ddg.c 33.9 KB
Newer Older
1
/* DDG - Data Dependence Graph implementation.
2
   Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 4 5 6 7 8
   Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20 21 22 23 24 25


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
26
#include "diagnostic-core.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "recog.h"
#include "sched-int.h"
#include "target.h"
#include "cfgloop.h"
#include "sbitmap.h"
#include "expr.h"
#include "bitmap.h"
#include "ddg.h"

45 46
#ifdef INSN_SCHEDULING

47 48 49 50 51 52 53
/* A flag indicating that a ddg edge belongs to an SCC or not.  */
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};

/* Forward declarations.  */
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
54 55
static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
                                                 ddg_node_ptr, dep_t);
56 57 58 59 60 61 62 63 64 65 66 67 68
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
 				    dep_type, dep_data_type, int);
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
				     dep_data_type, int, int);
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);

/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p.  */
static bool mem_ref_p;

/* Auxiliary function for mem_read_insn_p.  */
static int
mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
{
69
  if (MEM_P (*x))
70 71 72 73 74 75 76 77 78 79 80
    mem_ref_p = true;
  return 0;
}

/* Auxiliary function for mem_read_insn_p.  */
static void
mark_mem_use_1 (rtx *x, void *data)
{
  for_each_rtx (x, mark_mem_use, data);
}

81
/* Returns nonzero if INSN reads from memory.  */
82 83 84 85 86 87 88 89 90
static bool
mem_read_insn_p (rtx insn)
{
  mem_ref_p = false;
  note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
  return mem_ref_p;
}

static void
91
mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
92
{
93
  if (MEM_P (loc))
94 95 96
    mem_ref_p = true;
}

97
/* Returns nonzero if INSN writes to memory.  */
98 99 100 101 102 103 104 105
static bool
mem_write_insn_p (rtx insn)
{
  mem_ref_p = false;
  note_stores (PATTERN (insn), mark_mem_store, NULL);
  return mem_ref_p;
}

106
/* Returns nonzero if X has access to memory.  */
107 108 109 110 111 112 113 114 115 116
static bool
rtx_mem_access_p (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code;

  if (x == 0)
    return false;

117
  if (MEM_P (x))
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    return true;

  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (rtx_mem_access_p (XEXP (x, i)))
            return true;
        }
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  {
	    if (rtx_mem_access_p (XVECEXP (x, i, j)))
              return true;
          }
    }
  return false;
}

139
/* Returns nonzero if INSN reads to or writes from memory.  */
140 141 142 143 144 145
static bool
mem_access_insn_p (rtx insn)
{
  return rtx_mem_access_p (PATTERN (insn));
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/* Return true if DEF_INSN contains address being auto-inc or auto-dec
   which is used in USE_INSN.  Otherwise return false.  The result is
   being used to decide whether to remove the edge between def_insn and
   use_insn when -fmodulo-sched-allow-regmoves is set.  This function
   doesn't need to consider the specific address register; no reg_moves
   will be allowed for any life range defined by def_insn and used
   by use_insn, if use_insn uses an address register auto-inc'ed by
   def_insn.  */
bool
autoinc_var_is_used_p (rtx def_insn, rtx use_insn)
{
  rtx note;

  for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_INC
	&& reg_referenced_p (XEXP (note, 0), PATTERN (use_insn)))
      return true;

  return false;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/* Return true if one of the definitions in INSN has MODE_CC.  Otherwise
   return false.  */
static bool
def_has_ccmode_p (rtx insn)
{
  df_ref *def;

  for (def = DF_INSN_DEFS (insn); *def; def++)
    {
      enum machine_mode mode = GET_MODE (DF_REF_REG (*def));

      if (GET_MODE_CLASS (mode) == MODE_CC)
	return true;
    }

  return false;
}

185 186 187
/* Computes the dependence parameters (latency, distance etc.), creates
   a ddg_edge and adds it to the given DDG.  */
static void
188 189
create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
                                     ddg_node_ptr dest_node, dep_t link)
190 191 192 193 194 195 196
{
  ddg_edge_ptr e;
  int latency, distance = 0;
  dep_type t = TRUE_DEP;
  dep_data_type dt = (mem_access_insn_p (src_node->insn)
		      && mem_access_insn_p (dest_node->insn) ? MEM_DEP
							     : REG_DEP);
197
  gcc_assert (src_node->cuid < dest_node->cuid);
198
  gcc_assert (link);
199 200

