/* Create a new ref of type DF_REF_TYPE for register REG at address
   LOC within INSN of BB.  */
static struct ref *
730 731
df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
	       enum df_ref_type ref_type, enum df_ref_flags ref_flags)
Jeff Law committed
732 733
{
  struct ref *this_ref;
734

735
  this_ref = pool_alloc (df_ref_pool);
Jeff Law committed
736 737 738 739 740
  DF_REF_REG (this_ref) = reg;
  DF_REF_LOC (this_ref) = loc;
  DF_REF_INSN (this_ref) = insn;
  DF_REF_CHAIN (this_ref) = 0;
  DF_REF_TYPE (this_ref) = ref_type;
741
  DF_REF_FLAGS (this_ref) = ref_flags;
Jeff Law committed
742 743 744 745 746 747 748

  if (ref_type == DF_REF_REG_DEF)
    {
      if (df->def_id >= df->def_size)
	{
	  /* Make table 25 percent larger.  */
	  df->def_size += (df->def_size / 4);
749
	  df->defs = xrealloc (df->defs,
Jeff Law committed
750 751 752 753 754 755 756 757 758 759 760
			       df->def_size * sizeof (*df->defs));
	}
      DF_REF_ID (this_ref) = df->def_id;
      df->defs[df->def_id++] = this_ref;
    }
  else
    {
      if (df->use_id >= df->use_size)
	{
	  /* Make table 25 percent larger.  */
	  df->use_size += (df->use_size / 4);
761
	  df->uses = xrealloc (df->uses,
Jeff Law committed
762 763 764 765 766 767 768 769 770 771 772 773
			       df->use_size * sizeof (*df->uses));
	}
      DF_REF_ID (this_ref) = df->use_id;
      df->uses[df->use_id++] = this_ref;
    }
  return this_ref;
}


/* Create a new reference of type DF_REF_TYPE for a single register REG,
   used inside the LOC rtx of INSN.  */
static void
774 775
df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
		 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
Jeff Law committed
776
{
777
  df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
Jeff Law committed
778 779 780 781 782 783
}


/* Create new references of type DF_REF_TYPE for each part of register REG
   at address LOC within INSN of BB.  */
static void
784 785
df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
	       enum df_ref_type ref_type, enum df_ref_flags ref_flags)
Jeff Law committed
786 787 788 789 790 791 792 793 794 795 796 797 798
{
  unsigned int regno;

  if (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)
    abort ();

  /* For the reg allocator we are interested in some SUBREG rtx's, but not
     all.  Notably only those representing a word extraction from a multi-word
     reg.  As written in the docu those should have the form
     (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
     XXX Is that true?  We could also use the global word_mode variable.  */
  if (GET_CODE (reg) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
Kazu Hirata committed
799
	  || GET_MODE_SIZE (GET_MODE (reg))
Jeff Law committed
800 801 802 803
	       >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
    {
      loc = &SUBREG_REG (reg);
      reg = *loc;
804
      ref_flags |= DF_REF_STRIPPED;
Jeff Law committed
805 806 807 808 809 810 811
    }

  regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    {
      int i;
      int endregno;
812

Jeff Law committed
813 814 815
      if (! (df->flags & DF_HARD_REGS))
	return;

816
      /* GET_MODE (reg) is correct here.  We do not want to go into a SUBREG
Jeff Law committed
817
         for the mode, because we only want to add references to regs, which
818
	 are really referenced.  E.g., a (subreg:SI (reg:DI 0) 0) does _not_
Jeff Law committed
819 820
	 reference the whole reg 0 in DI mode (which would also include
	 reg 1, at least, if 0 and 1 are SImode registers).  */
821 822 823 824 825
      endregno = HARD_REGNO_NREGS (regno, GET_MODE (reg));
      if (GET_CODE (reg) == SUBREG)
        regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
				      SUBREG_BYTE (reg), GET_MODE (reg));
      endregno += regno;
Jeff Law committed
826 827

      for (i = regno; i < endregno; i++)
828
	df_ref_record_1 (df, regno_reg_rtx[i],
829
			 loc, insn, ref_type, ref_flags);
Jeff Law committed
830 831 832
    }
  else
    {
833
      df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
Jeff Law committed
834 835 836
    }
}

837

838
/* Return nonzero if writes to paradoxical SUBREGs, or SUBREGs which
839
   are too narrow, are read-modify-write.  */
840
bool
841
read_modify_subreg_p (rtx x)
842
{
843
  unsigned int isize, osize;
844 845
  if (GET_CODE (x) != SUBREG)
    return false;
846 847
  isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
  osize = GET_MODE_SIZE (GET_MODE (x));
848 849
  /* Paradoxical subreg writes don't leave a trace of the old content.  */
  return (isize > osize && isize > UNITS_PER_WORD);
850 851
}

852

Jeff Law committed
853 854
/* Process all the registers defined in the rtx, X.  */
static void
855
df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
Jeff Law committed
856
{
857 858
  rtx *loc;
  rtx dst;
859
  enum df_ref_flags flags = 0;
Jeff Law committed
860

861
 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
862
     construct.  */
863 864 865 866 867 868
  if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
    loc = &XEXP (x, 0);
  else
    loc = &SET_DEST (x);
  dst = *loc;

Jeff Law committed
869 870 871 872 873 874 875
  /* Some targets place small structures in registers for
     return values of functions.  */
  if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
    {
      int i;

      for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
876 877 878 879 880 881
	{
	  rtx temp = XVECEXP (dst, 0, i);
	  if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
	      || GET_CODE (temp) == SET)
	    df_def_record_1 (df, temp, bb, insn);
	}
Jeff Law committed
882 883 884
      return;
    }

885 886
  /* Maybe, we should flag the use of STRICT_LOW_PART somehow.  It might
     be handy for the reg allocator.  */
Jeff Law committed
887
  while (GET_CODE (dst) == STRICT_LOW_PART
Kazu Hirata committed
888
	 || GET_CODE (dst) == ZERO_EXTRACT
Jeff Law committed
889
	 || GET_CODE (dst) == SIGN_EXTRACT
890 891
	 || ((df->flags & DF_FOR_REGALLOC) == 0
             && read_modify_subreg_p (dst)))
Jeff Law committed
892
    {
893
      /* Strict low part always contains SUBREG, but we do not want to make
894
	 it appear outside, as whole register is always considered.  */
895 896 897 898 899
      if (GET_CODE (dst) == STRICT_LOW_PART)
	{
	  loc = &XEXP (dst, 0);
	  dst = *loc;
	}
Jeff Law committed
900 901
      loc = &XEXP (dst, 0);
      dst = *loc;
902
      flags |= DF_REF_READ_WRITE;
Jeff Law committed
903
    }
Kazu Hirata committed
904

Kazu Hirata committed
905 906 907
  if (GET_CODE (dst) == REG
      || (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG))
    df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
Jeff Law committed
908 909 910 911 912
}


/* Process all the registers defined in the pattern rtx, X.  */
static void
913
df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
Jeff Law committed
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
{
  RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    {
      /* Mark the single def within the pattern.  */
      df_def_record_1 (df, x, bb, insn);
    }
  else if (code == PARALLEL)
    {
      int i;

      /* Mark the multiple defs within the pattern.  */
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
	}
    }
}


/* Process all the registers used in the rtx at address LOC.  */
static void
939 940
df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
		basic_block bb, rtx insn, enum df_ref_flags flags)
Jeff Law committed
941 942 943 944 945
{
  RTX_CODE code;
  rtx x;
 retry:
  x = *loc;
946 947
  if (!x)
    return;
Jeff Law committed
948 949 950 951 952 953 954 955
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
956
    case CONST_VECTOR:
Jeff Law committed
957
    case PC:
958
    case CC0:
Jeff Law committed
959 960 961 962 963 964 965 966
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
967
	df_uses_record (df, &XEXP (XEXP (x, 0), 0),
968
			DF_REF_REG_MEM_STORE, bb, insn, flags);
Jeff Law committed
969 970 971 972 973

      /* If we're clobbering a REG then we have a def so ignore.  */
      return;

    case MEM:
974
      df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, flags);
Jeff Law committed
975 976 977 978 979
      return;

    case SUBREG:
      /* While we're here, optimize this case.  */

980
      /* In case the SUBREG is not of a REG, do not optimize.  */
Jeff Law committed
981 982 983
      if (GET_CODE (SUBREG_REG (x)) != REG)
	{
	  loc = &SUBREG_REG (x);
984
	  df_uses_record (df, loc, ref_type, bb, insn, flags);
Jeff Law committed
985 986 987 988 989
	  return;
	}
      /* ... Fall through ...  */

    case REG:
990
      /* See a REG (or SUBREG) other than being set.  */
991
      df_ref_record (df, x, loc, insn, ref_type, flags);
Jeff Law committed
992 993 994 995 996 997
      return;

    case SET:
      {
	rtx dst = SET_DEST (x);

998
	df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
999

1000
	switch (GET_CODE (dst))
Jeff Law committed
1001
	  {
1002
	    enum df_ref_flags use_flags;
1003
	    case SUBREG:
1004 1005
	      if ((df->flags & DF_FOR_REGALLOC) == 0
                  && read_modify_subreg_p (dst))
1006
		{
1007
		  use_flags = DF_REF_READ_WRITE;
1008
		  df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1009
				  insn, use_flags);
1010 1011
		  break;
		}
1012
	      /* ... FALLTHRU ...  */
1013
	    case REG:
1014
	    case PARALLEL:
1015 1016 1017
	    case PC:
	    case CC0:
		break;
1018
	    case MEM:
Kazu Hirata committed
1019
	      df_uses_record (df, &XEXP (dst, 0),
1020 1021 1022 1023
			      DF_REF_REG_MEM_STORE,
			      bb, insn, 0);
	      break;
	    case STRICT_LOW_PART:
1024
	      /* A strict_low_part uses the whole REG and not just the SUBREG.  */
1025 1026 1027
	      dst = XEXP (dst, 0);
	      if (GET_CODE (dst) != SUBREG)
		abort ();
1028
	      use_flags = DF_REF_READ_WRITE;
1029
	      df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1030
			     insn, use_flags);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	      break;
	    case ZERO_EXTRACT:
	    case SIGN_EXTRACT:
	      df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
			      DF_REF_READ_WRITE);
	      df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
	      df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
	      dst = XEXP (dst, 0);
	      break;
	    default:
	      abort ();
Jeff Law committed
1042
	  }
1043
	return;
Jeff Law committed
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
      }

    case RETURN:
      break;

    case ASM_OPERANDS:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
    case ASM_INPUT:
      {
	/* Traditional and volatile asm instructions must be considered to use
	   and clobber all hard registers, all pseudo-registers and all of
	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.

