sel-sched-ir.h 47.8 KB
Newer Older
1 2
/* Instruction scheduling pass.  This file contains definitions used
   internally in the scheduler.
3
   Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_SEL_SCHED_IR_H
#define GCC_SEL_SCHED_IR_H

/* For state_t.  */
/* For reg_note.  */

/* tc_t is a short for target context.  This is a state of the target
   backend.  */
typedef void *tc_t;

/* List data types used for av sets, fences, paths, and boundaries.  */

/* Forward declarations for types that are part of some list nodes.  */
struct _list_node;

/* List backend.  */
typedef struct _list_node *_list_t;
#define _LIST_NEXT(L) ((L)->next)

/* Instruction data that is part of vinsn type.  */
struct idata_def;
typedef struct idata_def *idata_t;

/* A virtual instruction, i.e. an instruction as seen by the scheduler.  */
struct vinsn_def;
typedef struct vinsn_def *vinsn_t;

/* RTX list.
   This type is the backend for ilist.  */
typedef _list_t _xlist_t;
#define _XLIST_X(L) ((L)->u.x)
#define _XLIST_NEXT(L) (_LIST_NEXT (L))

/* Instruction.  */
55
typedef rtx_insn *insn_t;
56 57

/* List of insns.  */
58 59 60
typedef _list_t ilist_t;
#define ILIST_INSN(L) ((L)->u.insn)
#define ILIST_NEXT(L) (_LIST_NEXT (L))
61

H.J. Lu committed
62
/* This lists possible transformations that done locally, i.e. in
63 64 65 66 67 68 69
   moveup_expr.  */
enum local_trans_type
  {
    TRANS_SUBSTITUTION,
    TRANS_SPECULATION
  };

H.J. Lu committed
70
/* This struct is used to record the history of expression's
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
   transformations.  */
struct expr_history_def_1
{
  /* UID of the insn.  */
  unsigned uid;

  /* How the expression looked like.  */
  vinsn_t old_expr_vinsn;

  /* How the expression looks after the transformation.  */
  vinsn_t new_expr_vinsn;

  /* And its speculative status.  */
  ds_t spec_ds;

  /* Type of the transformation.  */
  enum local_trans_type type;
};

typedef struct expr_history_def_1 expr_history_def;


/* Expression information.  */
struct _expr
{
  /* Insn description.  */
  vinsn_t vinsn;

  /* SPEC is the degree of speculativeness.
     FIXME: now spec is increased when an rhs is moved through a
     conditional, thus showing only control speculativeness.  In the
     future we'd like to count data spec separately to allow a better
     control on scheduling.  */
  int spec;

H.J. Lu committed
106 107
  /* Degree of speculativeness measured as probability of executing
     instruction's original basic block given relative to
108 109 110 111 112 113 114 115 116 117 118 119
     the current scheduling point.  */
  int usefulness;

  /* A priority of this expression.  */
  int priority;

  /* A priority adjustment of this expression.  */
  int priority_adj;

  /* Number of times the insn was scheduled.  */
  int sched_times;

H.J. Lu committed
120
  /* A basic block index this was originated from.  Zero when there is
121 122 123 124 125 126 127 128 129 130 131
     more than one originator.  */
  int orig_bb_index;

  /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
     point.  */
  ds_t spec_done_ds;

  /* SPEC_TO_CHECK_DS hold speculation types that should be checked
     (used only during move_op ()).  */
  ds_t spec_to_check_ds;

H.J. Lu committed
132
  /* Cycle on which original insn was scheduled.  Zero when it has not yet
133 134 135 136
     been scheduled or more than one originator.  */
  int orig_sched_cycle;

  /* This vector contains the history of insn's transformations.  */
137
  vec<expr_history_def> history_of_changes;
138

H.J. Lu committed
139
  /* True (1) when original target (register or memory) of this instruction
140 141 142 143
     is available for scheduling, false otherwise.  -1 means we're not sure;
     please run find_used_regs to clarify.  */
  signed char target_available;

H.J. Lu committed
144
  /* True when this expression needs a speculation check to be scheduled.
145 146 147
     This is used during find_used_regs.  */
  BOOL_BITFIELD needs_spec_check_p : 1;

H.J. Lu committed
148
  /* True when the expression was substituted.  Used for statistical
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
     purposes.  */
  BOOL_BITFIELD was_substituted : 1;

  /* True when the expression was renamed.  */
  BOOL_BITFIELD was_renamed : 1;

  /* True when expression can't be moved.  */
  BOOL_BITFIELD cant_move : 1;
};

typedef struct _expr expr_def;
typedef expr_def *expr_t;

#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))

#define EXPR_SPEC(EXPR) ((EXPR)->spec)
#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)

/* Insn definition for list of original insns in find_used_regs.  */
struct _def
{
  insn_t orig_insn;

  /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
     rhs from two different places, but only one of the code motion paths
H.J. Lu committed
193
     crosses a call, we can't use any of the call_used_regs, no matter which
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
     path or whether all paths crosses a call.  Thus we should move CROSSES_CALL
     to static params.  */
  bool crosses_call;
};
typedef struct _def *def_t;


/* Availability sets are sets of expressions we're scheduling.  */
typedef _list_t av_set_t;
#define _AV_SET_EXPR(L) (&(L)->u.expr)
#define _AV_SET_NEXT(L) (_LIST_NEXT (L))


/* Boundary of the current fence group.  */
struct _bnd
{
  /* The actual boundary instruction.  */
  insn_t to;

  /* Its path to the fence.  */
  ilist_t ptr;

  /* Availability set at the boundary.  */
  av_set_t av;

  /* This set moved to the fence.  */
  av_set_t av1;
H.J. Lu committed
221

222 223 224 225 226 227
  /* Deps context at this boundary.  As long as we have one boundary per fence,
     this is just a pointer to the same deps context as in the corresponding
     fence.  */
  deps_t dc;
};
typedef struct _bnd *bnd_t;
228
#define BND_TO(B) ((B)->to)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

/* PTR stands not for pointer as you might think, but as a Path To Root of the
   current instruction group from boundary B.  */
#define BND_PTR(B) ((B)->ptr)
#define BND_AV(B) ((B)->av)
#define BND_AV1(B) ((B)->av1)
#define BND_DC(B) ((B)->dc)