  /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!!  */
201
  if (DEP_TYPE (link) == REG_DEP_ANTI)
202
    t = ANTI_DEP;
203
  else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
204 205
    t = OUTPUT_DEP;

206
  gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
207
  gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
208

209 210 211 212
  /* We currently choose not to create certain anti-deps edges and
     compensate for that by generating reg-moves based on the life-range
     analysis.  The anti-deps that will be deleted are the ones which
     have true-deps edges in the opposite direction (in other words
213 214 215 216 217
     the kernel has only one def of the relevant register).
     If the address that is being auto-inc or auto-dec in DEST_NODE
     is used in SRC_NODE then do not remove the edge to make sure
     reg-moves will not be created for this address.  
     TODO: support the removal of all anti-deps edges, i.e. including those
218
     whose register has multiple defs in the loop.  */
219 220
  if (flag_modulo_sched_allow_regmoves 
      && (t == ANTI_DEP && dt == REG_DEP)
221
      && !def_has_ccmode_p (dest_node->insn)
222
      && !autoinc_var_is_used_p (dest_node->insn, src_node->insn))
223
    {
224 225 226
      rtx set;

      set = single_set (dest_node->insn);
227 228 229
      /* TODO: Handle registers that REG_P is not true for them, i.e.
         subregs and special registers.  */
      if (set && REG_P (SET_DEST (set)))
230 231
        {
          int regno = REGNO (SET_DEST (set));
232
          df_ref first_def;
233
          struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
234

235 236 237
          first_def = df_bb_regno_first_def_find (g->bb, regno);
          gcc_assert (first_def);

238
          if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
239 240
            return;
        }
241
    }
242 243 244 245

   latency = dep_cost (link);
   e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
   add_edge_to_ddg (g, e);
246 247 248 249 250 251 252 253 254
}

/* The same as the above function, but it doesn't require a link parameter.  */
static void
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
			dep_type d_t, dep_data_type d_dt, int distance)
{
  ddg_edge_ptr e;
  int l;
255 256
  enum reg_note dep_kind;
  struct _dep _dep, *dep = &_dep;
257

258
  gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
259
  gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
260

261
  if (d_t == ANTI_DEP)
262
    dep_kind = REG_DEP_ANTI;
263
  else if (d_t == OUTPUT_DEP)
264 265 266 267 268 269 270 271 272
    dep_kind = REG_DEP_OUTPUT;
  else
    {
      gcc_assert (d_t == TRUE_DEP);

      dep_kind = REG_DEP_TRUE;
    }

  init_dep (dep, from->insn, to->insn, dep_kind);
273

274
  l = dep_cost (dep);
275 276 277 278 279 280 281 282

  e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
  if (distance > 0)
    add_backarc_to_ddg (g, e);
  else
    add_edge_to_ddg (g, e);
}

283 284 285 286 287 288 289

/* Given a downwards exposed register def LAST_DEF (which is the last
   definition of that register in the bb), add inter-loop true dependences
   to all its uses in the next iteration, an output dependence to the
   first def of the same register (possibly itself) in the next iteration
   and anti-dependences from its uses in the current iteration to the
   first definition in the next iteration.  */
290
static void
291
add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
292
{
293
  int regno = DF_REF_REGNO (last_def);
294
  struct df_link *r_use;
295 296 297 298
  int has_use_in_bb_p = false;
  rtx def_insn = DF_REF_INSN (last_def);
  ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
  ddg_node_ptr use_node;
299
#ifdef ENABLE_CHECKING
300
  struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
301
#endif
302
  df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
303

304 305 306
  gcc_assert (last_def_node);
  gcc_assert (first_def);

307
#ifdef ENABLE_CHECKING
308
  if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
309 310 311
    gcc_assert (!bitmap_bit_p (&bb_info->gen,
			       DF_REF_ID (first_def)));
#endif
312

313 314
  /* Create inter-loop true dependences and anti dependences.  */
  for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
315
    {
316
      rtx use_insn = DF_REF_INSN (r_use->ref);
317