	   Consider for instance a volatile asm that changes the fpu rounding
	   mode.  An insn should not be moved across this even if it only uses
1060
	   pseudo-regs because it might give an incorrectly rounded result.
Jeff Law committed
1061 1062 1063 1064

	   For now, just mark any regs we can find in ASM_OPERANDS as
	   used.  */

Kazu Hirata committed
1065
	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
Jeff Law committed
1066 1067 1068 1069 1070 1071 1072 1073
	   We can not just fall through here since then we would be confused
	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	   traditional asms unlike their normal usage.  */
	if (code == ASM_OPERANDS)
	  {
	    int j;

	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1074
	      df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1075
			      DF_REF_REG_USE, bb, insn, 0);
1076
	    return;
Jeff Law committed
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	  }
	break;
      }

    case PRE_DEC:
    case POST_DEC:
    case PRE_INC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* Catch the def of the register being modified.  */
1088
      df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
Jeff Law committed
1089

1090
      /* ... Fall through to handle uses ...  */
Jeff Law committed
1091 1092 1093 1094 1095 1096 1097

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */
  {
1098
    const char *fmt = GET_RTX_FORMAT (code);
Jeff Law committed
1099
    int i;
1100

Jeff Law committed
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		loc = &XEXP (x, 0);
		goto retry;
	      }
1111
	    df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
Jeff Law committed
1112 1113 1114 1115 1116 1117
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1118
			      bb, insn, flags);
Jeff Law committed
1119 1120 1121 1122 1123 1124 1125 1126
	  }
      }
  }
}


/* Record all the df within INSN of basic block BB.  */
static void
1127
df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
Jeff Law committed
1128 1129 1130 1131 1132
{
  int i;

  if (INSN_P (insn))
    {
1133 1134
      rtx note;

1135
      /* Record register defs.  */
Jeff Law committed
1136
      df_defs_record (df, PATTERN (insn), bb, insn);
1137 1138 1139 1140 1141 1142 1143

      if (df->flags & DF_EQUIV_NOTES)
	for (note = REG_NOTES (insn); note;
	     note = XEXP (note, 1))
	  {
	    switch (REG_NOTE_KIND (note))
	      {
Kazu Hirata committed
1144 1145 1146 1147 1148 1149
	      case REG_EQUIV:
	      case REG_EQUAL:
		df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
				bb, insn, 0);
	      default:
		break;
1150 1151
	      }
	  }
1152

Jeff Law committed
1153 1154 1155 1156
      if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;
	  rtx x;
1157

Jeff Law committed
1158 1159 1160 1161 1162
	  /* Record the registers used to pass arguments.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
	       note = XEXP (note, 1))
	    {
	      if (GET_CODE (XEXP (note, 0)) == USE)
1163
		df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1164
				bb, insn, 0);
Jeff Law committed
1165 1166 1167 1168
	    }

	  /* The stack ptr is used (honorarily) by a CALL insn.  */
	  x = df_reg_use_gen (STACK_POINTER_REGNUM);
1169
	  df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1170

Jeff Law committed
1171 1172 1173 1174 1175 1176 1177 1178 1179
	  if (df->flags & DF_HARD_REGS)
	    {
	      /* Calls may also reference any of the global registers,
		 so they are recorded as used.  */
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		if (global_regs[i])
		  {
		    x = df_reg_use_gen (i);
		    df_uses_record (df, &SET_DEST (x),
Kazu Hirata committed
1180
				    DF_REF_REG_USE, bb, insn, 0);
Jeff Law committed
1181 1182 1183
		  }
	    }
	}
1184

Jeff Law committed
1185
      /* Record the register uses.  */
1186
      df_uses_record (df, &PATTERN (insn),
1187
		      DF_REF_REG_USE, bb, insn, 0);
1188

Jeff Law committed
1189 1190 1191 1192 1193 1194
      if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;

	  if (df->flags & DF_HARD_REGS)
	    {
1195
	      /* Kill all registers invalidated by a call.  */
Jeff Law committed
1196
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197
		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
Jeff Law committed
1198 1199 1200 1201 1202
		  {
		    rtx reg_clob = df_reg_clobber_gen (i);
		    df_defs_record (df, reg_clob, bb, insn);
		  }
	    }
1203

Jeff Law committed
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	  /* There may be extra registers to be clobbered.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
	       note;
	       note = XEXP (note, 1))
	    if (GET_CODE (XEXP (note, 0)) == CLOBBER)
	      df_defs_record (df, XEXP (note, 0), bb, insn);
	}
    }
}


/* Record all the refs within the basic block BB.  */
static void
1217
df_bb_refs_record (struct df *df, basic_block bb)
Jeff Law committed
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  /* Record defs within INSN.  */
	  df_insn_refs_record (df, bb, insn);
	}
      if (insn == bb->end)
	break;
    }
}


/* Record all the refs in the basic blocks specified by BLOCKS.  */
static void
1237
df_refs_record (struct df *df, bitmap blocks)
Jeff Law committed
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_refs_record (df, bb);
    });
}

/* Dataflow analysis routines.  */


/* Create reg-def chains for basic block BB.  These are a list of
   definitions for each register.  */
static void
1253
df_bb_reg_def_chain_create (struct df *df, basic_block bb)
Jeff Law committed
1254 1255
{
  rtx insn;
1256

Jeff Law committed
1257 1258 1259
  /* Perhaps the defs should be sorted using a depth first search
     of the CFG (or possibly a breadth first search).  We currently
     scan the basic blocks in reverse order so that the first defs
1260
     appear at the start of the chain.  */
1261

Jeff Law committed
1262 1263 1264 1265 1266 1267 1268 1269
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1270

Jeff Law committed
1271 1272 1273 1274
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1275 1276 1277 1278 1279

          /* Do not add ref's to the chain twice, i.e., only add new
             refs.  XXX the same could be done by testing if the
             current insn is a modified (or a new) one.  This would be
             faster.  */
1280 1281
          if (DF_REF_ID (def) < df->def_id_save)
            continue;
1282

Jeff Law committed
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	  df->regs[dregno].defs
	    = df_link_create (def, df->regs[dregno].defs);
	}
    }
}


/* Create reg-def chains for each basic block within BLOCKS.  These
   are a list of definitions for each register.  */
static void
1293
df_reg_def_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP/*_REV*/ (blocks, 0, bb,
    {
      df_bb_reg_def_chain_create (df, bb);
    });
}


/* Create reg-use chains for basic block BB.  These are a list of uses
   for each register.  */
static void
1307
df_bb_reg_use_chain_create (struct df *df, basic_block bb)
Jeff Law committed
1308 1309
{
  rtx insn;
1310

1311 1312
  /* Scan in forward order so that the last uses appear at the start
     of the chain.  */
1313

Jeff Law committed
1314 1315 1316 1317 1318 1319 1320 1321
  for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
       insn = NEXT_INSN (insn))
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1322

Jeff Law committed
1323 1324 1325 1326
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);
1327 1328 1329 1330 1331

          /* Do not add ref's to the chain twice, i.e., only add new
             refs.  XXX the same could be done by testing if the
             current insn is a modified (or a new) one.  This would be
             faster.  */
1332 1333
          if (DF_REF_ID (use) < df->use_id_save)
            continue;
1334

Jeff Law committed
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	  df->regs[uregno].uses
	    = df_link_create (use, df->regs[uregno].uses);
	}
    }
}


/* Create reg-use chains for each basic block within BLOCKS.  These
   are a list of uses for each register.  */
static void
1345
df_reg_use_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_reg_use_chain_create (df, bb);
    });
}


/* Create def-use chains from reaching use bitmaps for basic block BB.  */
static void
1358
df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
Jeff Law committed
1359 1360 1361
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1362

Jeff Law committed
1363
  bitmap_copy (ru, bb_info->ru_out);
1364

Jeff Law committed
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  /* For each def in BB create a linked list (chain) of uses
     reached from the def.  */
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      struct df_link *def_link;
      struct df_link *use_link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1376

Jeff Law committed
1377 1378 1379 1380 1381
      /* For each def in insn...  */
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1382

Jeff Law committed
1383 1384 1385 1386 1387
	  DF_REF_CHAIN (def) = 0;

	  /* While the reg-use chains are not essential, it
	     is _much_ faster to search these short lists rather
	     than all the reaching uses, especially for large functions.  */
1388
	  for (use_link = df->regs[dregno].uses; use_link;
Jeff Law committed
1389 1390 1391
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;
1392

Jeff Law committed
1393 1394
	      if (bitmap_bit_p (ru, DF_REF_ID (use)))
		{
1395
		  DF_REF_CHAIN (def)
Jeff Law committed
1396
		    = df_link_create (use, DF_REF_CHAIN (def));
1397

Jeff Law committed
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		  bitmap_clear_bit (ru, DF_REF_ID (use));
		}
	    }
	}

      /* For each use in insn...  */
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  bitmap_set_bit (ru, DF_REF_ID (use));
	}
    }
}


/* Create def-use chains from reaching use bitmaps for basic blocks
   in BLOCKS.  */
static void
1416
df_du_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
{
  bitmap ru;
  basic_block bb;

  ru = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_du_chain_create (df, bb, ru);
    });

  BITMAP_XFREE (ru);
}


/* Create use-def chains from reaching def bitmaps for basic block BB.  */
static void
1434
df_bb_ud_chain_create (struct df *df, basic_block bb)
Jeff Law committed
1435 1436 1437 1438
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  struct ref **reg_def_last = df->reg_def_last;
  rtx insn;
1439

Jeff Law committed
1440
  memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1441

Jeff Law committed
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
  /* For each use in BB create a linked list (chain) of defs
     that reach the use.  */
  for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
       insn = NEXT_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *use_link;
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;

1454
      /* For each use in insn...  */
Jeff Law committed
1455 1456 1457 1458
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  unsigned int regno = DF_REF_REGNO (use);
1459