/* List of boundaries.  */
typedef _list_t blist_t;
#define BLIST_BND(L) (&(L)->u.bnd)
#define BLIST_NEXT(L) (_LIST_NEXT (L))


/* Fence information.  A fence represents current scheduling point and also
   blocks code motion through it when pipelining.  */
struct _fence
{
  /* Insn before which we gather an instruction group.*/
  insn_t insn;

  /* Modeled state of the processor pipeline.  */
  state_t state;

  /* Current cycle that is being scheduled on this fence.  */
  int cycle;

  /* Number of insns that were scheduled on the current cycle.
     This information has to be local to a fence.  */
  int cycle_issued_insns;

  /* At the end of fill_insns () this field holds the list of the instructions
     that are inner boundaries of the scheduled parallel group.  */
  ilist_t bnds;

  /* Deps context at this fence.  It is used to model dependencies at the
     fence so that insn ticks can be properly evaluated.  */
  deps_t dc;

  /* Target context at this fence.  Used to save and load any local target
     scheduling information when changing fences.  */
  tc_t tc;

  /* A vector of insns that are scheduled but not yet completed.  */
273
  vec<rtx_insn *, va_gc> *executing_insns;
274

H.J. Lu committed
275
  /* A vector indexed by UIDs that caches the earliest cycle on which
276 277 278 279 280 281 282
     an insn can be scheduled on this fence.  */
  int *ready_ticks;

  /* Its size.  */
  int ready_ticks_size;

  /* Insn, which has been scheduled last on this fence.  */
283
  rtx_insn *last_scheduled_insn;
284

285 286 287
  /* The last value of can_issue_more variable on this fence.  */
  int issue_more;

288
  /* If non-NULL force the next scheduled insn to be SCHED_NEXT.  */
289
  rtx_insn *sched_next;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

  /* True if fill_insns processed this fence.  */
  BOOL_BITFIELD processed_p : 1;

  /* True if fill_insns actually scheduled something on this fence.  */
  BOOL_BITFIELD scheduled_p : 1;

  /* True when the next insn scheduled here would start a cycle.  */
  BOOL_BITFIELD starts_cycle_p : 1;

  /* True when the next insn scheduled here would be scheduled after a stall.  */
  BOOL_BITFIELD after_stall_p : 1;
};
typedef struct _fence *fence_t;

#define FENCE_INSN(F) ((F)->insn)
#define FENCE_STATE(F) ((F)->state)
#define FENCE_BNDS(F) ((F)->bnds)
#define FENCE_PROCESSED_P(F) ((F)->processed_p)
#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
#define FENCE_CYCLE(F) ((F)->cycle)
#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
#define FENCE_DC(F) ((F)->dc)
#define FENCE_TC(F) ((F)->tc)
#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
317
#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
#define FENCE_SCHED_NEXT(F) ((F)->sched_next)

/* List of fences.  */
typedef _list_t flist_t;
#define FLIST_FENCE(L) (&(L)->u.fence)
#define FLIST_NEXT(L) (_LIST_NEXT (L))

/* List of fences with pointer to the tail node.  */
struct flist_tail_def
{
  flist_t head;
  flist_t *tailp;
};

typedef struct flist_tail_def *flist_tail_t;
#define FLIST_TAIL_HEAD(L) ((L)->head)
#define FLIST_TAIL_TAILP(L) ((L)->tailp)

/* List node information.  A list node can be any of the types above.  */
struct _list_node
{
  _list_t next;

  union
  {
    rtx x;
347
    insn_t insn;
348 349 350 351 352 353 354 355 356 357 358 359
    struct _bnd bnd;
    expr_def expr;
    struct _fence fence;
    struct _def def;
    void *data;
  } u;
};


/* _list_t functions.
   All of _*list_* functions are used through accessor macros, thus
   we can't move them in sel-sched-ir.c.  */
360
extern object_allocator<_list_node> sched_lists_pool;
361 362 363 364

static inline _list_t
_list_alloc (void)
{
365
  return sched_lists_pool.allocate ();
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
}

static inline void
_list_add (_list_t *lp)
{
  _list_t l = _list_alloc ();

  _LIST_NEXT (l) = *lp;
  *lp = l;
}

static inline void
_list_remove_nofree (_list_t *lp)
{
  _list_t n = *lp;

  *lp = _LIST_NEXT (n);
}

static inline void
_list_remove (_list_t *lp)
{
  _list_t n = *lp;

  *lp = _LIST_NEXT (n);
391
  sched_lists_pool.remove (n);
392 393 394 395 396 397 398 399 400 401 402
}

static inline void
_list_clear (_list_t *l)
{
  while (*l)
    _list_remove (l);
}


/* List iterator backend.  */
403
struct _list_iterator
404 405 406 407 408 409 410 411 412
{
  /* The list we're iterating.  */
  _list_t *lp;

  /* True when this iterator supprts removing.  */
  bool can_remove_p;

  /* True when we've actually removed something.  */
  bool removed_p;
413
};
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

static inline void
_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
{
  ip->lp = lp;
  ip->can_remove_p = can_remove_p;
  ip->removed_p = false;
}

static inline void
_list_iter_next (_list_iterator *ip)
{
  if (!ip->removed_p)
    ip->lp = &_LIST_NEXT (*ip->lp);
  else
    ip->removed_p = false;
}

static inline void
_list_iter_remove (_list_iterator *ip)
{
  gcc_assert (!ip->removed_p && ip->can_remove_p);
  _list_remove (ip->lp);
  ip->removed_p = true;
}

static inline void
_list_iter_remove_nofree (_list_iterator *ip)
{
  gcc_assert (!ip->removed_p && ip->can_remove_p);
  _list_remove_nofree (ip->lp);
  ip->removed_p = true;
}

/* General macros to traverse a list.  FOR_EACH_* interfaces are
   implemented using these.  */
#define _FOR_EACH(TYPE, ELEM, I, L)				\
  for (_list_iter_start (&(I), &(L), false);			\
       _list_iter_cond_##TYPE (*(I).lp, &(ELEM));		\
       _list_iter_next (&(I)))