318 319
      if (BLOCK_FOR_INSN (use_insn) != g->bb)
	continue;
320

321 322 323 324 325 326 327 328 329
      /* ??? Do not handle uses with DF_REF_IN_NOTE notes.  */
      use_node = get_node_of_insn (g, use_insn);
      gcc_assert (use_node);
      has_use_in_bb_p = true;
      if (use_node->cuid <= last_def_node->cuid)
	{
	  /* Add true deps from last_def to it's uses in the next
	     iteration.  Any such upwards exposed use appears before
	     the last_def def.  */
330 331
	  create_ddg_dep_no_link (g, last_def_node, use_node,
				  DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
332 333
				  REG_DEP, 1);
	}
334
      else if (!DEBUG_INSN_P (use_insn))
335 336 337 338 339 340 341 342
	{
	  /* Add anti deps from last_def's uses in the current iteration
	     to the first def in the next iteration.  We do not add ANTI
	     dep when there is an intra-loop TRUE dep in the opposite
	     direction, but use regmoves to fix such disregarded ANTI
	     deps when broken.	If the first_def reaches the USE then
	     there is such a dep.  */
	  ddg_node_ptr first_def_node = get_node_of_insn (g,
343
							  DF_REF_INSN (first_def));
344 345 346

	  gcc_assert (first_def_node);

347
         /* Always create the edge if the use node is a branch in
348 349 350 351
            order to prevent the creation of reg-moves.  
            If the address that is being auto-inc or auto-dec in LAST_DEF
            is used in USE_INSN then do not remove the edge to make sure
            reg-moves will not be created for that address.  */
352
          if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
353
              || !flag_modulo_sched_allow_regmoves
354
	      || JUMP_P (use_node->insn)
355 356
              || autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn)
	      || def_has_ccmode_p (DF_REF_INSN (last_def)))
357 358 359
            create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
                                    REG_DEP, 1);

360
	}
361
    }
362 363 364 365 366 367 368 369
  /* Create an inter-loop output dependence between LAST_DEF (which is the
     last def in its block, being downwards exposed) and the first def in
     its block.  Avoid creating a self output dependence.  Avoid creating
     an output dependence if there is a dependence path between the two
     defs starting with a true dependence to a use which can be in the
     next iteration; followed by an anti dependence of that use to the
     first def (i.e. if there is a use between the two defs.)  */
  if (!has_use_in_bb_p)
370 371 372
    {
      ddg_node_ptr dest_node;

373
      if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
374 375
	return;

376
      dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
377 378 379
      gcc_assert (dest_node);
      create_ddg_dep_no_link (g, last_def_node, dest_node,
			      OUTPUT_DEP, REG_DEP, 1);
380 381 382 383
    }
}
/* Build inter-loop dependencies, by looking at DF analysis backwards.  */
static void
384
build_inter_loop_deps (ddg_ptr g)
385
{
386
  unsigned rd_num;
387
  struct df_rd_bb_info *rd_bb_info;
388
  bitmap_iterator bi;
389

390
  rd_bb_info = DF_RD_BB_INFO (g->bb);
391

392
  /* Find inter-loop register output, true and anti deps.  */
393
  EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
394
  {
395
    df_ref rd = DF_DEFS_GET (rd_num);
396

397 398
    add_cross_iteration_register_deps (g, rd);
  }
399 400
}

401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static int
walk_mems_2 (rtx *x, rtx mem)
{
  if (MEM_P (*x))
    {
      if (may_alias_p (*x, mem))
        return 1;

      return -1;
    }
  return 0;
}

static int
walk_mems_1 (rtx *x, rtx *pat)
{
  if (MEM_P (*x))
    {
      /* Visit all MEMs in *PAT and check indepedence.  */
      if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
        /* Indicate that dependence was determined and stop traversal.  */
        return 1;

      return -1;
    }
  return 0;
}

/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
static int
insns_may_alias_p (rtx insn1, rtx insn2)
{
  /* For each pair of MEMs in INSN1 and INSN2 check their independence.  */
  return  for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
			 &PATTERN (insn2));
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/* Given two nodes, analyze their RTL insns and add intra-loop mem deps
   to ddg G.  */
static void
add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{

  if ((from->cuid == to->cuid)
      || !insns_may_alias_p (from->insn, to->insn))
    /* Do not create edge if memory references have disjoint alias sets
       or 'to' and 'from' are the same instruction.  */
    return;

  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : TRUE_DEP, MEM_DEP, 0);
      else
	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 0);
    }
  else if (!mem_read_insn_p (to->insn))
    create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0);
}

466 467 468 469 470
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
   to ddg G.  */
static void
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
471
  if (!insns_may_alias_p (from->insn, to->insn))
472 473
    /* Do not create edge if memory references have disjoint alias sets.  */
    return;
H.J. Lu committed
474