Jeff Law committed
1460 1461 1462 1463 1464 1465 1466 1467 1468
	  DF_REF_CHAIN (use) = 0;

	  /* Has regno been defined in this BB yet?  If so, use
	     the last def as the single entry for the use-def
	     chain for this use.  Otherwise, we need to add all
	     the defs using this regno that reach the start of
	     this BB.  */
	  if (reg_def_last[regno])
	    {
1469
	      DF_REF_CHAIN (use)
Jeff Law committed
1470 1471 1472 1473 1474 1475 1476 1477
		= df_link_create (reg_def_last[regno], 0);
	    }
	  else
	    {
	      /* While the reg-def chains are not essential, it is
		 _much_ faster to search these short lists rather than
		 all the reaching defs, especially for large
		 functions.  */
1478
	      for (def_link = df->regs[regno].defs; def_link;
Jeff Law committed
1479 1480 1481
		   def_link = def_link->next)
		{
		  struct ref *def = def_link->ref;
1482

Jeff Law committed
1483 1484
		  if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
		    {
1485
		      DF_REF_CHAIN (use)
Jeff Law committed
1486 1487 1488 1489 1490
			= df_link_create (def, DF_REF_CHAIN (use));
		    }
		}
	    }
	}
1491

Jeff Law committed
1492

1493
      /* For each def in insn... record the last def of each reg.  */
Jeff Law committed
1494 1495 1496 1497
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  int dregno = DF_REF_REGNO (def);
1498

Jeff Law committed
1499 1500 1501 1502 1503 1504 1505 1506 1507
	  reg_def_last[dregno] = def;
	}
    }
}


/* Create use-def chains from reaching def bitmaps for basic blocks
   within BLOCKS.  */
static void
1508
df_ud_chain_create (struct df *df, bitmap blocks)
Jeff Law committed
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_ud_chain_create (df, bb);
    });
}


1519

Jeff Law committed
1520
static void
1521 1522 1523
df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, bitmap in,
			 bitmap out, bitmap gen, bitmap kill,
			 void *data ATTRIBUTE_UNUSED)
Jeff Law committed
1524
{
1525
  *changed = bitmap_union_of_diff (out, gen, in, kill);
Jeff Law committed
1526
}
1527 1528


Jeff Law committed
1529
static void
1530 1531 1532
df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, bitmap in,
			 bitmap out, bitmap gen, bitmap kill,
			 void *data ATTRIBUTE_UNUSED)
Jeff Law committed
1533
{
1534
  *changed = bitmap_union_of_diff (in, gen, out, kill);
Jeff Law committed
1535 1536
}

1537

Jeff Law committed
1538
static void
1539 1540 1541
df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, bitmap in,
			 bitmap out, bitmap use, bitmap def,
			 void *data ATTRIBUTE_UNUSED)
Jeff Law committed
1542
{
1543
  *changed = bitmap_union_of_diff (in, use, out, def);
Jeff Law committed
1544 1545 1546 1547 1548
}


/* Compute local reaching def info for basic block BB.  */
static void
1549
df_bb_rd_local_compute (struct df *df, basic_block bb)
Jeff Law committed
1550 1551 1552
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1553

Jeff Law committed
1554 1555 1556 1557 1558 1559 1560 1561
  for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
       insn = NEXT_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;
1562

Jeff Law committed
1563 1564 1565 1566 1567 1568
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int regno = DF_REF_REGNO (def);
	  struct df_link *def2_link;

1569
	  for (def2_link = df->regs[regno].defs; def2_link;
Jeff Law committed
1570 1571 1572 1573 1574 1575 1576 1577 1578
	       def2_link = def2_link->next)
	    {
	      struct ref *def2 = def2_link->ref;

	      /* Add all defs of this reg to the set of kills.  This
		 is greedy since many of these defs will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1579

Jeff Law committed
1580 1581 1582 1583 1584 1585 1586
	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->rd_gen, DF_REF_ID (def2));
	    }

	  bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
	}
    }
Kazu Hirata committed
1587

Jeff Law committed
1588 1589 1590 1591 1592 1593
  bb_info->rd_valid = 1;
}


/* Compute local reaching def info for each basic block within BLOCKS.  */
static void
1594
df_rd_local_compute (struct df *df, bitmap blocks)
Jeff Law committed
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_rd_local_compute (df, bb);
  });
}


/* Compute local reaching use (upward exposed use) info for basic
   block BB.  */
static void
1608
df_bb_ru_local_compute (struct df *df, basic_block bb)
Jeff Law committed
1609 1610 1611 1612
{
  /* This is much more tricky than computing reaching defs.  With
     reaching defs, defs get killed by other defs.  With upwards
     exposed uses, these get killed by defs with the same regno.  */
Kazu Hirata committed
1613

Jeff Law committed
1614 1615 1616
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;

1617

Jeff Law committed
1618 1619 1620 1621 1622 1623 1624 1625 1626
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;
      struct df_link *use_link;

      if (! INSN_P (insn))
	continue;
1627

Jeff Law committed
1628 1629 1630 1631 1632
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

1633
	  for (use_link = df->regs[dregno].uses; use_link;
Jeff Law committed
1634 1635 1636 1637 1638 1639 1640 1641 1642
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;

	      /* Add all uses of this reg to the set of kills.  This
		 is greedy since many of these uses will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1643

Jeff Law committed
1644 1645 1646 1647
	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
	    }
	}
1648

Jeff Law committed
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  /* Add use to set of gens in this BB.  */
	  bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
	}
    }
  bb_info->ru_valid = 1;
}


/* Compute local reaching use (upward exposed use) info for each basic
   block within BLOCKS.  */
static void
1663
df_ru_local_compute (struct df *df, bitmap blocks)
Jeff Law committed
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_ru_local_compute (df, bb);
  });
}


/* Compute local live variable info for basic block BB.  */
static void
1676
df_bb_lr_local_compute (struct df *df, basic_block bb)
Jeff Law committed
1677 1678 1679
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1680

Jeff Law committed
1681 1682 1683 1684 1685 1686 1687 1688
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *link;

      if (! INSN_P (insn))
	continue;
1689

Jeff Law committed
1690 1691 1692 1693
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1694

Jeff Law committed
1695 1696
	  /* Add def to set of defs in this BB.  */
	  bitmap_set_bit (bb_info->lr_def, dregno);
1697

Jeff Law committed
1698 1699
	  bitmap_clear_bit (bb_info->lr_use, dregno);
	}
1700

Jeff Law committed
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  /* Add use to set of uses in this BB.  */
	  bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
	}
    }
  bb_info->lr_valid = 1;
}


/* Compute local live variable info for each basic block within BLOCKS.  */
static void
1714
df_lr_local_compute (struct df *df, bitmap blocks)
Jeff Law committed
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_lr_local_compute (df, bb);
  });
}


/* Compute register info: lifetime, bb, and number of defs and uses
   for basic block BB.  */
static void
1728
df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
Jeff Law committed
1729 1730 1731 1732
{
  struct reg_info *reg_info = df->regs;
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1733

Jeff Law committed
1734
  bitmap_copy (live, bb_info->lr_out);
1735

Jeff Law committed
1736 1737 1738 1739 1740 1741
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      unsigned int regno;
      struct df_link *link;
1742

Jeff Law committed
1743 1744
      if (! INSN_P (insn))
	continue;
1745

Jeff Law committed
1746 1747 1748 1749
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1750

Jeff Law committed
1751 1752 1753 1754
	  /* Kill this register.  */
	  bitmap_clear_bit (live, dregno);
	  reg_info[dregno].n_defs++;
	}
1755

Jeff Law committed
1756 1757 1758 1759
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);
1760

Jeff Law committed
1761 1762 1763 1764
	  /* This register is now live.  */
	  bitmap_set_bit (live, uregno);
	  reg_info[uregno].n_uses++;
	}
1765

Jeff Law committed
1766 1767
      /* Increment lifetimes of all live registers.  */
      EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1768
      {
Jeff Law committed
1769 1770 1771 1772 1773 1774 1775 1776
	reg_info[regno].lifetime++;
      });
    }
}


/* Compute register info: lifetime, bb, and number of defs and uses.  */
static void
1777
df_reg_info_compute (struct df *df, bitmap blocks)
Jeff Law committed
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
{
  basic_block bb;
  bitmap live;

  live = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_reg_info_compute (df, bb, live);
  });

  BITMAP_XFREE (live);
}


/* Assign LUIDs for BB.  */
static int
1795
df_bb_luids_set (struct df *df, basic_block bb)
Jeff Law committed
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
{
  rtx insn;
  int luid = 0;

  /* The LUIDs are monotonically increasing for each basic block.  */

  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	DF_INSN_LUID (df, insn) = luid++;
      DF_INSN_LUID (df, insn) = luid;

      if (insn == bb->end)
	break;
    }
  return luid;
}


/* Assign LUIDs for each basic block within BLOCKS.  */
static int
1817
df_luids_set (struct df *df, bitmap blocks)
Jeff Law committed
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
{
  basic_block bb;
  int total = 0;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      total += df_bb_luids_set (df, bb);
    });
  return total;
}

1829

Jeff Law committed
1830 1831 1832
/* Perform dataflow analysis using existing DF structure for blocks
   within BLOCKS.  If BLOCKS is zero, use all basic blocks in the CFG.  */
static void
1833
df_analyse_1 (struct df *df, bitmap blocks, int flags, int update)
Jeff Law committed
1834 1835 1836
{
  int aflags;
  int dflags;
1837
  int i;
1838 1839
  basic_block bb;

Jeff Law committed
1840
  dflags = 0;
1841
  aflags = flags;
Jeff Law committed
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
  if (flags & DF_UD_CHAIN)
    aflags |= DF_RD | DF_RD_CHAIN;

  if (flags & DF_DU_CHAIN)
    aflags |= DF_RU;

  if (flags & DF_RU)
    aflags |= DF_RU_CHAIN;

  if (flags & DF_REG_INFO)
    aflags |= DF_LR;

  if (! blocks)
Kazu Hirata committed
1855
    blocks = df->all_blocks;
Jeff Law committed
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

  df->flags = flags;
  if (update)
    {
      df_refs_update (df);
      /* More fine grained incremental dataflow analysis would be
	 nice.  For now recompute the whole shebang for the
	 modified blocks.  */
#if 0
      df_refs_unlink (df, blocks);
#endif
      /* All the def-use, use-def chains can be potentially
	 modified by changes in one block.  The size of the
	 bitmaps can also change.  */
    }
  else
    {
      /* Scan the function for all register defs and uses.  */
      df_refs_queue (df);
      df_refs_record (df, blocks);