#define _FOR_EACH_1(TYPE, ELEM, I, LP)                              \
  for (_list_iter_start (&(I), (LP), true);                         \
       _list_iter_cond_##TYPE (*(I).lp, &(ELEM));                   \
H.J. Lu committed
458
       _list_iter_next (&(I)))
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505


/* _xlist_t functions.  */

static inline void
_xlist_add (_xlist_t *lp, rtx x)
{
  _list_add (lp);
  _XLIST_X (*lp) = x;
}

#define _xlist_remove(LP) (_list_remove (LP))
#define _xlist_clear(LP) (_list_clear (LP))

static inline bool
_xlist_is_in_p (_xlist_t l, rtx x)
{
  while (l)
    {
      if (_XLIST_X (l) == x)
        return true;
      l = _XLIST_NEXT (l);
    }

  return false;
}

/* Used through _FOR_EACH.  */
static inline bool
_list_iter_cond_x (_xlist_t l, rtx *xp)
{
  if (l)
    {
      *xp = _XLIST_X (l);
      return true;
    }

  return false;
}

#define _xlist_iter_remove(IP) (_list_iter_remove (IP))

typedef _list_iterator _xlist_iterator;
#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))


506
/* ilist_t functions.  */
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static inline void
ilist_add (ilist_t *lp, insn_t insn)
{
  _list_add (lp);
  ILIST_INSN (*lp) = insn;
}
#define ilist_remove(LP) (_list_remove (LP))
#define ilist_clear(LP) (_list_clear (LP))

static inline bool
ilist_is_in_p (ilist_t l, insn_t insn)
{
  while (l)
    {
      if (ILIST_INSN (l) == insn)
        return true;
      l = ILIST_NEXT (l);
    }

  return false;
}

/* Used through _FOR_EACH.  */
static inline bool
_list_iter_cond_insn (ilist_t l, insn_t *ip)
{
  if (l)
    {
      *ip = ILIST_INSN (l);
      return true;
    }

  return false;
}

#define ilist_iter_remove(IP) (_list_iter_remove (IP))
544

545 546 547
typedef _list_iterator ilist_iterator;
#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH (insn, (INSN), (I), (L))
#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_1 (insn, (INSN), (I), (LP))
548 549 550 551 552 553 554


/* Av set iterators.  */
typedef _list_iterator av_set_iterator;
#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))

555
inline bool
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
_list_iter_cond_expr (av_set_t av, expr_t *exprp)
{
  if (av)
    {
      *exprp = _AV_SET_EXPR (av);
      return true;
    }

  return false;
}


/* Def list iterators.  */
typedef _list_t def_list_t;
typedef _list_iterator def_list_iterator;

#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
#define DEF_LIST_DEF(L) (&(L)->u.def)

#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))

static inline bool
_list_iter_cond_def (def_list_t def_list, def_t *def)
{
  if (def_list)
    {
      *def = DEF_LIST_DEF (def_list);
      return true;
    }

  return false;
}


/* InstructionData.  Contains information about insn pattern.  */
struct idata_def
{
  /* Type of the insn.
     o CALL_INSN - Call insn
     o JUMP_INSN - Jump insn
     o INSN - INSN that cannot be cloned
     o USE - INSN that can be cloned
     o SET - INSN that can be cloned and separable into lhs and rhs
     o PC - simplejump.  Insns that simply redirect control flow should not
     have any dependencies.  Sched-deps.c, though, might consider them as
     producers or consumers of certain registers.  To avoid that we handle
     dependency for simple jumps ourselves.  */
  int type;

  /* If insn is a SET, this is its left hand side.  */
  rtx lhs;

  /* If insn is a SET, this is its right hand side.  */
  rtx rhs;

  /* Registers that are set/used by this insn.  This info is now gathered
     via sched-deps.c.  The downside of this is that we also use live info
     from flow that is accumulated in the basic blocks.  These two infos
     can be slightly inconsistent, hence in the beginning we make a pass
     through CFG and calculating the conservative solution for the info in
     basic blocks.  When this scheduler will be switched to use dataflow,
     this can be unified as df gives us both per basic block and per
     instruction info.  Actually, we don't do that pass and just hope
     for the best.  */
  regset reg_sets;

  regset reg_clobbers;

  regset reg_uses;
};

#define IDATA_TYPE(ID) ((ID)->type)
#define IDATA_LHS(ID) ((ID)->lhs)
#define IDATA_RHS(ID) ((ID)->rhs)
#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
#define IDATA_REG_USES(ID) ((ID)->reg_uses)
#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)

/* Type to represent all needed info to emit an insn.
   This is a virtual equivalent of the insn.
   Every insn in the stream has an associated vinsn.  This is used
   to reduce memory consumption basing on the fact that many insns
   don't change through the scheduler.

   vinsn can be either normal or unique.
   * Normal vinsn is the one, that can be cloned multiple times and typically
   corresponds to normal instruction.

   * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
   unusual stuff.  Such a vinsn is described by its INSN field, which is a
   reference to the original instruction.  */
struct vinsn_def
{
  /* Associated insn.  */
650
  rtx_insn *insn_rtx;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

  /* Its description.  */
  struct idata_def id;

  /* Hash of vinsn.  It is computed either from pattern or from rhs using
     hash_rtx.  It is not placed in ID for faster compares.  */
  unsigned hash;

  /* Hash of the insn_rtx pattern.  */
  unsigned hash_rtx;

  /* Smart pointer counter.  */
  int count;

  /* Cached cost of the vinsn.  To access it please use vinsn_cost ().  */
  int cost;

  /* Mark insns that may trap so we don't move them through jumps.  */
  bool may_trap_p;
};

672
#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))

#define VINSN_ID(VI) (&((VI)->id))
#define VINSN_HASH(VI) ((VI)->hash)
#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
#define VINSN_COUNT(VI) ((VI)->count)
#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)


H.J. Lu committed
691
/* An entry of the hashtable describing transformations happened when
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
   moving up through an insn.  */
struct transformed_insns
{
  /* Previous vinsn.  Used to find the proper element.  */
  vinsn_t vinsn_old;