475 476 477
  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
478 479 480
  	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
481
      else if (from->cuid != to->cuid)
482 483 484
  	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
485 486 487 488 489 490 491
    }
  else
    {
      if (mem_read_insn_p (to->insn))
	return;
      else if (from->cuid != to->cuid)
	{
492 493 494 495 496
	  create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
	  if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
	    create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
	  else
	    create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
497 498 499 500 501 502
	}
    }

}

/* Perform intra-block Data Dependency analysis and connect the nodes in
503
   the DDG.  We assume the loop has a single basic block.  */
504 505 506 507 508
static void
build_intra_loop_deps (ddg_ptr g)
{
  int i;
  /* Hold the dependency analysis state during dependency calculations.  */
509
  struct deps_desc tmp_deps;
510
  rtx head, tail;
511 512 513

  /* Build the dependence information, using the sched_analyze function.  */
  init_deps_global ();
514
  init_deps (&tmp_deps, false);
515 516

  /* Do the intra-block data dependence analysis for the given block.  */
517
  get_ebb_head_tail (g->bb, g->bb, &head, &tail);
518 519
  sched_analyze (&tmp_deps, head, tail);

520
  /* Build intra-loop data dependencies using the scheduler dependency
521 522 523 524
     analysis.  */
  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_node_ptr dest_node = &g->nodes[i];
525 526
      sd_iterator_def sd_it;
      dep_t dep;
527 528 529 530

      if (! INSN_P (dest_node->insn))
	continue;

531
      FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
532
	{
533 534 535 536 537 538 539 540 541
	  rtx src_insn = DEP_PRO (dep);
	  ddg_node_ptr src_node;

	  /* Don't add dependencies on debug insns to non-debug insns
	     to avoid codegen differences between -g and -g0.  */
	  if (DEBUG_INSN_P (src_insn) && !DEBUG_INSN_P (dest_node->insn))
	    continue;

	  src_node = get_node_of_insn (g, src_insn);
542 543 544 545

	  if (!src_node)
	    continue;

546
	  create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
547 548 549 550 551 552 553 554 555 556 557
	}

      /* If this insn modifies memory, add an edge to all insns that access
	 memory.  */
      if (mem_access_insn_p (dest_node->insn))
	{
	  int j;

	  for (j = 0; j <= i; j++)
	    {
	      ddg_node_ptr j_node = &g->nodes[j];
558 559
	      if (DEBUG_INSN_P (j_node->insn))
		continue;
560
	      if (mem_access_insn_p (j_node->insn))
561 562 563
		{
		  /* Don't bother calculating inter-loop dep if an intra-loop dep
		     already exists.  */
564
	      	  if (! bitmap_bit_p (dest_node->successors, j))
565
		    add_inter_loop_mem_dep (g, dest_node, j_node);
566 567 568 569 570 571 572 573
		  /* If -fmodulo-sched-allow-regmoves
		     is set certain anti-dep edges are not created.
		     It might be that these anti-dep edges are on the
		     path from one memory instruction to another such that
		     removing these edges could cause a violation of the
		     memory dependencies.  Thus we add intra edges between
		     every two memory instructions in this case.  */
		  if (flag_modulo_sched_allow_regmoves
574
		      && !bitmap_bit_p (dest_node->predecessors, j))
575 576
		    add_intra_loop_mem_dep (g, j_node, dest_node);
		}
577 578 579 580 581 582 583
            }
        }
    }

  /* Free the INSN_LISTs.  */
  finish_deps_global ();
  free_deps (&tmp_deps);
584 585 586

  /* Free dependencies.  */
  sched_free_deps (head, tail, false);
587 588 589 590 591 592 593
}


/* Given a basic block, create its DDG and return a pointer to a variable
   of ddg type that represents it.
   Initialize the ddg structure fields to the appropriate values.  */
ddg_ptr
594
create_ddg (basic_block bb, int closing_branch_deps)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
{
  ddg_ptr g;
  rtx insn, first_note;
  int i;
  int num_nodes = 0;

  g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));

  g->bb = bb;
  g->closing_branch_deps = closing_branch_deps;

  /* Count the number of insns in the BB.  */
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
	continue;

613 614 615 616 617 618 619 620 621
      if (DEBUG_INSN_P (insn))
	g->num_debug++;
      else
	{
	  if (mem_read_insn_p (insn))
	    g->num_loads++;
	  if (mem_write_insn_p (insn))
	    g->num_stores++;
	}
622 623 624 625
      num_nodes++;
    }