      /* Link all the new defs and uses to the insns.  */
      df_refs_process (df);
    }

  /* Allocate the bitmaps now the total number of defs and uses are
     known.  If the number of defs or uses have changed, then
     these bitmaps need to be reallocated.  */
  df_bitmaps_alloc (df, aflags);

  /* Set the LUIDs for each specified basic block.  */
  df_luids_set (df, blocks);

  /* Recreate reg-def and reg-use chains from scratch so that first
     def is at the head of the reg-def chain and the last use is at
     the head of the reg-use chain.  This is only important for
     regs local to a basic block as it speeds up searching.  */
  if (aflags & DF_RD_CHAIN)
    {
      df_reg_def_chain_create (df, blocks);
    }

  if (aflags & DF_RU_CHAIN)
    {
      df_reg_use_chain_create (df, blocks);
    }

Kazu Hirata committed
1903 1904 1905 1906 1907 1908
  df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
1909

Jeff Law committed
1910
  flow_depth_first_order_compute (df->dfs_order, df->rc_order);
1911
  flow_reverse_top_sort_order_compute (df->rts_order);
Kazu Hirata committed
1912 1913 1914 1915 1916 1917
  for (i = 0; i < n_basic_blocks; i++)
    {
      df->inverse_dfs_map[df->dfs_order[i]] = i;
      df->inverse_rc_map[df->rc_order[i]] = i;
      df->inverse_rts_map[df->rts_order[i]] = i;
    }
Jeff Law committed
1918 1919 1920 1921
  if (aflags & DF_RD)
    {
      /* Compute the sets of gens and kills for the defs of each bb.  */
      df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
1922
      {
1923 1924 1925 1926
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
1927
	FOR_EACH_BB (bb)
1928
	  {
1929 1930 1931 1932
	    in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
	    gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
	    kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
1933
	  }
Kazu Hirata committed
1934
	iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
1935
				   DF_FORWARD, DF_UNION, df_rd_transfer_function,
1936 1937 1938 1939 1940 1941
				   df->inverse_rc_map, NULL);
	free (in);
	free (out);
	free (gen);
	free (kill);
      }
Jeff Law committed
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    }

  if (aflags & DF_UD_CHAIN)
    {
      /* Create use-def chains.  */
      df_ud_chain_create (df, df->all_blocks);

      if (! (flags & DF_RD))
	dflags |= DF_RD;
    }
1952

Jeff Law committed
1953 1954 1955 1956 1957
  if (aflags & DF_RU)
    {
      /* Compute the sets of gens and kills for the upwards exposed
	 uses in each bb.  */
      df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
1958
      {
1959 1960 1961 1962
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
1963
	FOR_EACH_BB (bb)
1964
	  {
1965 1966 1967 1968
	    in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
	    gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
	    kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
1969
	  }
Kazu Hirata committed
1970
	iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
1971
				   DF_BACKWARD, DF_UNION, df_ru_transfer_function,
1972 1973 1974 1975 1976 1977
				   df->inverse_rts_map, NULL);
	free (in);
	free (out);
	free (gen);
	free (kill);
      }
Jeff Law committed
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    }

  if (aflags & DF_DU_CHAIN)
    {
      /* Create def-use chains.  */
      df_du_chain_create (df, df->all_blocks);

      if (! (flags & DF_RU))
	dflags |= DF_RU;
    }

  /* Free up bitmaps that are no longer required.  */
  if (dflags)
Kazu Hirata committed
1991
    df_bitmaps_free (df, dflags);
Jeff Law committed
1992 1993 1994 1995

  if (aflags & DF_LR)
    {
      /* Compute the sets of defs and uses of live variables.  */
Kazu Hirata committed
1996
      df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
1997
      {
1998 1999 2000 2001
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *use = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *def = xmalloc (sizeof (bitmap) * last_basic_block);
2002
	FOR_EACH_BB (bb)
2003
	  {
2004 2005 2006 2007
	    in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
	    use[bb->index] = DF_BB_INFO (df, bb)->lr_use;
	    def[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2008
	  }
Kazu Hirata committed
2009
	iterative_dataflow_bitmap (in, out, use, def, df->all_blocks,
2010
				   DF_BACKWARD, DF_UNION, df_lr_transfer_function,
2011 2012 2013 2014 2015 2016
				   df->inverse_rts_map, NULL);
	free (in);
	free (out);
	free (use);
	free (def);
      }
Jeff Law committed
2017 2018 2019 2020 2021
    }

  if (aflags & DF_REG_INFO)
    {
      df_reg_info_compute (df, df->all_blocks);
2022
    }
2023

Jeff Law committed
2024 2025
  free (df->dfs_order);
  free (df->rc_order);
2026
  free (df->rts_order);
2027 2028 2029
  free (df->inverse_rc_map);
  free (df->inverse_dfs_map);
  free (df->inverse_rts_map);
Jeff Law committed
2030 2031 2032
}


2033
/* Initialize dataflow analysis.  */
Jeff Law committed
2034
struct df *
2035
df_init (void)
Jeff Law committed
2036 2037 2038 2039 2040 2041 2042
{
  struct df *df;

  df = xcalloc (1, sizeof (struct df));

  /* Squirrel away a global for debugging.  */
  ddf = df;
2043

Jeff Law committed
2044 2045 2046 2047 2048 2049
  return df;
}


/* Start queuing refs.  */
static int
2050
df_refs_queue (struct df *df)
Jeff Law committed
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
  df->def_id_save = df->def_id;
  df->use_id_save = df->use_id;
  /* ???? Perhaps we should save current obstack state so that we can
     unwind it.  */
  return 0;
}


/* Process queued refs.  */
static int
2062
df_refs_process (struct df *df)
Jeff Law committed
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
{
  unsigned int i;

  /* Build new insn-def chains.  */
  for (i = df->def_id_save; i != df->def_id; i++)
    {
      struct ref *def = df->defs[i];
      unsigned int uid = DF_REF_INSN_UID (def);

      /* Add def to head of def list for INSN.  */
      df->insns[uid].defs
	= df_link_create (def, df->insns[uid].defs);
    }

  /* Build new insn-use chains.  */
  for (i = df->use_id_save; i != df->use_id; i++)
    {
      struct ref *use = df->uses[i];
      unsigned int uid = DF_REF_INSN_UID (use);

      /* Add use to head of use list for INSN.  */
      df->insns[uid].uses
	= df_link_create (use, df->insns[uid].uses);
    }
  return 0;
}


/* Update refs for basic block BB.  */
2092
static int
2093
df_bb_refs_update (struct df *df, basic_block bb)
Jeff Law committed
2094 2095 2096 2097
{
  rtx insn;
  int count = 0;

2098
  /* While we have to scan the chain of insns for this BB, we do not
Jeff Law committed
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
     need to allocate and queue a long chain of BB/INSN pairs.  Using
     a bitmap for insns_modified saves memory and avoids queuing
     duplicates.  */

  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      unsigned int uid;

      uid = INSN_UID (insn);

      if (bitmap_bit_p (df->insns_modified, uid))
	{
	  /* Delete any allocated refs of this insn.  MPH,  FIXME.  */
	  df_insn_refs_unlink (df, bb, insn);
2113

Jeff Law committed
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	  /* Scan the insn for refs.  */
	  df_insn_refs_record (df, bb, insn);

	  count++;
	}
      if (insn == bb->end)
	break;
    }
  return count;
}


/* Process all the modified/deleted insns that were queued.  */
static int
2128
df_refs_update (struct df *df)
Jeff Law committed
2129 2130 2131 2132
{
  basic_block bb;
  int count = 0;

Kazu Hirata committed
2133
  if ((unsigned int) max_reg_num () >= df->reg_size)
Jeff Law committed
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    df_reg_table_realloc (df, 0);

  df_refs_queue (df);

  FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
    {
      count += df_bb_refs_update (df, bb);
    });

  df_refs_process (df);
  return count;
}


2148
/* Return nonzero if any of the requested blocks in the bitmap
Jeff Law committed
2149 2150
   BLOCKS have been modified.  */
static int
2151
df_modified_p (struct df *df, bitmap blocks)
Jeff Law committed
2152 2153
{
  int update = 0;
2154 2155 2156 2157
  basic_block bb;

  if (!df->n_bbs)
    return 0;
Jeff Law committed
2158

2159 2160 2161
  FOR_EACH_BB (bb)
    if (bitmap_bit_p (df->bbs_modified, bb->index)
	&& (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
Jeff Law committed
2162 2163 2164 2165 2166 2167 2168 2169 2170
    {
      update = 1;
      break;
    }

  return update;
}


2171
/* Analyze dataflow info for the basic blocks specified by the bitmap
Jeff Law committed
2172 2173 2174
   BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
   modified blocks if BLOCKS is -1.  */
int
2175
df_analyse (struct df *df, bitmap blocks, int flags)
Jeff Law committed
2176 2177 2178 2179 2180
{
  int update;

  /* We could deal with additional basic blocks being created by
     rescanning everything again.  */
2181
  if (df->n_bbs && df->n_bbs != (unsigned int) last_basic_block)
Jeff Law committed
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    abort ();

  update = df_modified_p (df, blocks);
  if (update || (flags != df->flags))
    {
      if (! blocks)
	{
	  if (df->n_bbs)
	    {
	      /* Recompute everything from scratch.  */
	      df_free (df);
	    }
2194
	  /* Allocate and initialize data structures.  */
Jeff Law committed
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	  df_alloc (df, max_reg_num ());
	  df_analyse_1 (df, 0, flags, 0);
	  update = 1;
	}
      else
	{
	  if (blocks == (bitmap) -1)
	    blocks = df->bbs_modified;

	  if (! df->n_bbs)
	    abort ();

	  df_analyse_1 (df, blocks, flags, 1);
	  bitmap_zero (df->bbs_modified);
2209
	  bitmap_zero (df->insns_modified);
Jeff Law committed
2210 2211 2212 2213 2214 2215 2216 2217
	}
    }
  return update;
}


