ssa.c 62.7 KB
Newer Older
Alex Samuel committed
1
/* Static Single Assignment conversion routines for the GNU compiler.
Kazu Hirata committed
2
   Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
Alex Samuel committed
3

4
This file is part of GCC.
Alex Samuel committed
5

6 7 8 9
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Alex Samuel committed
10

11 12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Alex Samuel committed
15

16
You should have received a copy of the GNU General Public License
17
along with GCC; see the file COPYING.  If not, write to the Free
18 19
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Alex Samuel committed
20 21 22 23 24 25 26 27 28 29

/* References:

   Building an Optimizing Compiler
   Robert Morgan
   Butterworth-Heinemann, 1998

   Static Single Assignment Construction
   Preston Briggs, Tim Harvey, Taylor Simpson
   Technical Report, Rice University, 1995
30
   ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz.  */
Alex Samuel committed
31 32 33 34 35

#include "config.h"
#include "system.h"

#include "rtl.h"
36
#include "expr.h"
37 38 39 40
#include "varray.h"
#include "partition.h"
#include "sbitmap.h"
#include "hashtab.h"
Alex Samuel committed
41 42 43 44 45 46 47 48 49
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "function.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
50
#include "ssa.h"
Alex Samuel committed
51 52 53

/* TODO: 

Alex Samuel committed
54 55 56 57 58 59 60
   Handle subregs better, maybe.  For now, if a reg that's set in a
   subreg expression is duplicated going into SSA form, an extra copy
   is inserted first that copies the entire reg into the duplicate, so
   that the other bits are preserved.  This isn't strictly SSA, since
   at least part of the reg is assigned in more than one place (though
   they are adjacent).

Alex Samuel committed
61 62 63 64 65 66 67
   ??? What to do about strict_low_part.  Probably I'll have to split
   them out of their current instructions first thing.

   Actually the best solution may be to have a kind of "mid-level rtl"
   in which the RTL encodes exactly what we want, without exposing a
   lot of niggling processor details.  At some later point we lower
   the representation, calling back into optabs to finish any necessary
Alex Samuel committed
68 69
   expansion.  */

70 71 72 73 74 75 76 77 78 79
/* All pseudo-registers and select hard registers are converted to SSA
   form.  When converting out of SSA, these select hard registers are
   guaranteed to be mapped to their original register number.  Each
   machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
   indicating which hard registers should be converted.

   When converting out of SSA, temporaries for all registers are
   partitioned.  The partition is checked to ensure that all uses of
   the same hard register in the same machine mode are in the same
   class.  */
Alex Samuel committed
80 81 82 83 84 85

/* If conservative_reg_partition is non-zero, use a conservative
   register partitioning algorithm (which leaves more regs after
   emerging from SSA) instead of the coalescing one.  This is being
   left in for a limited time only, as a debugging tool until the
   coalescing algorithm is validated.  */
86

Alex Samuel committed
87
static int conservative_reg_partition;
Alex Samuel committed
88

Alex Samuel committed
89 90
/* This flag is set when the CFG is in SSA form.  */
int in_ssa_form = 0;
Alex Samuel committed
91

92
/* Element I is the single instruction that sets register I.  */
Alex Samuel committed
93 94 95 96 97 98
varray_type ssa_definition;

/* Element I-PSEUDO is the normal register that originated the ssa
   register in question.  */
varray_type ssa_rename_from;

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/* Element I is the normal register that originated the ssa
   register in question.