  /* There is nothing to do for this BB.  */
626
  if ((num_nodes - g->num_debug) <= 1)
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    {
      free (g);
      return NULL;
    }

  /* Allocate the nodes array, and initialize the nodes.  */
  g->num_nodes = num_nodes;
  g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
  g->closing_branch = NULL;
  i = 0;
  first_note = NULL_RTX;
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	{
643
	  if (! first_note && NOTE_P (insn)
644
	      && NOTE_KIND (insn) !=  NOTE_INSN_BASIC_BLOCK)
645 646 647
	    first_note = insn;
	  continue;
	}
648
      if (JUMP_P (insn))
649
	{
650 651
	  gcc_assert (!g->closing_branch);
	  g->closing_branch = &g->nodes[i];
652 653 654 655 656 657 658 659 660 661
	}
      else if (GET_CODE (PATTERN (insn)) == USE)
	{
	  if (! first_note)
	    first_note = insn;
	  continue;
	}

      g->nodes[i].cuid = i;
      g->nodes[i].successors = sbitmap_alloc (num_nodes);
662
      bitmap_clear (g->nodes[i].successors);
663
      g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
664
      bitmap_clear (g->nodes[i].predecessors);
665 666 667 668
      g->nodes[i].first_note = (first_note ? first_note : insn);
      g->nodes[i++].insn = insn;
      first_note = NULL_RTX;
    }
H.J. Lu committed
669

670 671
  /* We must have found a branch in DDG.  */
  gcc_assert (g->closing_branch);
H.J. Lu committed
672

673

674
  /* Build the data dependency graph.  */
675
  build_intra_loop_deps (g);
676
  build_inter_loop_deps (g);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  return g;
}

/* Free all the memory allocated for the DDG.  */
void
free_ddg (ddg_ptr g)
{
  int i;

  if (!g)
    return;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e = g->nodes[i].out;

      while (e)
	{
	  ddg_edge_ptr next = e->next_out;

	  free (e);
	  e = next;
	}
      sbitmap_free (g->nodes[i].successors);
      sbitmap_free (g->nodes[i].predecessors);
    }
  if (g->num_backarcs > 0)
    free (g->backarcs);
  free (g->nodes);
  free (g);
}

void
710
print_ddg_edge (FILE *file, ddg_edge_ptr e)
711 712 713
{
  char dep_c;

714 715
  switch (e->type)
    {
716 717 718 719 720 721 722 723
    case OUTPUT_DEP :
      dep_c = 'O';
      break;
    case ANTI_DEP :
      dep_c = 'A';
      break;
    default:
      dep_c = 'T';
724
    }
725

726
  fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
727 728 729 730 731
	   dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
}

/* Print the DDG nodes with there in/out edges to the dump file.  */
void
732
print_ddg (FILE *file, ddg_ptr g)
733 734 735 736 737 738 739
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e;

740
      fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
741 742
      print_rtl_single (file, g->nodes[i].insn);
      fprintf (file, "OUT ARCS: ");
743
      for (e = g->nodes[i].out; e; e = e->next_out)
744
	print_ddg_edge (file, e);
745

746
      fprintf (file, "\nIN ARCS: ");
747
      for (e = g->nodes[i].in; e; e = e->next_in)
748
	print_ddg_edge (file, e);
749

750
      fprintf (file, "\n");
751 752 753 754
    }
}

/* Print the given DDG in VCG format.  */
755
DEBUG_FUNCTION void
756
vcg_print_ddg (FILE *file, ddg_ptr g)
757 758 759
{
  int src_cuid;

760
  fprintf (file, "graph: {\n");
761 762 763 764 765
  for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
    {
      ddg_edge_ptr e;
      int src_uid = INSN_UID (g->nodes[src_cuid].insn);

766 767 768
      fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
      print_rtl_single (file, g->nodes[src_cuid].insn);
      fprintf (file, "\"}\n");
769 770 771 772 773 774 775
      for (e = g->nodes[src_cuid].out; e; e = e->next_out)
	{
	  int dst_uid = INSN_UID (e->dest->insn);
	  int dst_cuid = e->dest->cuid;

	  /* Give the backarcs a different color.  */
	  if (e->distance > 0)
776
	    fprintf (file, "backedge: {color: red ");
777
	  else
778
	    fprintf (file, "edge: { ");
779