/* Free all the dataflow info and the DF structure.  */
void
2218
df_finish (struct df *df)
Jeff Law committed
2219 2220 2221 2222 2223 2224 2225 2226
{
  df_free (df);
  free (df);
}


/* Unlink INSN from its reference information.  */
static void
2227
df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
Jeff Law committed
2228 2229 2230
{
  struct df_link *link;
  unsigned int uid;
2231

Jeff Law committed
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
  uid = INSN_UID (insn);

  /* Unlink all refs defined by this insn.  */
  for (link = df->insns[uid].defs; link; link = link->next)
    df_def_unlink (df, link->ref);

  /* Unlink all refs used by this insn.  */
  for (link = df->insns[uid].uses; link; link = link->next)
    df_use_unlink (df, link->ref);

  df->insns[uid].defs = 0;
  df->insns[uid].uses = 0;
}


2247
#if 0
Jeff Law committed
2248 2249
/* Unlink all the insns within BB from their reference information.  */
static void
2250
df_bb_refs_unlink (struct df *df, basic_block bb)
Jeff Law committed
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  /* Unlink refs for INSN.  */
	  df_insn_refs_unlink (df, bb, insn);
	}
      if (insn == bb->end)
	break;
    }
}


/* Unlink all the refs in the basic blocks specified by BLOCKS.
   Not currently used.  */
static void
2271
df_refs_unlink (struct df *df, bitmap blocks)
Jeff Law committed
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
{
  basic_block bb;

  if (blocks)
    {
      FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
      {
	df_bb_refs_unlink (df, bb);
      });
    }
  else
    {
2284
      FOR_EACH_BB (bb)
Jeff Law committed
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	df_bb_refs_unlink (df, bb);
    }
}
#endif

/* Functions to modify insns.  */


/* Delete INSN and all its reference information.  */
rtx
2295
df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
Jeff Law committed
2296 2297 2298 2299 2300 2301 2302 2303 2304
{
  /* If the insn is a jump, we should perhaps call delete_insn to
     handle the JUMP_LABEL?  */

  /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label.  */
  if (insn == bb->head)
    abort ();

  /* Delete the insn.  */
2305
  delete_insn (insn);
Jeff Law committed
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

  df_insn_modify (df, bb, insn);

  return NEXT_INSN (insn);
}


/* Mark that INSN within BB may have changed  (created/modified/deleted).
   This may be called multiple times for the same insn.  There is no
   harm calling this function if the insn wasn't changed; it will just
   slow down the rescanning of refs.  */
void
2318
df_insn_modify (struct df *df, basic_block bb, rtx insn)
Jeff Law committed
2319 2320 2321 2322
{
  unsigned int uid;

  uid = INSN_UID (insn);
2323
  if (uid >= df->insn_size)
2324
    df_insn_table_realloc (df, uid);
2325

2326
  bitmap_set_bit (df->bbs_modified, bb->index);
Jeff Law committed
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
  bitmap_set_bit (df->insns_modified, uid);

  /* For incremental updating on the fly, perhaps we could make a copy
     of all the refs of the original insn and turn them into
     anti-refs.  When df_refs_update finds these anti-refs, it annihilates
     the original refs.  If validate_change fails then these anti-refs
     will just get ignored.  */
}


2337 2338
typedef struct replace_args
{
Jeff Law committed
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
  rtx match;
  rtx replacement;
  rtx insn;
  int modified;
} replace_args;


/* Replace mem pointed to by PX with its associated pseudo register.
   DATA is actually a pointer to a structure describing the
   instruction currently being scanned and the MEM we are currently
   replacing.  */
static int
2351
df_rtx_mem_replace (rtx *px, void *data)
Jeff Law committed
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
{
  replace_args *args = (replace_args *) data;
  rtx mem = *px;

  if (mem == NULL_RTX)
    return 0;

  switch (GET_CODE (mem))
    {
    case MEM:
      break;

    case CONST_DOUBLE:
      /* We're not interested in the MEM associated with a
	 CONST_DOUBLE, so there's no need to traverse into one.  */
      return -1;

    default:
      /* This is not a MEM.  */
      return 0;
    }

  if (!rtx_equal_p (args->match, mem))
    /* This is not the MEM we are currently replacing.  */
    return 0;

  /* Actually replace the MEM.  */
  validate_change (args->insn, px, args->replacement, 1);
  args->modified++;

  return 0;
}


int
2387
df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
Jeff Law committed
2388 2389 2390 2391 2392 2393 2394 2395
{
  replace_args args;

  args.insn = insn;
  args.match = mem;
  args.replacement = reg;
  args.modified = 0;

2396
  /* Search and replace all matching mems within insn.  */
Jeff Law committed
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
  for_each_rtx (&insn, df_rtx_mem_replace, &args);

  if (args.modified)
    df_insn_modify (df, bb, insn);

  /* ???? FIXME.  We may have a new def or one or more new uses of REG
     in INSN.  REG should be a new pseudo so it won't affect the
     dataflow information that we currently have.  We should add
     the new uses and defs to INSN and then recreate the chains
     when df_analyse is called.  */
  return args.modified;
}


/* Replace one register with another.  Called through for_each_rtx; PX
   points to the rtx being scanned.  DATA is actually a pointer to a
   structure of arguments.  */
static int
2415
df_rtx_reg_replace (rtx *px, void *data)
Jeff Law committed
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
{
  rtx x = *px;
  replace_args *args = (replace_args *) data;

  if (x == NULL_RTX)
    return 0;

  if (x == args->match)
    {
      validate_change (args->insn, px, args->replacement, 1);
      args->modified++;
    }

  return 0;
}


/* Replace the reg within every ref on CHAIN that is within the set
   BLOCKS of basic blocks with NEWREG.  Also update the regs within
   REG_NOTES.  */
void
2437
df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
Jeff Law committed
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
{
  struct df_link *link;
  replace_args args;

  if (! blocks)
    blocks = df->all_blocks;

  args.match = oldreg;
  args.replacement = newreg;
  args.modified = 0;

  for (link = chain; link; link = link->next)
    {
      struct ref *ref = link->ref;
      rtx insn = DF_REF_INSN (ref);

      if (! INSN_P (insn))
	continue;

      if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
	{
	  df_ref_reg_replace (df, ref, oldreg, newreg);

	  /* Replace occurrences of the reg within the REG_NOTES.  */
	  if ((! link->next || DF_REF_INSN (ref)
	      != DF_REF_INSN (link->next->ref))
	      && REG_NOTES (insn))
	    {
	      args.insn = insn;
	      for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
	    }
	}
      else
	{
	  /* Temporary check to ensure that we have a grip on which
	     regs should be replaced.  */
	  abort ();
	}
    }
}


/* Replace all occurrences of register OLDREG with register NEWREG in
   blocks defined by bitmap BLOCKS.  This also replaces occurrences of
   OLDREG in the REG_NOTES but only for insns containing OLDREG.  This
   routine expects the reg-use and reg-def chains to be valid.  */
int
2485
df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
Jeff Law committed
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
{
  unsigned int oldregno = REGNO (oldreg);

  df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
  df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
  return 1;
}


/* Try replacing the reg within REF with NEWREG.  Do not modify
   def-use/use-def chains.  */
int
2498
df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
Jeff Law committed
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
{
  /* Check that insn was deleted by being converted into a NOTE.  If
   so ignore this insn.  */
  if (! INSN_P (DF_REF_INSN (ref)))
    return 0;

  if (oldreg && oldreg != DF_REF_REG (ref))
    abort ();

  if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
    return 0;

  df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
  return 1;
}


struct ref*
2517
df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
Jeff Law committed
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
{
  struct ref *def;
  struct ref *use;
  int def_uid;
  int use_uid;
  struct df_link *link;

  def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
  if (! def)
    return 0;

  use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
  if (! use)
    return 0;

  /* The USE no longer exists.  */
  use_uid = INSN_UID (use_insn);
  df_use_unlink (df, use);
  df_ref_unlink (&df->insns[use_uid].uses, use);

  /* The DEF requires shifting so remove it from DEF_INSN
     and add it to USE_INSN by reusing LINK.  */
  def_uid = INSN_UID (def_insn);
  link = df_ref_unlink (&df->insns[def_uid].defs, def);
  link->ref = def;
  link->next = df->insns[use_uid].defs;
  df->insns[use_uid].defs = link;

#if 0
  link = df_ref_unlink (&df->regs[regno].defs, def);
  link->ref = def;
  link->next = df->regs[regno].defs;
  df->insns[regno].defs = link;
#endif

  DF_REF_INSN (def) = use_insn;
  return def;
}


2558
/* Record df between FIRST_INSN and LAST_INSN inclusive.  All new
Jeff Law committed
2559 2560
   insns must be processed by this routine.  */
static void
2561
df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
Jeff Law committed
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
{
  rtx insn;

  for (insn = first_insn; ; insn = NEXT_INSN (insn))
    {
      unsigned int uid;

      /* A non-const call should not have slipped through the net.  If
	 it does, we need to create a new basic block.  Ouch.  The
	 same applies for a label.  */
      if ((GET_CODE (insn) == CALL_INSN
2573
	   && ! CONST_OR_PURE_CALL_P (insn))
Jeff Law committed
2574 2575 2576 2577 2578 2579
	  || GET_CODE (insn) == CODE_LABEL)
	abort ();

      uid = INSN_UID (insn);

      if (uid >= df->insn_size)
2580
	df_insn_table_realloc (df, uid);
Jeff Law committed
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

      df_insn_modify (df, bb, insn);

      if (insn == last_insn)
	break;
    }
}


/* Emit PATTERN before INSN within BB.  */
rtx
2592
df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
Jeff Law committed
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
{
  rtx ret_insn;
  rtx prev_insn = PREV_INSN (insn);

  /* We should not be inserting before the start of the block.  */
  if (insn == bb->head)
    abort ();
  ret_insn = emit_insn_before (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;
2603

Jeff Law committed
2604 2605 2606 2607 2608 2609 2610
  df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
  return ret_insn;
}


/* Emit PATTERN after INSN within BB.  */
rtx
2611
df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
Jeff Law committed
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
{
  rtx ret_insn;

  ret_insn = emit_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Emit jump PATTERN after INSN within BB.  */
rtx
2626
df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
Jeff Law committed
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
{
  rtx ret_insn;

  ret_insn = emit_jump_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Move INSN within BB before BEFORE_INSN within BEFORE_BB.