   A hash table stores the (register, rtl) pairs.  These are each
   xmalloc'ed and deleted when the hash table is destroyed.  */
htab_t ssa_rename_from_ht;

/* The running target ssa register for a given pseudo register.
   (Pseudo registers appear in only one mode.)  */
static rtx *ssa_rename_to_pseudo;
/* Similar, but for hard registers.  A hard register can appear in
   many modes, so we store an equivalent pseudo for each of the
   modes.  */
static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];

/* ssa_rename_from maps pseudo registers to the original corresponding
   RTL.  It is implemented as using a hash table.  */

typedef struct {
  unsigned int reg;
  rtx original;
} ssa_rename_from_pair;

struct ssa_rename_from_hash_table_data {
  sbitmap canonical_elements;
  partition reg_partition;
};

127
static void ssa_rename_from_initialize
128
  PARAMS ((void));
129
static rtx ssa_rename_from_lookup
130
  PARAMS ((int reg));
131
static unsigned int original_register
132
  PARAMS ((unsigned int regno));
133
static void ssa_rename_from_insert
134
  PARAMS ((unsigned int reg, rtx r));
135
static void ssa_rename_from_free
136 137 138 139
  PARAMS ((void));
typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
static void ssa_rename_from_traverse
  PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
140
/*static Avoid warnign message.  */ void ssa_rename_from_print
141 142 143 144 145 146 147 148 149 150 151 152 153 154
  PARAMS ((void));
static int ssa_rename_from_print_1
  PARAMS ((void **slot, void *data));
static hashval_t ssa_rename_from_hash_function
  PARAMS ((const void * srfp));
static int ssa_rename_from_equal
  PARAMS ((const void *srfp1, const void *srfp2));
static void ssa_rename_from_delete
  PARAMS ((void *srfp));

static rtx ssa_rename_to_lookup
  PARAMS ((rtx reg));
static void ssa_rename_to_insert
  PARAMS ((rtx reg, rtx r));
Alex Samuel committed
155 156

/* The number of registers that were live on entry to the SSA routines.  */
157
static unsigned int ssa_max_reg_num;
Alex Samuel committed
158 159 160

/* Local function prototypes.  */

161 162
struct rename_context;

Alex Samuel committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176
static inline rtx * phi_alternative
  PARAMS ((rtx, int));
static void compute_dominance_frontiers_1
  PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
static void find_evaluations_1
  PARAMS ((rtx dest, rtx set, void *data));
static void find_evaluations
  PARAMS ((sbitmap *evals, int nregs));
static void compute_iterated_dominance_frontiers
  PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
static void insert_phi_node
  PARAMS ((int regno, int b));
static void insert_phi_nodes
  PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
177 178 179 180
static void create_delayed_rename 
  PARAMS ((struct rename_context *, rtx *));
static void apply_delayed_renames 
  PARAMS ((struct rename_context *));
Alex Samuel committed
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static int rename_insn_1 
  PARAMS ((rtx *ptr, void *data));
static void rename_block 
  PARAMS ((int b, int *idom));
static void rename_registers 
  PARAMS ((int nregs, int *idom));

static inline int ephi_add_node
  PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
static int * ephi_forward
  PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
static void ephi_backward
  PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
static void ephi_create
  PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
static void eliminate_phi
  PARAMS ((edge e, partition reg_partition));
static int make_regs_equivalent_over_bad_edges 
  PARAMS ((int bb, partition reg_partition));
Alex Samuel committed
200 201 202

/* These are used only in the conservative register partitioning
   algorithms.  */
Alex Samuel committed
203 204 205
static int make_equivalent_phi_alternatives_equivalent 
  PARAMS ((int bb, partition reg_partition));
static partition compute_conservative_reg_partition 
206
  PARAMS ((void));
207 208 209 210
static int record_canonical_element_1
  PARAMS ((void **srfp, void *data));
static int check_hard_regs_in_partition
  PARAMS ((partition reg_partition));
Alex Samuel committed
211 212 213 214 215 216 217
static int rename_equivalent_regs_in_insn 
  PARAMS ((rtx *ptr, void *data));

/* These are used in the register coalescing algorithm.  */
static int coalesce_if_unconflicting
  PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
static int coalesce_regs_in_copies
218
  PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
Alex Samuel committed
219 220 221
static int coalesce_reg_in_phi
  PARAMS ((rtx, int dest_regno, int src_regno, void *data));
static int coalesce_regs_in_successor_phi_nodes
222
  PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
Alex Samuel committed
223
static partition compute_coalesced_reg_partition
224
  PARAMS ((void));
Alex Samuel committed
225 226 227 228 229
static int mark_reg_in_phi 
  PARAMS ((rtx *ptr, void *data));
static void mark_phi_and_copy_regs
  PARAMS ((regset phi_set));