  /* A new vinsn.  */
  vinsn_t vinsn_new;

  /* Speculative status.  */
  ds_t ds;

  /* Type of transformation happened.  */
  enum local_trans_type type;

  /* Whether a conflict on the target register happened.  */
  BOOL_BITFIELD was_target_conflict : 1;

  /* Whether a check was needed.  */
  BOOL_BITFIELD needs_check : 1;
};

/* Indexed by INSN_LUID, the collection of all data associated with
   a single instruction that is in the stream.  */
struct _sel_insn_data
{
  /* The expression that contains vinsn for this insn and some
     flow-sensitive data like priority.  */
  expr_def expr;

  /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty.  */
  int ws_level;

  /* A number that helps in defining a traversing order for a region.  */
  int seqno;

  /* A liveness data computed above this insn.  */
  regset live;

  /* An INSN_UID bit is set when deps analysis result is already known.  */
  bitmap analyzed_deps;

H.J. Lu committed
734
  /* An INSN_UID bit is set when a hard dep was found, not set when
735 736 737 738
     no dependence is found.  This is meaningful only when the analyzed_deps
     bitmap has its bit set.  */
  bitmap found_deps;

H.J. Lu committed
739
  /* An INSN_UID bit is set when this is a bookkeeping insn generated from
740 741
     a parent with this uid.  If a parent is a bookkeeping copy, all its
     originators are transitively included in this set.  */
742 743 744 745
  bitmap originators;

  /* A hashtable caching the result of insn transformations through this one.  */
  htab_t transformed_insns;
H.J. Lu committed
746

747
  /* A context incapsulating this insn.  */
748
  struct deps_desc deps_context;
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

  /* This field is initialized at the beginning of scheduling and is used
     to handle sched group instructions.  If it is non-null, then it points
     to the instruction, which should be forced to schedule next.  Such
     instructions are unique.  */
  insn_t sched_next;

  /* Cycle at which insn was scheduled.  It is greater than zero if insn was
     scheduled.  This is used for bundling.  */
  int sched_cycle;

  /* Cycle at which insn's data will be fully ready.  */
  int ready_cycle;

  /* Speculations that are being checked by this insn.  */
  ds_t spec_checked_ds;

  /* Whether the live set valid or not.  */
  BOOL_BITFIELD live_valid_p : 1;
  /* Insn is an ASM.  */
  BOOL_BITFIELD asm_p : 1;

  /* True when an insn is scheduled after we've determined that a stall is
     required.
     This is used when emulating the Haifa scheduler for bundling.  */
  BOOL_BITFIELD after_stall_p : 1;
};

typedef struct _sel_insn_data sel_insn_data_def;
typedef sel_insn_data_def *sel_insn_data_t;

780
extern vec<sel_insn_data_def> s_i_d;
781 782

/* Accessor macros for s_i_d.  */
783 784
#define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
#define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
785 786 787 788 789 790

extern sel_insn_data_def insn_sid (insn_t);

#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
H.J. Lu committed
791 792
#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)

#define INSN_EXPR(INSN) (&SID (INSN)->expr)
#define INSN_LIVE(INSN) (SID (INSN)->live)
#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)

/* A global level shows whether an insn is valid or not.  */
extern int global_level;

#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)

extern av_set_t get_av_set (insn_t);
extern int get_av_level (insn_t);

#define AV_SET(INSN) (get_av_set (INSN))
#define AV_LEVEL(INSN) (get_av_level (INSN))
#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)

/* A list of fences currently in the works.  */
extern flist_t fences;

/* A NOP pattern used as a placeholder for real insns.  */
extern rtx nop_pattern;

/* An insn that 'contained' in EXIT block.  */
834
extern rtx_insn *exit_insn;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

/* Provide a separate luid for the insn.  */
#define INSN_INIT_TODO_LUID (1)

/* Initialize s_s_i_d.  */
#define INSN_INIT_TODO_SSID (2)

/* Initialize data for simplejump.  */
#define INSN_INIT_TODO_SIMPLEJUMP (4)

/* Return true if INSN is a local NOP.  The nop is local in the sense that
   it was emitted by the scheduler as a temporary insn and will soon be
   deleted.  These nops are identified by their pattern.  */
#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)

/* Return true if INSN is linked into instruction stream.
   NB: It is impossible for INSN to have one field null and the other not
   null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
   == (NEXT_INSN (INSN) == NULL_RTX)) is valid.  */
#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))

/* Return true if INSN is in current fence.  */
#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)

/* Marks loop as being considered for pipelining.  */
#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))

/* Saved loop preheader to transfer when scheduling the loop.  */
#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1         \
                                     ? NULL                             \
866
                                     : ((vec<basic_block> *) (LOOP)->aux))
867 868 869 870 871 872 873 874 875 876
#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux             \
                                                = (BLOCKS != NULL       \
                                                   ? BLOCKS             \
                                                   : (LOOP)->aux))

extern bitmap blocks_to_reschedule;


/* A variable to track which part of rtx we are scanning in
   sched-deps.c: sched_analyze_insn ().  */
877 878 879 880 881 882 883
enum deps_where_t
{
  DEPS_IN_INSN,
  DEPS_IN_LHS,
  DEPS_IN_RHS,
  DEPS_IN_NOWHERE
};
884 885 886


/* Per basic block data for the whole CFG.  */
887
struct sel_global_bb_info_def
888 889 890
{
  /* For each bb header this field contains a set of live registers.
     For all other insns this field has a NULL.
Joseph Myers committed
891
     We also need to know LV sets for the instructions, that are immediately
892 893 894 895 896 897 898
     after the border of the region.  */
  regset lv_set;

  /* Status of LV_SET.
     true - block has usable LV_SET.
     false - block's LV_SET should be recomputed.  */
  bool lv_set_valid_p;
899
};
900 901 902 903 904

typedef sel_global_bb_info_def *sel_global_bb_info_t;


/* Per basic block data.  This array is indexed by basic block index.  */
905
extern vec<sel_global_bb_info_def> sel_global_bb_info;
906 907 908 909 910 911

extern void sel_extend_global_bb_info (void);
extern void sel_finish_global_bb_info (void);