   This function should only be used to move loop invariant insns
   out of a loop where it has been proven that the def-use info
   will still be valid.  */
rtx
2645
df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
Jeff Law committed
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
{
  struct df_link *link;
  unsigned int uid;

  if (! bb)
    return df_pattern_emit_before (df, insn, before_bb, before_insn);

  uid = INSN_UID (insn);

  /* Change bb for all df defined and used by this insn.  */
2656
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2657
    DF_REF_BB (link->ref) = before_bb;
2658
  for (link = df->insns[uid].uses; link; link = link->next)
Jeff Law committed
2659 2660 2661 2662 2663 2664 2665 2666 2667
    DF_REF_BB (link->ref) = before_bb;

  /* The lifetimes of the registers used in this insn will be reduced
     while the lifetimes of the registers defined in this insn
     are likely to be increased.  */

  /* ???? Perhaps all the insns moved should be stored on a list
     which df_analyse removes when it recalculates data flow.  */

2668
  return emit_insn_before (insn, before_insn);
Jeff Law committed
2669 2670 2671 2672 2673 2674
}

/* Functions to query dataflow information.  */


int
2675 2676
df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
		     rtx insn, unsigned int regno)
Jeff Law committed
2677 2678 2679 2680 2681 2682
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2683
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2684 2685
    {
      struct ref *def = link->ref;
2686

Jeff Law committed
2687 2688 2689 2690 2691 2692 2693 2694 2695
      if (DF_REF_REGNO (def) == regno)
	return 1;
    }

  return 0;
}


static int
2696
df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
Jeff Law committed
2697 2698 2699 2700 2701 2702 2703 2704
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;
2705

Jeff Law committed
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
      /* Follow use-def chain to check all the defs for this use.  */
      for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	if (ud_link->ref != def)
	  return 0;
    }
  return 1;
}


int
2716 2717
df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
			      rtx insn)
Jeff Law committed
2718 2719 2720 2721 2722 2723
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2724
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2725 2726
    {
      struct ref *def = link->ref;
2727

Jeff Law committed
2728 2729 2730 2731 2732 2733 2734 2735
      if (! df_def_dominates_all_uses_p (df, def))
	return 0;
    }

  return 1;
}


2736
/* Return nonzero if all DF dominates all the uses within the bitmap
Jeff Law committed
2737 2738
   BLOCKS.  */
static int
2739 2740
df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
			 bitmap blocks)
Jeff Law committed
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;

      /* Only worry about the uses within BLOCKS.  For example,
      consider a register defined within a loop that is live at the
      loop exits.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
	{
	  /* Follow use-def chain to check all the defs for this use.  */
	  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	    if (ud_link->ref != def)
	      return 0;
	}
    }
  return 1;
}


2765
/* Return nonzero if all the defs of INSN within BB dominates
Jeff Law committed
2766 2767
   all the corresponding uses.  */
int
2768 2769
df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
			  rtx insn, bitmap blocks)
Jeff Law committed
2770 2771 2772 2773 2774 2775
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2776
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
    {
      struct ref *def = link->ref;

      /* Only consider the defs within BLOCKS.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
	  && ! df_def_dominates_uses_p (df, def, blocks))
	return 0;
    }
  return 1;
}


/* Return the basic block that REG referenced in or NULL if referenced
   in multiple basic blocks.  */
basic_block
2792
df_regno_bb (struct df *df, unsigned int regno)
Jeff Law committed
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
{
  struct df_link *defs = df->regs[regno].defs;
  struct df_link *uses = df->regs[regno].uses;
  struct ref *def = defs ? defs->ref : 0;
  struct ref *use = uses ? uses->ref : 0;
  basic_block bb_def = def ? DF_REF_BB (def) : 0;
  basic_block bb_use = use ? DF_REF_BB (use) : 0;

  /* Compare blocks of first def and last use.  ???? FIXME.  What if
     the reg-def and reg-use lists are not correctly ordered.  */
  return bb_def == bb_use ? bb_def : 0;
}


2807
/* Return nonzero if REG used in multiple basic blocks.  */
Jeff Law committed
2808
int
2809
df_reg_global_p (struct df *df, rtx reg)
Jeff Law committed
2810 2811 2812 2813 2814 2815 2816
{
  return df_regno_bb (df, REGNO (reg)) != 0;
}


/* Return total lifetime (in insns) of REG.  */
int
2817
df_reg_lifetime (struct df *df, rtx reg)
Jeff Law committed
2818 2819 2820 2821 2822
{
  return df->regs[REGNO (reg)].lifetime;
}


2823
/* Return nonzero if REG live at start of BB.  */
Jeff Law committed
2824
int
2825
df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
Jeff Law committed
2826 2827 2828 2829 2830 2831 2832
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);

#ifdef ENABLE_CHECKING
  if (! bb_info->lr_in)
    abort ();
#endif
2833

Jeff Law committed
2834 2835 2836 2837
  return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
}


2838
/* Return nonzero if REG live at end of BB.  */
Jeff Law committed
2839
int
2840
df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
Jeff Law committed
2841 2842
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
2843

Jeff Law committed
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
#ifdef ENABLE_CHECKING
  if (! bb_info->lr_in)
    abort ();
#endif

  return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
}


/* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
   after life of REG2, or 0, if the lives overlap.  */
int
2856
df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
Jeff Law committed
2857 2858 2859 2860 2861 2862 2863 2864
{
  unsigned int regno1 = REGNO (reg1);
  unsigned int regno2 = REGNO (reg2);
  struct ref *def1;
  struct ref *use1;
  struct ref *def2;
  struct ref *use2;

2865

Jeff Law committed
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
  /* The regs must be local to BB.  */
  if (df_regno_bb (df, regno1) != bb
      || df_regno_bb (df, regno2) != bb)
    abort ();

  def2 = df_bb_regno_first_def_find (df, bb, regno2);
  use1 = df_bb_regno_last_use_find (df, bb, regno1);

  if (DF_INSN_LUID (df, DF_REF_INSN (def2))
      > DF_INSN_LUID (df, DF_REF_INSN (use1)))
    return -1;

  def1 = df_bb_regno_first_def_find (df, bb, regno1);
  use2 = df_bb_regno_last_use_find (df, bb, regno2);

  if (DF_INSN_LUID (df, DF_REF_INSN (def1))
      > DF_INSN_LUID (df, DF_REF_INSN (use2)))
    return 1;

  return 0;
}


/* Return last use of REGNO within BB.  */
static struct ref *
2891
df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
Jeff Law committed
2892 2893 2894 2895 2896 2897 2898
{
  struct df_link *link;

  /* This assumes that the reg-use list is ordered such that for any
     BB, the last use is found first.  However, since the BBs are not
     ordered, the first use in the chain is not necessarily the last
     use in the function.  */
2899
  for (link = df->regs[regno].uses; link; link = link->next)
Jeff Law committed
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
    {
      struct ref *use = link->ref;

      if (DF_REF_BB (use) == bb)
	return use;
    }
  return 0;
}


/* Return first def of REGNO within BB.  */
static struct ref *
2912
df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
Jeff Law committed
2913 2914 2915 2916 2917 2918 2919
{
  struct df_link *link;

  /* This assumes that the reg-def list is ordered such that for any
     BB, the first def is found first.  However, since the BBs are not
     ordered, the first def in the chain is not necessarily the first
     def in the function.  */
2920
  for (link = df->regs[regno].defs; link; link = link->next)
Jeff Law committed
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    {
      struct ref *def = link->ref;

      if (DF_REF_BB (def) == bb)
	return def;
    }
  return 0;
}


/* Return first use of REGNO inside INSN within BB.  */
static struct ref *
2933 2934 2935
df_bb_insn_regno_last_use_find (struct df *df,
				basic_block bb ATTRIBUTE_UNUSED, rtx insn,
				unsigned int regno)
Jeff Law committed
2936 2937 2938 2939 2940 2941
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2942
  for (link = df->insns[uid].uses; link; link = link->next)
Jeff Law committed
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
    {
      struct ref *use = link->ref;

      if (DF_REF_REGNO (use) == regno)
	return use;
    }

  return 0;
}


/* Return first def of REGNO inside INSN within BB.  */
static struct ref *
2956 2957 2958
df_bb_insn_regno_first_def_find (struct df *df,
				 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
				 unsigned int regno)
Jeff Law committed
2959 2960 2961 2962 2963 2964
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2965
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    {
      struct ref *def = link->ref;

      if (DF_REF_REGNO (def) == regno)
	return def;
    }

  return 0;
}


/* Return insn using REG if the BB contains only a single
   use and def of REG.  */
rtx
2980
df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
Jeff Law committed
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
{
  struct ref *def;
  struct ref *use;
  struct df_link *du_link;

  def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));

  if (! def)
    abort ();

  du_link = DF_REF_CHAIN (def);

  if (! du_link)
    return NULL_RTX;

  use = du_link->ref;

  /* Check if def is dead.  */
  if (! use)
    return NULL_RTX;

  /* Check for multiple uses.  */
  if (du_link->next)
    return NULL_RTX;
3005

Jeff Law committed
3006 3007 3008 3009 3010 3011 3012 3013
  return DF_REF_INSN (use);
}

/* Functions for debugging/dumping dataflow information.  */


/* Dump a def-use or use-def chain for REF to FILE.  */
static void
3014
df_chain_dump (struct df_link *link, FILE *file)
Jeff Law committed
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d ",
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref));
    }
  fprintf (file, "}");
}

3026 3027

/* Dump a chain of refs with the associated regno.  */
Jeff Law committed
3028
static void
3029
df_chain_dump_regno (struct df_link *link, FILE *file)
Jeff Law committed
3030 3031 3032 3033 3034
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d(%d) ",
Kazu Hirata committed
3035 3036 3037
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref),
	       DF_REF_REGNO (link->ref));
Jeff Law committed
3038 3039 3040 3041
    }
  fprintf (file, "}");
}

3042

Jeff Law committed
3043 3044
/* Dump dataflow info.  */
void
3045
df_dump (struct df *df, int flags, FILE *file)
Jeff Law committed
3046 3047
{
  unsigned int j;
3048
  basic_block bb;
Jeff Law committed
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

  if (! df || ! file)
    return;

  fprintf (file, "\nDataflow summary:\n");
  fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
	   df->n_regs, df->n_defs, df->n_uses, df->n_bbs);

  if (flags & DF_RD)
    {
3059 3060
      basic_block bb;