Alex Samuel committed
230 231 232 233 234
static int rename_equivalent_regs_in_insn 
  PARAMS ((rtx *ptr, void *data));
static void rename_equivalent_regs 
  PARAMS ((partition reg_partition));

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/* Deal with hard registers.  */
static int conflicting_hard_regs_p
  PARAMS ((int reg1, int reg2));

/* ssa_rename_to maps registers and machine modes to SSA pseudo registers.  */

/* Find the register associated with REG in the indicated mode.  */

static rtx
ssa_rename_to_lookup (reg)
     rtx reg;
{
  if (!HARD_REGISTER_P (reg))
    return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
  else
    return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
}

/* Store a new value mapping REG to R in ssa_rename_to.  */

static void
ssa_rename_to_insert(reg, r)
     rtx reg;
     rtx r;
{
  if (!HARD_REGISTER_P (reg))
    ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
  else
    ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
}

/* Prepare ssa_rename_from for use.  */

268
static void
269 270 271 272 273 274 275 276 277 278 279 280
ssa_rename_from_initialize ()
{
  /* We use an arbitrary initial hash table size of 64.  */
  ssa_rename_from_ht = htab_create (64,
				    &ssa_rename_from_hash_function,
				    &ssa_rename_from_equal,
				    &ssa_rename_from_delete);
}

/* Find the REG entry in ssa_rename_from.  Return NULL_RTX if no entry is
   found.  */

281
static rtx
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
ssa_rename_from_lookup (reg)
     int reg;
{
  ssa_rename_from_pair srfp;
  ssa_rename_from_pair *answer;
  srfp.reg = reg;
  srfp.original = NULL_RTX;
  answer = (ssa_rename_from_pair *)
    htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
  return (answer == 0 ? NULL_RTX : answer->original);
}

/* Find the number of the original register specified by REGNO.  If
   the register is a pseudo, return the original register's number.
   Otherwise, return this register number REGNO.  */

298
static unsigned int
299 300 301 302 303 304 305 306 307
original_register (regno)
     unsigned int regno;
{
  rtx original_rtx = ssa_rename_from_lookup (regno);
  return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
}

/* Add mapping from R to REG to ssa_rename_from even if already present.  */

308
static void
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
ssa_rename_from_insert (reg, r)
     unsigned int reg;
     rtx r;
{
  void **slot;
  ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
  srfp->reg = reg;
  srfp->original = r;
  slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
				   reg, INSERT);
  if (*slot != 0)
    free ((void *) *slot);
  *slot = srfp;
}

/* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
   CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
   current use of this function.  */

328
static void
329 330 331 332 333 334 335 336 337 338 339 340 341 342
ssa_rename_from_traverse (callback_function,
			  canonical_elements, reg_partition)
     htab_trav callback_function;
     sbitmap canonical_elements;
     partition reg_partition;
{
  struct ssa_rename_from_hash_table_data srfhd;
  srfhd.canonical_elements = canonical_elements;
  srfhd.reg_partition = reg_partition;
  htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
}

/* Destroy ssa_rename_from.  */

343
static void
344 345 346 347 348 349 350
ssa_rename_from_free ()
{
  htab_delete (ssa_rename_from_ht);
}

/* Print the contents of ssa_rename_from.  */

351 352
/* static  Avoid erroneous error message.  */
void
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
ssa_rename_from_print ()
{
  printf ("ssa_rename_from's hash table contents:\n");
  htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
}

/* Print the contents of the hash table entry SLOT, passing the unused
   sttribute DATA.  Used as a callback function with htab_traverse ().  */

static int
ssa_rename_from_print_1 (slot, data)
     void **slot;
     void *data ATTRIBUTE_UNUSED;
{
  ssa_rename_from_pair * p = *slot;
  printf ("ssa_rename_from maps pseudo %i to original %i.\n",
	  p->reg, REGNO (p->original));
  return 1;
}