/* Get data for BB.  */
#define SEL_GLOBAL_BB_INFO(BB)					\
912
  (&sel_global_bb_info[(BB)->index])
913 914 915 916 917 918

/* Access macros.  */
#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)

/* Per basic block data for the region.  */
919
struct sel_region_bb_info_def
920 921 922
{
  /* This insn stream is constructed in such a way that it should be
     traversed by PREV_INSN field - (*not* NEXT_INSN).  */
923
  rtx_insn *note_list;
924 925 926 927 928 929 930

  /* Cached availability set at the beginning of a block.
     See also AV_LEVEL () for conditions when this av_set can be used.  */
  av_set_t av_set;

  /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid.  */
  int av_level;
931
};
932 933 934 935 936

typedef sel_region_bb_info_def *sel_region_bb_info_t;


/* Per basic block data.  This array is indexed by basic block index.  */
937
extern vec<sel_region_bb_info_def> sel_region_bb_info;
938 939

/* Get data for BB.  */
940
#define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
941 942 943 944 945

/* Get BB's note_list.
   A note_list is a list of various notes that was scattered across BB
   before scheduling, and will be appended at the beginning of BB after
   scheduling is finished.  */
946
#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964

#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)

/* Used in bb_in_ebb_p.  */
extern bitmap_head *forced_ebb_heads;

/* The loop nest being pipelined.  */
extern struct loop *current_loop_nest;

/* Saves pipelined blocks.  Bitmap is indexed by bb->index.  */
extern sbitmap bbs_pipelined;

/* Various flags.  */
extern bool enable_moveup_set_path_p;
extern bool pipelining_p;
extern bool bookkeeping_p;
H.J. Lu committed
965
extern int max_insns_to_rename;
966 967 968
extern bool preheader_removed;

/* Software lookahead window size.
H.J. Lu committed
969
   According to the results in Nakatani and Ebcioglu [1993], window size of 16
970 971 972 973 974 975 976
   is enough to extract most ILP in integer code.  */
#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))

extern regset sel_all_regs;


/* Successor iterator backend.  */
977
struct succ_iterator
978 979 980 981 982 983 984 985 986
{
  /* True if we're at BB end.  */
  bool bb_end;

  /* An edge on which we're iterating.  */
  edge e1;

  /* The previous edge saved after skipping empty blocks.  */
  edge e2;
H.J. Lu committed
987

988 989 990 991 992 993 994 995 996
  /* Edge iterator used when there are successors in other basic blocks.  */
  edge_iterator ei;

  /* Successor block we're traversing.  */
  basic_block bb;

  /* Flags that are passed to the iterator.  We return only successors
     that comply to these flags.  */
  short flags;
H.J. Lu committed
997 998

  /* When flags include SUCCS_ALL, this will be set to the exact type
Joseph Myers committed
999
     of the successor we're traversing now.  */
1000 1001 1002 1003
  short current_flags;

  /* If skip to loop exits, save here information about loop exits.  */
  int current_exit;
1004
  vec<edge> loop_exits;
1005
};
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

/* A structure returning all successor's information.  */
struct succs_info
{
  /* Flags that these succcessors were computed with.  */
  short flags;

  /* Successors that correspond to the flags.  */
  insn_vec_t succs_ok;

H.J. Lu committed
1016
  /* Their probabilities.  As of now, we don't need this for other
1017
     successors.  */
1018
  vec<int> probs_ok;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

  /* Other successors.  */
  insn_vec_t succs_other;

  /* Probability of all successors.  */
  int all_prob;

  /* The number of all successors.  */
  int all_succs_n;

  /* The number of good successors.  */
  int succs_ok_n;
};

/* Some needed definitions.  */
extern basic_block after_recovery;

1036 1037
extern rtx_insn *sel_bb_head (basic_block);
extern rtx_insn *sel_bb_end (basic_block);
1038 1039 1040 1041 1042 1043 1044
extern bool sel_bb_empty_p (basic_block);
extern bool in_current_region_p (basic_block);

/* True when BB is a header of the inner loop.  */
static inline bool
inner_loop_header_p (basic_block bb)
{
H.J. Lu committed
1045
  struct loop *inner_loop;
1046 1047 1048 1049

  if (!current_loop_nest)
    return false;

1050
  if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    return false;

  inner_loop = bb->loop_father;
  if (inner_loop == current_loop_nest)
    return false;

  /* If successor belongs to another loop.  */
  if (bb == inner_loop->header
      && flow_bb_inside_loop_p (current_loop_nest, bb))
    {
      /* Could be '=' here because of wrong loop depths.  */
      gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
      return true;
    }

H.J. Lu committed
1066
  return false;
1067 1068 1069
}

/* Return exit edges of LOOP, filtering out edges with the same dest bb.  */
1070
static inline vec<edge> 
1071 1072
get_loop_exit_edges_unique_dests (const struct loop *loop)
{
1073
  vec<edge> edges = vNULL;
1074 1075
  struct loop_exit *exit;

1076
  gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1077 1078 1079 1080 1081 1082 1083
              && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);

  for (exit = loop->exits->next; exit->e; exit = exit->next)
    {
      int i;
      edge e;
      bool was_dest = false;
H.J. Lu committed
1084

1085
      for (i = 0; edges.iterate (i, &e); i++)
1086 1087 1088 1089 1090 1091 1092
        if (e->dest == exit->e->dest)
          {
            was_dest = true;
            break;
          }

      if (!was_dest)
1093
        edges.safe_push (exit->e);
1094 1095 1096 1097
    }
  return edges;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static bool
sel_bb_empty_or_nop_p (basic_block bb)
{
  insn_t first = sel_bb_head (bb), last;

  if (first == NULL_RTX)
    return true;

  if (!INSN_NOP_P (first))
    return false;