Jeff Law committed
3061
      fprintf (file, "Reaching defs:\n");
3062
      FOR_EACH_BB (bb)
Jeff Law committed
3063
	{
3064 3065
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3066 3067 3068
	  if (! bb_info->rd_in)
	    continue;

3069
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3070
	  dump_bitmap (file, bb_info->rd_in);
3071
	  fprintf (file, "bb %d gen \t", bb->index);
Jeff Law committed
3072
	  dump_bitmap (file, bb_info->rd_gen);
3073
	  fprintf (file, "bb %d kill\t", bb->index);
Jeff Law committed
3074
	  dump_bitmap (file, bb_info->rd_kill);
3075
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	  dump_bitmap (file, bb_info->rd_out);
	}
    }

  if (flags & DF_UD_CHAIN)
    {
      fprintf (file, "Use-def chains:\n");
      for (j = 0; j < df->n_defs; j++)
	{
	  if (df->defs[j])
	    {
	      fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->defs[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
		       DF_REF_INSN_UID (df->defs[j]),
		       DF_REF_REGNO (df->defs[j]));
3092 3093
	      if (df->defs[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
Jeff Law committed
3094 3095 3096 3097 3098 3099 3100 3101 3102
	      df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_RU)
    {
      fprintf (file, "Reaching uses:\n");
3103
      FOR_EACH_BB (bb)
Jeff Law committed
3104
	{
3105 3106
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3107 3108 3109
	  if (! bb_info->ru_in)
	    continue;

3110
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3111
	  dump_bitmap (file, bb_info->ru_in);
3112
	  fprintf (file, "bb %d gen \t", bb->index);
Jeff Law committed
3113
	  dump_bitmap (file, bb_info->ru_gen);
3114
	  fprintf (file, "bb %d kill\t", bb->index);
Jeff Law committed
3115
	  dump_bitmap (file, bb_info->ru_kill);
3116
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	  dump_bitmap (file, bb_info->ru_out);
	}
    }

  if (flags & DF_DU_CHAIN)
    {
      fprintf (file, "Def-use chains:\n");
      for (j = 0; j < df->n_uses; j++)
	{
	  if (df->uses[j])
	    {
	      fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->uses[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
		       DF_REF_INSN_UID (df->uses[j]),
		       DF_REF_REGNO (df->uses[j]));
3133 3134
	      if (df->uses[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
Jeff Law committed
3135 3136 3137 3138 3139 3140 3141 3142 3143
	      df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_LR)
    {
      fprintf (file, "Live regs:\n");
3144
      FOR_EACH_BB (bb)
Jeff Law committed
3145
	{
3146 3147
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3148 3149 3150
	  if (! bb_info->lr_in)
	    continue;

3151
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3152
	  dump_bitmap (file, bb_info->lr_in);
3153
	  fprintf (file, "bb %d use \t", bb->index);
Jeff Law committed
3154
	  dump_bitmap (file, bb_info->lr_use);
3155
	  fprintf (file, "bb %d def \t", bb->index);
Jeff Law committed
3156
	  dump_bitmap (file, bb_info->lr_def);
3157
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	  dump_bitmap (file, bb_info->lr_out);
	}
    }

  if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
    {
      struct reg_info *reg_info = df->regs;

      fprintf (file, "Register info:\n");
      for (j = 0; j < df->n_regs; j++)
	{
3169
	  if (((flags & DF_REG_INFO)
Jeff Law committed
3170 3171 3172
	       && (reg_info[j].n_uses || reg_info[j].n_defs))
	      || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
	      || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
Kazu Hirata committed
3173 3174 3175 3176 3177
	    {
	      fprintf (file, "reg %d", j);
	      if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
		{
		  basic_block bb = df_regno_bb (df, j);
3178

Kazu Hirata committed
3179 3180 3181 3182 3183 3184 3185 3186 3187
		  if (bb)
		    fprintf (file, " bb %d", bb->index);
		  else
		    fprintf (file, " bb ?");
		}
	      if (flags & DF_REG_INFO)
		{
		  fprintf (file, " life %d", reg_info[j].lifetime);
		}
Jeff Law committed
3188

Kazu Hirata committed
3189 3190 3191 3192 3193 3194 3195 3196
	      if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
		{
		  fprintf (file, " defs ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_defs);
		  if (flags & DF_RD_CHAIN)
		    df_chain_dump (reg_info[j].defs, file);
		}
Jeff Law committed
3197

Kazu Hirata committed
3198 3199 3200 3201 3202 3203 3204 3205
	      if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
		{
		  fprintf (file, " uses ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_uses);
		  if (flags & DF_RU_CHAIN)
		    df_chain_dump (reg_info[j].uses, file);
		}
Jeff Law committed
3206

Kazu Hirata committed
3207 3208
	      fprintf (file, "\n");
	    }
Jeff Law committed
3209 3210 3211 3212 3213 3214 3215
	}
    }
  fprintf (file, "\n");
}


void
3216
df_insn_debug (struct df *df, rtx insn, FILE *file)
Jeff Law committed
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
Kazu Hirata committed
3227
  else if (df->insns[uid].uses)
Jeff Law committed
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
	   uid, bbi, DF_INSN_LUID (df, insn));
  df_chain_dump (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->insns[uid].uses, file);
  fprintf (file, "\n");
}

3240

Jeff Law committed
3241
void
3242
df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
Jeff Law committed
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
Kazu Hirata committed
3253
  else if (df->insns[uid].uses)
Jeff Law committed
3254 3255 3256 3257 3258
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
Kazu Hirata committed
3259
	   uid, bbi, DF_INSN_LUID (df, insn));
Jeff Law committed
3260 3261 3262 3263 3264 3265
  df_chain_dump_regno (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump_regno (df->insns[uid].uses, file);
  fprintf (file, "\n");
}

3266

Jeff Law committed
3267
static void
3268
df_regno_debug (struct df *df, unsigned int regno, FILE *file)
Jeff Law committed
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
{
  if (regno >= df->reg_size)
    return;

  fprintf (file, "reg %d life %d defs ",
	   regno, df->regs[regno].lifetime);
  df_chain_dump (df->regs[regno].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->regs[regno].uses, file);
  fprintf (file, "\n");
}


static void
3283
df_ref_debug (struct df *df, struct ref *ref, FILE *file)
Jeff Law committed
3284 3285 3286 3287
{
  fprintf (file, "%c%d ",
	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
	   DF_REF_ID (ref));
3288
  fprintf (file, "reg %d bb %d luid %d insn %d chain ",
Jeff Law committed
3289
	   DF_REF_REGNO (ref),
3290
	   DF_REF_BBNO (ref),
Jeff Law committed
3291 3292 3293 3294 3295
	   DF_INSN_LUID (df, DF_REF_INSN (ref)),
	   INSN_UID (DF_REF_INSN (ref)));
  df_chain_dump (DF_REF_CHAIN (ref), file);
  fprintf (file, "\n");
}
3296 3297

/* Functions for debugging from GDB.  */
Jeff Law committed
3298

3299
void
3300
debug_df_insn (rtx insn)
Jeff Law committed
3301 3302 3303 3304 3305 3306
{
  df_insn_debug (ddf, insn, stderr);
  debug_rtx (insn);
}


3307
void
3308
debug_df_reg (rtx reg)
Jeff Law committed
3309 3310 3311 3312 3313
{
  df_regno_debug (ddf, REGNO (reg), stderr);
}


3314
void
3315
debug_df_regno (unsigned int regno)
Jeff Law committed
3316 3317 3318 3319 3320
{
  df_regno_debug (ddf, regno, stderr);
}


3321
void
3322
debug_df_ref (struct ref *ref)
Jeff Law committed
3323 3324 3325 3326 3327
{
  df_ref_debug (ddf, ref, stderr);
}


3328
void
3329
debug_df_defno (unsigned int defno)
Jeff Law committed
3330 3331 3332 3333 3334
{
  df_ref_debug (ddf, ddf->defs[defno], stderr);
}


3335
void
3336
debug_df_useno (unsigned int defno)
Jeff Law committed
3337 3338 3339 3340 3341
{
  df_ref_debug (ddf, ddf->uses[defno], stderr);
}


3342
void
3343
debug_df_chain (struct df_link *link)
Jeff Law committed
3344 3345 3346 3347
{
  df_chain_dump (link, stderr);
  fputc ('\n', stderr);
}
3348

3349

3350 3351
/* Hybrid search algorithm from "Implementation Techniques for
   Efficient Data-Flow Analysis of Large Programs".  */
Kazu Hirata committed
3352
static void
3353 3354 3355 3356 3357
hybrid_search_bitmap (basic_block block, bitmap *in, bitmap *out, bitmap *gen,
		      bitmap *kill, enum df_flow_dir dir,
		      enum df_confluence_op conf_op,
		      transfer_function_bitmap transfun, sbitmap visited,
		      sbitmap pending, void *data)
3358 3359
{
  int changed;
3360
  int i = block->index;
3361
  edge e;
Kazu Hirata committed
3362
  basic_block bb = block;
3363