/* Given a hash entry SRFP, yield a hash value.  */

static hashval_t
ssa_rename_from_hash_function (srfp)
     const void *srfp;
{
Kaveh R. Ghazi committed
379
  return ((const ssa_rename_from_pair *) srfp)->reg;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

/* Test whether two hash table entries SRFP1 and SRFP2 are equal.  */

static int
ssa_rename_from_equal (srfp1, srfp2)
     const void *srfp1;
     const void *srfp2;
{
  return ssa_rename_from_hash_function (srfp1) ==
    ssa_rename_from_hash_function (srfp2);
}

/* Delete the hash table entry SRFP.  */

static void
ssa_rename_from_delete (srfp)
     void *srfp;
{
  free (srfp);
}
Alex Samuel committed
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

/* Given the SET of a PHI node, return the address of the alternative
   for predecessor block C.  */

static inline rtx *
phi_alternative (set, c)
     rtx set;
     int c;
{
  rtvec phi_vec = XVEC (SET_SRC (set), 0);
  int v;

  for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
    if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
      return &RTVEC_ELT (phi_vec, v);

  return NULL;
}

/* Given the SET of a phi node, remove the alternative for predecessor
   block C.  Return non-zero on success, or zero if no alternative is
   found for C.  */

424 425
int
remove_phi_alternative (set, block)
Alex Samuel committed
426
     rtx set;
427
     basic_block block;
Alex Samuel committed
428 429 430
{
  rtvec phi_vec = XVEC (SET_SRC (set), 0);
  int num_elem = GET_NUM_ELEM (phi_vec);
431
  int v, c;
Alex Samuel committed
432

433
  c = block->index;
Alex Samuel committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  for (v = num_elem - 2; v >= 0; v -= 2)
    if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
      {
	if (v < num_elem - 2)
	  {
	    RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
	    RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
	  }
	PUT_NUM_ELEM (phi_vec, num_elem - 2);
	return 1;
      }

  return 0;
}

/* For all registers, find all blocks in which they are set.

   This is the transform of what would be local kill information that
   we ought to be getting from flow.  */

static sbitmap *fe_evals;
static int fe_current_bb;

static void
find_evaluations_1 (dest, set, data)
     rtx dest;
     rtx set ATTRIBUTE_UNUSED;
     void *data ATTRIBUTE_UNUSED;
{
  if (GET_CODE (dest) == REG
464 465
      && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
    SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
Alex Samuel committed
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
}

static void
find_evaluations (evals, nregs)
     sbitmap *evals;
     int nregs;
{
  int bb;

  sbitmap_vector_zero (evals, nregs);
  fe_evals = evals;

  for (bb = n_basic_blocks; --bb >= 0; )
    {
      rtx p, last;

      fe_current_bb = bb;
      p = BLOCK_HEAD (bb);
      last = BLOCK_END (bb);
      while (1)
	{
487
	  if (INSN_P (p))
Alex Samuel committed
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	    note_stores (PATTERN (p), find_evaluations_1, NULL);

	  if (p == last)
	    break;
	  p = NEXT_INSN (p);
	}
    }
}

/* Computing the Dominance Frontier:
  
   As decribed in Morgan, section 3.5, this may be done simply by 
   walking the dominator tree bottom-up, computing the frontier for
   the children before the parent.  When considering a block B,
   there are two cases:

   (1) A flow graph edge leaving B that does not lead to a child
   of B in the dominator tree must be a block that is either equal
   to B or not dominated by B.  Such blocks belong in the frontier
   of B.