780 781 782
	  fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
	  fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
	  fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
783 784
	}
    }
785
  fprintf (file, "}\n");
786 787
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/* Dump the sccs in SCCS.  */
void
print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
{
  unsigned int u = 0;
  sbitmap_iterator sbi;
  int i;

  if (!file)
    return;

  fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
  for (i = 0; i < sccs->num_sccs; i++)
    {
      fprintf (file, "SCC number: %d\n", i);
803
      EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
804 805 806 807 808 809 810 811
      {
        fprintf (file, "insn num %d\n", u);
        print_rtl_single (file, g->nodes[u].insn);
      }
    }
  fprintf (file, "\n");
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/* Create an edge and initialize it with given values.  */
static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
		 dep_type t, dep_data_type dt, int l, int d)
{
  ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));

  e->src = src;
  e->dest = dest;
  e->type = t;
  e->data_type = dt;
  e->latency = l;
  e->distance = d;
  e->next_in = e->next_out = NULL;
  e->aux.info = 0;
  return e;
}

/* Add the given edge to the in/out linked lists of the DDG nodes.  */
static void
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
{
  ddg_node_ptr src = e->src;
  ddg_node_ptr dest = e->dest;

837 838
  /* Should have allocated the sbitmaps.  */
  gcc_assert (src->successors && dest->predecessors);
839

840 841
  bitmap_set_bit (src->successors, dest->cuid);
  bitmap_set_bit (dest->predecessors, src->cuid);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
  e->next_in = dest->in;
  dest->in = e;
  e->next_out = src->out;
  src->out = e;
}



/* Algorithm for computing the recurrence_length of an scc.  We assume at
   for now that cycles in the data dependence graph contain a single backarc.
   This simplifies the algorithm, and can be generalized later.  */
static void
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
{
  int j;
  int result = -1;

  for (j = 0; j < scc->num_backarcs; j++)
    {
      ddg_edge_ptr backarc = scc->backarcs[j];
      int length;
      int distance = backarc->distance;
      ddg_node_ptr src = backarc->dest;
      ddg_node_ptr dest = backarc->src;

      length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
      if (length < 0 )
	{
	  /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
	  continue;
	}
      length += backarc->latency;
      result = MAX (result, (length / distance));
    }
  scc->recurrence_length = result;
}

/* Create a new SCC given the set of its nodes.  Compute its recurrence_length
   and mark edges that belong to this scc as IN_SCC.  */
static ddg_scc_ptr
create_scc (ddg_ptr g, sbitmap nodes)
{
  ddg_scc_ptr scc;
885
  unsigned int u = 0;
886
  sbitmap_iterator sbi;
887 888 889 890 891

  scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
  scc->backarcs = NULL;
  scc->num_backarcs = 0;
  scc->nodes = sbitmap_alloc (g->num_nodes);
892
  bitmap_copy (scc->nodes, nodes);
893 894

  /* Mark the backarcs that belong to this SCC.  */
895
  EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
896 897 898 899 900
    {
      ddg_edge_ptr e;
      ddg_node_ptr n = &g->nodes[u];

      for (e = n->out; e; e = e->next_out)
901
	if (bitmap_bit_p (nodes, e->dest->cuid))
902 903 904 905 906
	  {
	    e->aux.count = IN_SCC;
	    if (e->distance > 0)
	      add_backarc_to_scc (scc, e);
	  }
907
    }
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

  set_recurrence_length (scc, g);
  return scc;
}

/* Cleans the memory allocation of a given SCC.  */
static void
free_scc (ddg_scc_ptr scc)
{
  if (!scc)
    return;

  sbitmap_free (scc->nodes);
  if (scc->num_backarcs > 0)
    free (scc->backarcs);
  free (scc);
}


/* Add a given edge known to be a backarc to the given DDG.  */
static void
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
{
  int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  add_edge_to_ddg (g, e);
  g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
  g->backarcs[g->num_backarcs++] = e;
}

/* Add backarc to an SCC.  */
static void
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
{
  int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
  scc->backarcs[scc->num_backarcs++] = e;
}

/* Add the given SCC to the DDG.  */
static void
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
{
  int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);

  g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
  g->sccs[g->num_sccs++] = scc;
}

/* Given the instruction INSN return the node that represents it.  */
ddg_node_ptr
get_node_of_insn (ddg_ptr g, rtx insn)
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    if (insn == g->nodes[i].insn)
      return &g->nodes[i];
  return NULL;
}