3364 3365
  SET_BIT (visited, block->index);
  if (TEST_BIT (pending, block->index))
3366
    {
3367
      if (dir == DF_FORWARD)
3368
	{
3369
	  /*  Calculate <conf_op> of predecessor_outs.  */
3370
	  bitmap_zero (in[i]);
3371 3372 3373 3374 3375 3376
	  for (e = bb->pred; e != 0; e = e->pred_next)
	    {
	      if (e->src == ENTRY_BLOCK_PTR)
		continue;
	      switch (conf_op)
		{
3377
		case DF_UNION:
3378
		  bitmap_a_or_b (in[i], in[i], out[e->src->index]);
3379
		  break;
3380
		case DF_INTERSECTION:
3381
		  bitmap_a_and_b (in[i], in[i], out[e->src->index]);
3382 3383 3384 3385
		  break;
		}
	    }
	}
Kazu Hirata committed
3386
      else
3387
	{
3388
	  /* Calculate <conf_op> of successor ins.  */
Kazu Hirata committed
3389
	  bitmap_zero (out[i]);
3390 3391 3392 3393 3394
	  for (e = bb->succ; e != 0; e = e->succ_next)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;
	      switch (conf_op)
Kazu Hirata committed
3395
		{
3396
		case DF_UNION:
3397
		  bitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3398
		  break;
3399
		case DF_INTERSECTION:
3400
		  bitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3401 3402 3403
		  break;
		}
	    }
Kazu Hirata committed
3404
	}
3405 3406
      /* Common part */
      (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3407
      RESET_BIT (pending, i);
3408 3409
      if (changed)
	{
3410
	  if (dir == DF_FORWARD)
3411 3412 3413
	    {
	      for (e = bb->succ; e != 0; e = e->succ_next)
		{
3414
		  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3415
		    continue;
3416
		  SET_BIT (pending, e->dest->index);
3417 3418 3419 3420 3421 3422
		}
	    }
	  else
	    {
	      for (e = bb->pred; e != 0; e = e->pred_next)
		{
3423
		  if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3424
		    continue;
3425
		  SET_BIT (pending, e->src->index);
3426 3427 3428 3429
		}
	    }
	}
    }
3430
  if (dir == DF_FORWARD)
3431 3432 3433
    {
      for (e = bb->succ; e != 0; e = e->succ_next)
	{
3434
	  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3435
	    continue;
3436 3437 3438
	  if (!TEST_BIT (visited, e->dest->index))
	    hybrid_search_bitmap (e->dest, in, out, gen, kill, dir,
				  conf_op, transfun, visited, pending,
3439 3440 3441 3442 3443 3444 3445
				  data);
	}
    }
  else
    {
      for (e = bb->pred; e != 0; e = e->pred_next)
	{
3446
	  if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3447
	    continue;
3448
	  if (!TEST_BIT (visited, e->src->index))
Kazu Hirata committed
3449 3450
	    hybrid_search_bitmap (e->src, in, out, gen, kill, dir,
				  conf_op, transfun, visited, pending,
3451 3452 3453
				  data);
	}
    }
3454
}
3455 3456 3457


/* Hybrid search for sbitmaps, rather than bitmaps.  */
Kazu Hirata committed
3458
static void
3459 3460 3461 3462 3463
hybrid_search_sbitmap (basic_block block, sbitmap *in, sbitmap *out,
		       sbitmap *gen, sbitmap *kill, enum df_flow_dir dir,
		       enum df_confluence_op conf_op,
		       transfer_function_sbitmap transfun, sbitmap visited,
		       sbitmap pending, void *data)
3464 3465
{
  int changed;
3466
  int i = block->index;
3467
  edge e;
Kazu Hirata committed
3468
  basic_block bb = block;
3469

3470 3471
  SET_BIT (visited, block->index);
  if (TEST_BIT (pending, block->index))
3472
    {
3473
      if (dir == DF_FORWARD)
3474
	{
3475
	  /* Calculate <conf_op> of predecessor_outs.  */
3476
	  sbitmap_zero (in[i]);
3477 3478 3479 3480 3481 3482
	  for (e = bb->pred; e != 0; e = e->pred_next)
	    {
	      if (e->src == ENTRY_BLOCK_PTR)
		continue;
	      switch (conf_op)
		{
3483
		case DF_UNION:
3484
		  sbitmap_a_or_b (in[i], in[i], out[e->src->index]);
3485
		  break;
3486
		case DF_INTERSECTION:
3487
		  sbitmap_a_and_b (in[i], in[i], out[e->src->index]);
3488 3489 3490 3491
		  break;
		}
	    }
	}
Kazu Hirata committed
3492
      else
3493
	{
3494
	  /* Calculate <conf_op> of successor ins.  */
Kazu Hirata committed
3495
	  sbitmap_zero (out[i]);
3496 3497 3498 3499 3500
	  for (e = bb->succ; e != 0; e = e->succ_next)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;
	      switch (conf_op)
Kazu Hirata committed
3501
		{
3502
		case DF_UNION:
3503
		  sbitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3504
		  break;
3505
		case DF_INTERSECTION:
3506
		  sbitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3507 3508 3509
		  break;
		}
	    }
Kazu Hirata committed
3510
	}
3511
      /* Common part.  */
3512
      (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3513
      RESET_BIT (pending, i);
3514 3515
      if (changed)
	{
3516
	  if (dir == DF_FORWARD)
3517 3518 3519
	    {
	      for (e = bb->succ; e != 0; e = e->succ_next)
		{
3520
		  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3521
		    continue;
3522
		  SET_BIT (pending, e->dest->index);
3523 3524 3525 3526 3527 3528
		}
	    }
	  else
	    {
	      for (e = bb->pred; e != 0; e = e->pred_next)
		{
3529
		  if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3530
		    continue;
3531
		  SET_BIT (pending, e->src->index);
3532 3533 3534 3535
		}
	    }
	}
    }
3536
  if (dir == DF_FORWARD)
3537 3538 3539
    {
      for (e = bb->succ; e != 0; e = e->succ_next)
	{
3540
	  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3541
	    continue;
3542
	  if (!TEST_BIT (visited, e->dest->index))
Kazu Hirata committed
3543 3544
	    hybrid_search_sbitmap (e->dest, in, out, gen, kill, dir,
				   conf_op, transfun, visited, pending,
3545 3546 3547 3548 3549 3550 3551
				   data);
	}
    }
  else
    {
      for (e = bb->pred; e != 0; e = e->pred_next)
	{
3552
	  if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3553
	    continue;
3554
	  if (!TEST_BIT (visited, e->src->index))
Kazu Hirata committed
3555 3556
	    hybrid_search_sbitmap (e->src, in, out, gen, kill, dir,
				   conf_op, transfun, visited, pending,
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
				   data);
	}
    }
}


/* gen = GEN set.
   kill = KILL set.
   in, out = Filled in by function.
   blocks = Blocks to analyze.
   dir = Dataflow direction.
   conf_op = Confluence operation.
   transfun = Transfer function.
   order = Order to iterate in. (Should map block numbers -> order)
   data = Whatever you want.  It's passed to the transfer function.
Kazu Hirata committed
3572

3573 3574 3575 3576 3577 3578
   This function will perform iterative bitvector dataflow, producing
   the in and out sets.  Even if you only want to perform it for a
   small number of blocks, the vectors for in and out must be large
   enough for *all* blocks, because changing one block might affect
   others.  However, it'll only put what you say to analyze on the
   initial worklist.
Kazu Hirata committed
3579

3580 3581 3582 3583
   For forward problems, you probably want to pass in a mapping of
   block number to rc_order (like df->inverse_rc_map).
*/
void
3584 3585 3586 3587 3588 3589
iterative_dataflow_sbitmap (sbitmap *in, sbitmap *out, sbitmap *gen,
			    sbitmap *kill, bitmap blocks,
			    enum df_flow_dir dir,
			    enum df_confluence_op conf_op,
			    transfer_function_sbitmap transfun, int *order,
			    void *data)
3590 3591 3592 3593 3594
{
  int i;
  fibheap_t worklist;
  basic_block bb;
  sbitmap visited, pending;
3595

3596 3597
  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
3598 3599 3600
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  worklist = fibheap_new ();
3601

3602 3603
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
  {
Kazu Hirata committed
3604
    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3605
    SET_BIT (pending, i);
3606
    if (dir == DF_FORWARD)
3607 3608 3609 3610
      sbitmap_copy (out[i], gen[i]);
    else
      sbitmap_copy (in[i], gen[i]);
  });
3611

3612 3613 3614 3615
  while (sbitmap_first_set_bit (pending) != -1)
    {
      while (!fibheap_empty (worklist))
	{
3616
	  i = (size_t) fibheap_extract_min (worklist);
3617
	  bb = BASIC_BLOCK (i);
3618
	  if (!TEST_BIT (visited, bb->index))
Kazu Hirata committed
3619
	    hybrid_search_sbitmap (bb, in, out, gen, kill, dir,
3620
				   conf_op, transfun, visited, pending, data);
3621
	}
3622

3623 3624 3625 3626
      if (sbitmap_first_set_bit (pending) != -1)
	{
	  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
	  {
3627
	    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3628 3629 3630 3631 3632 3633
	  });
	  sbitmap_zero (visited);
	}
      else
	{
	  break;
Kazu Hirata committed
3634
	}
3635
    }
3636

3637 3638
  sbitmap_free (pending);
  sbitmap_free (visited);
3639
  fibheap_delete (worklist);
3640 3641
}

3642

3643
/* Exactly the same as iterative_dataflow_sbitmap, except it works on
3644
   bitmaps instead.  */
3645
void
3646 3647 3648 3649 3650
iterative_dataflow_bitmap (bitmap *in, bitmap *out, bitmap *gen, bitmap *kill,
			   bitmap blocks, enum df_flow_dir dir,
			   enum df_confluence_op conf_op,
			   transfer_function_bitmap transfun, int *order,
			   void *data)
3651 3652 3653 3654 3655
{
  int i;
  fibheap_t worklist;
  basic_block bb;
  sbitmap visited, pending;
3656

3657 3658
  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
3659 3660 3661
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  worklist = fibheap_new ();
3662

3663 3664
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
  {
3665
    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3666
    SET_BIT (pending, i);
3667
    if (dir == DF_FORWARD)
3668 3669 3670 3671
      bitmap_copy (out[i], gen[i]);
    else
      bitmap_copy (in[i], gen[i]);
  });
3672

3673 3674 3675 3676
  while (sbitmap_first_set_bit (pending) != -1)
    {
      while (!fibheap_empty (worklist))
	{
3677
	  i = (size_t) fibheap_extract_min (worklist);
3678
	  bb = BASIC_BLOCK (i);
3679
	  if (!TEST_BIT (visited, bb->index))
Kazu Hirata committed
3680
	    hybrid_search_bitmap (bb, in, out, gen, kill, dir,
3681
				  conf_op, transfun, visited, pending, data);
3682
	}
3683

3684 3685 3686 3687
      if (sbitmap_first_set_bit (pending) != -1)
	{
	  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
	  {
3688
	    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3689 3690 3691 3692 3693 3694
	  });
	  sbitmap_zero (visited);
	}
      else
	{
	  break;
Kazu Hirata committed
3695
	}
3696 3697 3698
    }
  sbitmap_free (pending);
  sbitmap_free (visited);
Kazu Hirata committed
3699
  fibheap_delete (worklist);
3700
}