   (2) Consider a block X in the frontier of one of the children C
   of B.  If X is not equal to B and is not dominated by B, it
   is in the frontier of B.
*/

static void
compute_dominance_frontiers_1 (frontiers, idom, bb, done)
     sbitmap *frontiers;
     int *idom;
     int bb;
     sbitmap done;
{
  basic_block b = BASIC_BLOCK (bb);
  edge e;
  int c;

  SET_BIT (done, bb);
  sbitmap_zero (frontiers[bb]);

  /* Do the frontier of the children first.  Not all children in the
     dominator tree (blocks dominated by this one) are children in the
     CFG, so check all blocks.  */
  for (c = 0; c < n_basic_blocks; ++c)
    if (idom[c] == bb && ! TEST_BIT (done, c))
      compute_dominance_frontiers_1 (frontiers, idom, c, done);

  /* Find blocks conforming to rule (1) above.  */
  for (e = b->succ; e; e = e->succ_next)
    {
      if (e->dest == EXIT_BLOCK_PTR)
	continue;
      if (idom[e->dest->index] != bb)
	SET_BIT (frontiers[bb], e->dest->index);
    }

  /* Find blocks conforming to rule (2).  */
  for (c = 0; c < n_basic_blocks; ++c)
    if (idom[c] == bb)
      {
	int x;
	EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
	  {
	    if (idom[x] != bb)
	      SET_BIT (frontiers[bb], x);
	  });
      }
}

557
void
Alex Samuel committed
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
compute_dominance_frontiers (frontiers, idom)
     sbitmap *frontiers;
     int *idom;
{
  sbitmap done = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (done);

  compute_dominance_frontiers_1 (frontiers, idom, 0, done);

  sbitmap_free (done);
}

/* Computing the Iterated Dominance Frontier:

   This is the set of merge points for a given register.

   This is not particularly intuitive.  See section 7.1 of Morgan, in
   particular figures 7.3 and 7.4 and the immediately surrounding text.
*/

static void
compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
     sbitmap *idfs;
     sbitmap *frontiers;
     sbitmap *evals;
     int nregs;
{
  sbitmap worklist;
  int reg, passes = 0;

  worklist = sbitmap_alloc (n_basic_blocks);

  for (reg = 0; reg < nregs; ++reg)
    {
      sbitmap idf = idfs[reg];
      int b, changed;

      /* Start the iterative process by considering those blocks that
	 evaluate REG.  We'll add their dominance frontiers to the
	 IDF, and then consider the blocks we just added.  */
      sbitmap_copy (worklist, evals[reg]);

      /* Morgan's algorithm is incorrect here.  Blocks that evaluate
	 REG aren't necessarily in REG's IDF.  Start with an empty IDF.  */
      sbitmap_zero (idf);

      /* Iterate until the worklist is empty.  */
      do
	{
	  changed = 0;
	  passes++;
	  EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
	    {
	      RESET_BIT (worklist, b);
	      /* For each block on the worklist, add to the IDF all
		 blocks on its dominance frontier that aren't already
		 on the IDF.  Every block that's added is also added
		 to the worklist.  */
	      sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
	      sbitmap_a_or_b (idf, idf, frontiers[b]);
	      changed = 1;
	    });
	}
      while (changed);
    }

  sbitmap_free (worklist);

  if (rtl_dump_file)
    {
Kazu Hirata committed
628 629 630
      fprintf (rtl_dump_file,
	       "Iterated dominance frontier: %d passes on %d regs.\n",
	       passes, nregs);
Alex Samuel committed
631 632 633 634 635 636 637 638 639 640 641 642 643 644
    }
}

/* Insert the phi nodes.  */

static void
insert_phi_node (regno, bb)
     int regno, bb;
{
  basic_block b = BASIC_BLOCK (bb);
  edge e;
  int npred, i;
  rtvec vec;
  rtx phi, reg;
645 646
  rtx insn;
  int end_p;
Alex Samuel committed
647 648 649 650 651 652 653 654 655 656 657

  /* Find out how many predecessors there are.  */
  for (e = b->pred, npred = 0; e; e = e->pred_next)
    if (e->src != ENTRY_BLOCK_PTR)
      npred++;

  /* If this block has no "interesting" preds, then there is nothing to
     do.  Consider a block that only has the entry block as a pred.  */
  if (npred == 0)
    return;