1109
  if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1110 1111 1112 1113 1114 1115 1116 1117 1118
    return false;

  last = sel_bb_end (bb);
  if (first != last)
    return false;

  return true;
}

H.J. Lu committed
1119
/* Collect all loop exits recursively, skipping empty BBs between them.
1120 1121
   E.g. if BB is a loop header which has several loop exits,
   traverse all of them and if any of them turns out to be another loop header
H.J. Lu committed
1122
   (after skipping empty BBs), add its loop exits to the resulting vector
1123
   as well.  */
1124
static inline vec<edge> 
1125 1126
get_all_loop_exits (basic_block bb)
{
1127
  vec<edge> exits = vNULL;
1128 1129 1130

  /* If bb is empty, and we're skipping to loop exits, then
     consider bb as a possible gate to the inner loop now.  */
1131
  while (sel_bb_empty_or_nop_p (bb)
1132 1133
	 && in_current_region_p (bb)
	 && EDGE_COUNT (bb->succs) > 0)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    {
      bb = single_succ (bb);

      /* This empty block could only lead outside the region.  */
      gcc_assert (! in_current_region_p (bb));
    }

  /* And now check whether we should skip over inner loop.  */
  if (inner_loop_header_p (bb))
    {
      struct loop *this_loop;
      struct loop *pred_loop = NULL;
      int i;
      edge e;
H.J. Lu committed
1148

1149 1150 1151 1152
      for (this_loop = bb->loop_father;
           this_loop && this_loop != current_loop_nest;
           this_loop = loop_outer (this_loop))
        pred_loop = this_loop;
H.J. Lu committed
1153

1154 1155 1156 1157 1158 1159
      this_loop = pred_loop;
      gcc_assert (this_loop != NULL);

      exits = get_loop_exit_edges_unique_dests (this_loop);

      /* Traverse all loop headers.  */
1160
      for (i = 0; exits.iterate (i, &e); i++)
1161 1162
	if (in_current_region_p (e->dest)
	    || inner_loop_header_p (e->dest))
1163
	  {
1164
	    vec<edge> next_exits = get_all_loop_exits (e->dest);
H.J. Lu committed
1165

1166
	    if (next_exits.exists ())
1167 1168 1169
	      {
		int j;
		edge ne;
H.J. Lu committed
1170

1171 1172
		/* Add all loop exits for the current edge into the
		   resulting vector.  */
1173 1174
		for (j = 0; next_exits.iterate (j, &ne); j++)
		  exits.safe_push (ne);
H.J. Lu committed
1175

1176
		/* Remove the original edge.  */
1177
		exits.ordered_remove (i);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

		/*  Decrease the loop counter so we won't skip anything.  */
		i--;
		continue;
	      }
	  }
    }

  return exits;
}

/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
   Any successor will fall into exactly one category.   */

/* Include normal successors.  */
#define SUCCS_NORMAL (1)

/* Include back-edge successors.  */
#define SUCCS_BACK (2)

/* Include successors that are outside of the current region.  */
#define SUCCS_OUT (4)

H.J. Lu committed
1201
/* When pipelining of the outer loops is enabled, skip innermost loops
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
   to their exits.  */
#define SUCCS_SKIP_TO_LOOP_EXITS (8)

/* Include all successors.  */
#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)

/* We need to return a succ_iterator to avoid 'unitialized' warning
   during bootstrap.  */
static inline succ_iterator
_succ_iter_start (insn_t *succp, insn_t insn, int flags)
{
  succ_iterator i;

  basic_block bb = BLOCK_FOR_INSN (insn);

  gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));

  i.flags = flags;

  /* Avoid 'uninitialized' warning.  */
  *succp = NULL;
  i.e1 = NULL;
  i.e2 = NULL;
  i.bb = bb;
  i.current_flags = 0;
  i.current_exit = -1;
1228
  i.loop_exits.create (0);
1229

1230
  if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
1231 1232 1233 1234 1235
    {
      i.bb_end = false;

      /* Avoid 'uninitialized' warning.  */
      i.ei.index = 0;
1236
      i.ei.container = 0;
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    }
  else
    {
      i.ei = ei_start (bb->succs);
      i.bb_end = true;
    }

  return i;
}

static inline bool
1248
_succ_iter_cond (succ_iterator *ip, insn_t *succp, insn_t insn,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
                 bool check (edge, succ_iterator *))
{
  if (!ip->bb_end)
    {
      /* When we're in a middle of a basic block, return
         the next insn immediately, but only when SUCCS_NORMAL is set.  */
      if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
        return false;

      *succp = NEXT_INSN (insn);
      ip->current_flags = SUCCS_NORMAL;
      return true;
    }
  else
    {
H.J. Lu committed
1264
      while (1)
1265 1266 1267 1268
        {
          edge e_tmp = NULL;

          /* First, try loop exits, if we have them.  */
1269
          if (ip->loop_exits.exists ())
1270 1271 1272
            {
              do
                {
1273
                  ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1274 1275 1276
                  ip->current_exit++;
                }
	      while (e_tmp && !check (e_tmp, ip));
H.J. Lu committed
1277

1278
              if (!e_tmp)
1279
                ip->loop_exits.release ();
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
            }

          /* If we have found a successor, then great.  */
          if (e_tmp)
            {
              ip->e1 = e_tmp;
              break;
            }

          /* If not, then try the next edge.  */
          while (ei_cond (ip->ei, &(ip->e1)))
            {
              basic_block bb = ip->e1->dest;

              /* Consider bb as a possible loop header.  */
              if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
                  && flag_sel_sched_pipelining_outer_loops
H.J. Lu committed
1297 1298
		  && (!in_current_region_p (bb)
		      || BLOCK_TO_BB (ip->bb->index)
1299 1300 1301 1302 1303
			 < BLOCK_TO_BB (bb->index)))
                {
		  /* Get all loop exits recursively.  */
		  ip->loop_exits = get_all_loop_exits (bb);

1304
		  if (ip->loop_exits.exists ())
1305 1306
		    {
  		      ip->current_exit = 0;
H.J. Lu committed
1307
		      /* Move the iterator now, because we won't do
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
			 succ_iter_next until loop exits will end.  */
		      ei_next (&(ip->ei));
		      break;
		    }
                }

              /* bb is not a loop header, check as usual.  */
              if (check (ip->e1, ip))
                break;

              ei_next (&(ip->ei));
            }

          /* If loop_exits are non null, we have found an inner loop;
	     do one more iteration to fetch an edge from these exits.  */
1323
          if (ip->loop_exits.exists ())
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
            continue;