/* Given a set OPS of nodes in the DDG, find the set of their successors
   which are not in OPS, and set their bits in SUCC.  Bits corresponding to
   OPS are cleared from SUCC.  Leaves the other bits in SUCC unchanged.  */
void
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
{
976
  unsigned int i = 0;
977
  sbitmap_iterator sbi;
978

979
  EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
980 981
    {
      const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
982
      bitmap_ior (succ, succ, node_succ);
983
    };
984 985

  /* We want those that are not in ops.  */
986
  bitmap_and_compl (succ, succ, ops);
987 988 989 990 991 992 993 994
}

/* Given a set OPS of nodes in the DDG, find the set of their predecessors
   which are not in OPS, and set their bits in PREDS.  Bits corresponding to
   OPS are cleared from PREDS.  Leaves the other bits in PREDS unchanged.  */
void
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
{
995
  unsigned int i = 0;
996
  sbitmap_iterator sbi;
997

998
  EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
999 1000
    {
      const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
1001
      bitmap_ior (preds, preds, node_preds);
1002
    };
1003 1004

  /* We want those that are not in ops.  */
1005
  bitmap_and_compl (preds, preds, ops);
1006 1007 1008 1009 1010 1011 1012 1013
}


/* Compare function to be passed to qsort to order the backarcs in descending
   recMII order.  */
static int
compare_sccs (const void *s1, const void *s2)
{
1014
  const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
H.J. Lu committed
1015
  const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
1016
  return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
H.J. Lu committed
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/* Order the backarcs in descending recMII order using compare_sccs.  */
static void
order_sccs (ddg_all_sccs_ptr g)
{
  qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
	 (int (*) (const void *, const void *)) compare_sccs);
}

1028
#ifdef ENABLE_CHECKING
1029 1030 1031 1032 1033 1034 1035 1036
/* Check that every node in SCCS belongs to exactly one strongly connected
   component and that no element of SCCS is empty.  */
static void
check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
{
  int i = 0;
  sbitmap tmp = sbitmap_alloc (num_nodes);

1037
  bitmap_clear (tmp);
1038 1039
  for (i = 0; i < sccs->num_sccs; i++)
    {
1040
      gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes));
1041 1042
      /* Verify that every node in sccs is in exactly one strongly
         connected component.  */
1043 1044
      gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes));
      bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes);
1045 1046 1047
    }
  sbitmap_free (tmp);
}
1048
#endif
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/* Perform the Strongly Connected Components decomposing algorithm on the
   DDG and return DDG_ALL_SCCS structure that contains them.  */
ddg_all_sccs_ptr
create_ddg_all_sccs (ddg_ptr g)
{
  int i;
  int num_nodes = g->num_nodes;
  sbitmap from = sbitmap_alloc (num_nodes);
  sbitmap to = sbitmap_alloc (num_nodes);
  sbitmap scc_nodes = sbitmap_alloc (num_nodes);
  ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
			  xmalloc (sizeof (struct ddg_all_sccs));

  sccs->ddg = g;
  sccs->sccs = NULL;
  sccs->num_sccs = 0;

  for (i = 0; i < g->num_backarcs; i++)
    {
      ddg_scc_ptr  scc;
      ddg_edge_ptr backarc = g->backarcs[i];
      ddg_node_ptr src = backarc->src;
      ddg_node_ptr dest = backarc->dest;

      /* If the backarc already belongs to an SCC, continue.  */
      if (backarc->aux.count == IN_SCC)
	continue;

1078 1079 1080
      bitmap_clear (scc_nodes);
      bitmap_clear (from);
      bitmap_clear (to);
1081 1082
      bitmap_set_bit (from, dest->cuid);
      bitmap_set_bit (to, src->cuid);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

      if (find_nodes_on_paths (scc_nodes, g, from, to))
	{
	  scc = create_scc (g, scc_nodes);
	  add_scc_to_ddg (sccs, scc);
	}
    }
  order_sccs (sccs);
  sbitmap_free (from);
  sbitmap_free (to);
  sbitmap_free (scc_nodes);
1094 1095 1096
#ifdef ENABLE_CHECKING
  check_sccs (sccs, num_nodes);
#endif
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
  return sccs;
}

/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG.  */
void
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
{
  int i;

  if (!all_sccs)
    return;

  for (i = 0; i < all_sccs->num_sccs; i++)
    free_scc (all_sccs->sccs[i]);