658 659
  /* This is the register to which the phi function will be assigned.  */
  reg = regno_reg_rtx[regno];
Alex Samuel committed
660 661 662 663 664 665 666 667 668 669 670 671 672 673

  /* Construct the arguments to the PHI node.  The use of pc_rtx is just
     a placeholder; we'll insert the proper value in rename_registers.  */
  vec = rtvec_alloc (npred * 2);
  for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
    if (e->src != ENTRY_BLOCK_PTR)
      {
	RTVEC_ELT (vec, i + 0) = pc_rtx;
	RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
      }

  phi = gen_rtx_PHI (VOIDmode, vec);
  phi = gen_rtx_SET (VOIDmode, reg, phi);

674 675 676 677 678
  insn = first_insn_after_basic_block_note (b);
  end_p = PREV_INSN (insn) == b->end;
  emit_insn_before (phi, insn);
  if (end_p)
    b->end = PREV_INSN (insn);
Alex Samuel committed
679 680 681 682 683 684 685 686 687 688 689
}

static void
insert_phi_nodes (idfs, evals, nregs)
     sbitmap *idfs;
     sbitmap *evals ATTRIBUTE_UNUSED;
     int nregs;
{
  int reg;

  for (reg = 0; reg < nregs; ++reg)
690
    if (CONVERT_REGISTER_TO_SSA_P (reg))
Alex Samuel committed
691 692 693 694
    {
      int b;
      EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
	{
695
	  if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
Alex Samuel committed
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	    insert_phi_node (reg, b);
	});
    }
}

/* Rename the registers to conform to SSA. 

   This is essentially the algorithm presented in Figure 7.8 of Morgan,
   with a few changes to reduce pattern search time in favour of a bit
   more memory usage.  */

/* One of these is created for each set.  It will live in a list local
   to its basic block for the duration of that block's processing.  */
struct rename_set_data
{
  struct rename_set_data *next;
712
  /* This is the SET_DEST of the (first) SET that sets the REG.  */
Alex Samuel committed
713
  rtx *reg_loc;
714 715 716 717
  /* This is what used to be at *REG_LOC.  */
  rtx old_reg;
  /* This is the REG that will replace OLD_REG.  It's set only
     when the rename data is moved onto the DONE_RENAMES queue.  */
Alex Samuel committed
718
  rtx new_reg;
719 720
  /* This is what to restore ssa_rename_to_lookup (old_reg) to.  It is
     usually the previous contents of ssa_rename_to_lookup (old_reg).  */
Alex Samuel committed
721
  rtx prev_reg;
722
  /* This is the insn that contains all the SETs of the REG.  */
Alex Samuel committed
723 724 725 726 727 728 729
  rtx set_insn;
};

/* This struct is used to pass information to callback functions while
   renaming registers.  */
struct rename_context
{
730 731
  struct rename_set_data *new_renames;
  struct rename_set_data *done_renames;
Alex Samuel committed
732
  rtx current_insn;
Alex Samuel committed
733 734
};

735 736 737 738 739 740 741 742 743 744
/* Queue the rename of *REG_LOC.  */
static void
create_delayed_rename (c, reg_loc)
     struct rename_context *c;
     rtx *reg_loc;
{
  struct rename_set_data *r;
  r = (struct rename_set_data *) xmalloc (sizeof(*r));
  
  if (GET_CODE (*reg_loc) != REG
745
      || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
Kazu Hirata committed
746
    abort ();
747 748 749

  r->reg_loc = reg_loc;
  r->old_reg = *reg_loc;
750
  r->prev_reg = ssa_rename_to_lookup(r->old_reg);
751 752 753 754
  r->set_insn = c->current_insn;
  r->next = c->new_renames;
  c->new_renames = r;
}
Alex Samuel committed
755 756 757

/* This is part of a rather ugly hack to allow the pre-ssa regno to be
   reused.  If, during processing, a register has not yet been touched,
758
   ssa_rename_to[regno][machno] will be NULL.  Now, in the course of pushing
Alex Samuel committed
759 760 761 762 763 764
   and popping values from ssa_rename_to, when we would ordinarily 
   pop NULL back in, we pop RENAME_NO_RTX.  We treat this exactly the
   same as NULL, except that it signals that the original regno has
   already been reused.  */
#define RENAME_NO_RTX  pc_rtx