          /* Otherwise, we've found an edge in a usual way.  Break now.  */
          break;
        }

      if (ip->e1)
	{
	  basic_block bb = ip->e2->dest;

1334
	  if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	    *succp = exit_insn;
	  else
	    {
              *succp = sel_bb_head (bb);

              gcc_assert (ip->flags != SUCCS_NORMAL
                          || *succp == NEXT_INSN (bb_note (bb)));
	      gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
	    }

	  return true;
	}
      else
	return false;
    }
}

static inline void
_succ_iter_next (succ_iterator *ip)
{
  gcc_assert (!ip->e2 || ip->e1);

1357
  if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    ei_next (&(ip->ei));
}

/* Returns true when E1 is an eligible successor edge, possibly skipping
   empty blocks.  When E2P is not null, the resulting edge is written there.
   FLAGS are used to specify whether back edges and out-of-region edges
   should be considered.  */
static inline bool
_eligible_successor_edge_p (edge e1, succ_iterator *ip)
{
  edge e2 = e1;
  basic_block bb;
  int flags = ip->flags;
  bool src_outside_rgn = !in_current_region_p (e1->src);

  gcc_assert (flags != 0);

  if (src_outside_rgn)
    {
      /* Any successor of the block that is outside current region is
         ineligible, except when we're skipping to loop exits.  */
      gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));

      if (flags & SUCCS_OUT)
	return false;
    }

  bb = e2->dest;

  /* Skip empty blocks, but be careful not to leave the region.  */
  while (1)
    {
      if (!sel_bb_empty_p (bb))
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	{
	  edge ne;
	  basic_block nbb;

	  if (!sel_bb_empty_or_nop_p (bb))
	    break;

	  ne = EDGE_SUCC (bb, 0);
	  nbb = ne->dest;

	  if (!in_current_region_p (nbb)
	      && !(flags & SUCCS_OUT))
	    break;

	  e2 = ne;
	  bb = nbb;
	  continue;
	}
H.J. Lu committed
1409 1410

      if (!in_current_region_p (bb)
1411 1412 1413
          && !(flags & SUCCS_OUT))
        return false;

1414 1415 1416
      if (EDGE_COUNT (bb->succs) == 0)
	return false;

1417 1418 1419
      e2 = EDGE_SUCC (bb, 0);
      bb = e2->dest;
    }
H.J. Lu committed
1420

1421 1422 1423 1424 1425
  /* Save the second edge for later checks.  */
  ip->e2 = e2;

  if (in_current_region_p (bb))
    {
H.J. Lu committed
1426 1427 1428
      /* BLOCK_TO_BB sets topological order of the region here.
         It is important to use real predecessor here, which is ip->bb,
         as we may well have e1->src outside current region,
1429 1430 1431 1432 1433 1434
         when skipping to loop exits.  */
      bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
				    < BLOCK_TO_BB (bb->index));

      /* This is true for the all cases except the last one.  */
      ip->current_flags = SUCCS_NORMAL;
H.J. Lu committed
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444
      /* We are advancing forward in the region, as usual.  */
      if (succeeds_in_top_order)
        {
          /* We are skipping to loop exits here.  */
          gcc_assert (!src_outside_rgn
                      || flag_sel_sched_pipelining_outer_loops);
          return !!(flags & SUCCS_NORMAL);
        }

H.J. Lu committed
1445
      /* This is a back edge.  During pipelining we ignore back edges,
1446
         but only when it leads to the same loop.  It can lead to the header
H.J. Lu committed
1447
         of the outer loop, which will also be the preheader of
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
         the current loop.  */
      if (pipelining_p
           && e1->src->loop_father == bb->loop_father)
        return !!(flags & SUCCS_NORMAL);

      /* A back edge should be requested explicitly.  */
      ip->current_flags = SUCCS_BACK;
      return !!(flags & SUCCS_BACK);
    }

  ip->current_flags = SUCCS_OUT;
  return !!(flags & SUCCS_OUT);
}

#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS)                        \
  for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS));            \
       _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
       _succ_iter_next (&(ITER)))

#define FOR_EACH_SUCC(SUCC, ITER, INSN)                 \
  FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)

/* Return the current edge along which a successor was built.  */
#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)

/* Return the next block of BB not running into inconsistencies.  */
static inline basic_block
bb_next_bb (basic_block bb)
{
  switch (EDGE_COUNT (bb->succs))
    {
    case 0:
      return bb->next_bb;

H.J. Lu committed
1482
    case 1:
1483 1484 1485 1486
      return single_succ (bb);

    case 2:
      return FALLTHRU_EDGE (bb)->dest;
H.J. Lu committed
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    default:
      return bb->next_bb;
    }

  gcc_unreachable ();
}



/* Functions that are used in sel-sched.c.  */

/* List functions.  */
extern ilist_t ilist_copy (ilist_t);
extern ilist_t ilist_invert (ilist_t);
extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
extern void blist_remove (blist_t *);
extern void flist_tail_init (flist_tail_t);

extern fence_t flist_lookup (flist_t, insn_t);
extern void flist_clear (flist_t *);
extern void def_list_add (def_list_t *, insn_t, bool);

/* Target context functions.  */
extern tc_t create_target_context (bool);
extern void set_target_context (tc_t);
extern void reset_target_context (tc_t, bool);

/* Deps context functions.  */
extern void advance_deps_context (deps_t, insn_t);

/* Fences functions.  */
extern void init_fences (insn_t);
extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void move_fence_to_fences (flist_t, flist_tail_t);

/* Pool functions.  */
extern regset get_regset_from_pool (void);
extern regset get_clear_regset_from_pool (void);
extern void return_regset_to_pool (regset);
extern void free_regset_pool (void);

extern insn_t get_nop_from_pool (insn_t);
1531
extern void return_nop_to_pool (insn_t, bool);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
extern void free_nop_pool (void);