Revital Eres committed
1112
  free (all_sccs->sccs);
1113 1114 1115 1116 1117 1118
  free (all_sccs);
}


/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
   nodes - find all nodes that lie on paths from FROM to TO (not excluding
1119
   nodes from FROM and TO).  Return nonzero if nodes exist.  */
1120 1121 1122 1123
int
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
{
  int answer;
1124
  int change;
1125
  unsigned int u = 0;
1126
  int num_nodes = g->num_nodes;
1127 1128
  sbitmap_iterator sbi;

1129 1130 1131 1132 1133
  sbitmap workset = sbitmap_alloc (num_nodes);
  sbitmap reachable_from = sbitmap_alloc (num_nodes);
  sbitmap reach_to = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);

1134 1135
  bitmap_copy (reachable_from, from);
  bitmap_copy (tmp, from);
1136 1137 1138 1139 1140

  change = 1;
  while (change)
    {
      change = 0;
1141 1142
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1143
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1144 1145 1146 1147 1148 1149 1150 1151 1152
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
	    {
	      ddg_node_ptr v_node = e->dest;
	      int v = v_node->cuid;

1153
	      if (!bitmap_bit_p (reachable_from, v))
1154
		{
1155 1156
		  bitmap_set_bit (reachable_from, v);
		  bitmap_set_bit (tmp, v);
1157 1158 1159
		  change = 1;
		}
	    }
1160
	}
1161 1162
    }

1163 1164
  bitmap_copy (reach_to, to);
  bitmap_copy (tmp, to);
1165 1166 1167 1168 1169

  change = 1;
  while (change)
    {
      change = 0;
1170 1171
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1172
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1173 1174 1175 1176 1177 1178 1179 1180 1181
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
	    {
	      ddg_node_ptr v_node = e->src;
	      int v = v_node->cuid;

1182
	      if (!bitmap_bit_p (reach_to, v))
1183
		{
1184 1185
		  bitmap_set_bit (reach_to, v);
		  bitmap_set_bit (tmp, v);
1186 1187 1188
		  change = 1;
		}
	    }
1189
	}
1190 1191
    }

1192
  answer = bitmap_and (result, reachable_from, reach_to);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  sbitmap_free (workset);
  sbitmap_free (reachable_from);
  sbitmap_free (reach_to);
  sbitmap_free (tmp);
  return answer;
}


/* Updates the counts of U_NODE's successors (that belong to NODES) to be
   at-least as large as the count of U_NODE plus the latency between them.
   Sets a bit in TMP for each successor whose count was changed (increased).
1204
   Returns nonzero if any count was changed.  */
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static int
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
{
  ddg_edge_ptr e;
  int result = 0;

  for (e = u_node->out; e; e = e->next_out)
    {
      ddg_node_ptr v_node = e->dest;
      int v = v_node->cuid;

1216
      if (bitmap_bit_p (nodes, v)
1217 1218 1219 1220
	  && (e->distance == 0)
	  && (v_node->aux.count < u_node->aux.count + e->latency))
	{
	  v_node->aux.count = u_node->aux.count + e->latency;
1221
	  bitmap_set_bit (tmp, v);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	  result = 1;
	}
    }
  return result;
}


/* Find the length of a longest path from SRC to DEST in G,
   going only through NODES, and disregarding backarcs.  */
int
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
{
1234
  int i;
1235
  unsigned int u = 0;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  int change = 1;
  int result;
  int num_nodes = g->num_nodes;
  sbitmap workset = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);


  /* Data will hold the distance of the longest path found so far from
     src to each node.  Initialize to -1 = less than minimum.  */
  for (i = 0; i < g->num_nodes; i++)
    g->nodes[i].aux.count = -1;
  g->nodes[src].aux.count = 0;

1249
  bitmap_clear (tmp);
1250
  bitmap_set_bit (tmp, src);
1251 1252 1253

  while (change)
    {
1254 1255
      sbitmap_iterator sbi;

1256
      change = 0;
1257 1258
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1259
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1260 1261 1262 1263
	{
	  ddg_node_ptr u_node = &g->nodes[u];

	  change |= update_dist_to_successors (u_node, nodes, tmp);
1264
	}
1265 1266 1267 1268 1269 1270
    }
  result = g->nodes[dest].aux.count;
  sbitmap_free (workset);
  sbitmap_free (tmp);
  return result;
}
1271 1272

#endif /* INSN_SCHEDULING */