/* Vinsns functions.  */
extern bool vinsn_separable_p (vinsn_t);
extern bool vinsn_cond_branch_p (vinsn_t);
extern void recompute_vinsn_lhs_rhs (vinsn_t);
extern int sel_vinsn_cost (vinsn_t);
extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
extern insn_t  sel_move_insn (expr_t, int, insn_t);
extern void vinsn_attach (vinsn_t);
extern void vinsn_detach (vinsn_t);
extern vinsn_t vinsn_copy (vinsn_t, bool);
extern bool vinsn_equal_p (vinsn_t, vinsn_t);

/* EXPR functions.  */
extern void copy_expr (expr_t, expr_t);
extern void copy_expr_onside (expr_t, expr_t);
extern void merge_expr_data (expr_t, expr_t, insn_t);
extern void merge_expr (expr_t, expr_t, insn_t);
extern void clear_expr (expr_t);
extern unsigned expr_dest_regno (expr_t);
H.J. Lu committed
1555
extern rtx expr_dest_reg (expr_t);
1556
extern int find_in_history_vect (vec<expr_history_def> ,
1557
                                 rtx, vinsn_t, bool);
1558
extern void insert_in_history_vect (vec<expr_history_def> *,
H.J. Lu committed
1559
                                    unsigned, enum local_trans_type,
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
                                    vinsn_t, vinsn_t, ds_t);
extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
extern int speculate_expr (expr_t, ds_t);

/* Av set functions.  */
extern void av_set_add (av_set_t *, expr_t);
extern void av_set_iter_remove (av_set_iterator *);
extern expr_t av_set_lookup (av_set_t, vinsn_t);
extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
extern bool av_set_is_in_p (av_set_t, vinsn_t);
extern av_set_t av_set_copy (av_set_t);
extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
extern void av_set_clear (av_set_t *);
extern void av_set_leave_one_nonspec (av_set_t *);
extern expr_t av_set_element (av_set_t, int);
extern void av_set_substract_cond_branches (av_set_t *);
extern void av_set_split_usefulness (av_set_t, int, int);
1578
extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1579 1580 1581 1582 1583 1584 1585

extern void sel_save_haifa_priorities (void);

extern void sel_init_global_and_expr (bb_vec_t);
extern void sel_finish_global_and_expr (void);

extern regset compute_live (insn_t);
1586
extern bool register_unavailable_p (regset, rtx);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

/* Dependence analysis functions.  */
extern void sel_clear_has_dependence (void);
extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);

extern int tick_check_p (expr_t, deps_t, fence_t);

/* Functions to work with insns.  */
extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
extern bool insn_eligible_for_subst_p (insn_t);
1597
extern void get_dest_and_mode (rtx, rtx *, machine_mode *);
1598 1599 1600 1601 1602 1603 1604 1605 1606

extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
extern bool sel_remove_insn (insn_t, bool, bool);
extern bool bb_header_p (insn_t);
extern void sel_init_invalid_data_sets (insn_t);
extern bool insn_at_boundary_p (insn_t);

/* Basic block and CFG functions.  */

1607
extern rtx_insn *sel_bb_head (basic_block);
1608
extern bool sel_bb_head_p (insn_t);
1609
extern rtx_insn *sel_bb_end (basic_block);
1610 1611 1612 1613
extern bool sel_bb_end_p (insn_t);
extern bool sel_bb_empty_p (basic_block);

extern bool in_current_region_p (basic_block);
1614
extern basic_block fallthru_bb_of_jump (const rtx_insn *);
1615

1616
extern void sel_init_bbs (bb_vec_t);
1617 1618 1619 1620 1621 1622
extern void sel_finish_bbs (void);

extern struct succs_info * compute_succs_info (insn_t, short);
extern void free_succs_info (struct succs_info *);
extern bool sel_insn_has_single_succ_p (insn_t, int);
extern bool sel_num_cfg_preds_gt_1 (insn_t);
1623
extern int get_seqno_by_preds (rtx_insn *);
1624 1625 1626 1627 1628 1629 1630

extern bool bb_ends_ebb_p (basic_block);
extern bool in_same_ebb_p (insn_t, insn_t);

extern bool tidy_control_flow (basic_block, bool);
extern void free_bb_note_pool (void);

1631
extern void purge_empty_blocks (void);
1632 1633
extern basic_block sel_split_edge (edge);
extern basic_block sel_create_recovery_block (insn_t);
1634
extern bool sel_redirect_edge_and_branch (edge, basic_block);
1635 1636 1637 1638 1639 1640
extern void sel_redirect_edge_and_branch_force (edge, basic_block);
extern void sel_init_pipelining (void);
extern void sel_finish_pipelining (void);
extern void sel_sched_region (int);
extern loop_p get_loop_nest_for_rgn (unsigned int);
extern bool considered_for_pipelining_p (struct loop *);
1641
extern void make_region_from_loop_preheader (vec<basic_block> *&);
1642
extern void sel_add_loop_preheaders (bb_vec_t *);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
extern bool sel_is_loop_preheader_p (basic_block);
extern void clear_outdated_rtx_info (basic_block);
extern void free_data_sets (basic_block);
extern void exchange_data_sets (basic_block, basic_block);
extern void copy_data_sets (basic_block, basic_block);

extern void sel_register_cfg_hooks (void);
extern void sel_unregister_cfg_hooks (void);

/* Expression transformation routines.  */
1653
extern rtx_insn *create_insn_rtx_from_pattern (rtx, rtx);
1654
extern vinsn_t create_vinsn_from_insn_rtx (rtx_insn *, bool);
1655
extern rtx_insn *create_copy_of_insn_rtx (rtx);
1656 1657 1658 1659 1660 1661 1662
extern void change_vinsn_in_expr (expr_t, vinsn_t);

/* Various initialization functions.  */
extern void init_lv_sets (void);
extern void free_lv_sets (void);
extern void setup_nop_and_exit_insns (void);
extern void free_nop_and_exit_insns (void);
1663
extern void free_data_for_scheduled_insn (insn_t);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
extern void setup_nop_vinsn (void);
extern void free_nop_vinsn (void);
extern void sel_set_sched_flags (void);
extern void sel_setup_sched_infos (void);
extern void alloc_sched_pools (void);
extern void free_sched_pools (void);

#endif /* GCC_SEL_SCHED_IR_H */