765 766 767 768 769 770 771 772 773
/* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
   applying all the renames on NEW_RENAMES.  */

static void
apply_delayed_renames (c)
       struct rename_context *c;
{
  struct rename_set_data *r;
  struct rename_set_data *last_r = NULL;
774

775 776 777 778 779 780
  for (r = c->new_renames; r != NULL; r = r->next)
    {
      int new_regno;
      
      /* Failure here means that someone has a PARALLEL that sets
	 a register twice (bad!).  */
781
      if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
Kazu Hirata committed
782
	abort ();
783 784 785
      /* Failure here means we have changed REG_LOC before applying
	 the rename.  */
      /* For the first set we come across, reuse the original regno.  */
786
      if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
787 788
	{
	  r->new_reg = r->old_reg;
789
	  /* We want to restore RENAME_NO_RTX rather than NULL_RTX.  */
790 791 792 793 794
	  r->prev_reg = RENAME_NO_RTX;
	}
      else
	r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
      new_regno = REGNO (r->new_reg);
795
      ssa_rename_to_insert (r->old_reg, r->new_reg);
796 797 798 799

      if (new_regno >= (int) ssa_definition->num_elements)
	{
	  int new_limit = new_regno * 5 / 4;
Kaveh R. Ghazi committed
800
	  VARRAY_GROW (ssa_definition, new_limit);
801 802 803
	}

      VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
804
      ssa_rename_from_insert (new_regno, r->old_reg);
805 806 807 808 809 810 811 812 813 814
      last_r = r;
    }
  if (last_r != NULL)
    {
      last_r->next = c->done_renames;
      c->done_renames = c->new_renames;
      c->new_renames = NULL;
    }
}

Alex Samuel committed
815 816 817 818 819 820 821 822 823
/* Part one of the first step of rename_block, called through for_each_rtx. 
   Mark pseudos that are set for later update.  Transform uses of pseudos.  */

static int
rename_insn_1 (ptr, data)
     rtx *ptr;
     void *data;
{
  rtx x = *ptr;
Alex Samuel committed
824
  struct rename_context *context = data;
Alex Samuel committed
825 826 827 828 829 830 831 832 833 834 835

  if (x == NULL_RTX)
    return 0;

  switch (GET_CODE (x))
    {
    case SET:
      {
	rtx *destp = &SET_DEST (x);
	rtx dest = SET_DEST (x);

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/* An assignment to a paradoxical SUBREG does not read from
	   the destination operand, and thus does not need to be
	   wrapped into a SEQUENCE when translating into SSA form.
	   We merely strip off the SUBREG and proceed normally for
	   this case.  */
	if (GET_CODE (dest) == SUBREG
	    && (GET_MODE_SIZE (GET_MODE (dest))
		> GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && GET_CODE (SUBREG_REG (dest)) == REG
	    && CONVERT_REGISTER_TO_SSA_P (REGNO (SUBREG_REG (dest))))
	  {
	    destp = &XEXP (dest, 0);
	    dest = XEXP (dest, 0);
	  }

851 852 853 854 855 856 857 858 859
	/* Some SETs also use the REG specified in their LHS.
	   These can be detected by the presence of
	   STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
	   in the LHS.  Handle these by changing
	   (set (subreg (reg foo)) ...)
	   into
	   (sequence [(set (reg foo_1) (reg foo))
	              (set (subreg (reg foo_1)) ...)])  

860 861 862 863 864
	   FIXME: Much of the time this is too much.  For some constructs
	   we know that the output register is strictly an output
	   (paradoxical SUBREGs and some libcalls for example).

	   For those cases we are better off not making the false
865 866 867 868 869
	   dependency.  */
	if (GET_CODE (dest) == STRICT_LOW_PART
	    || GET_CODE (dest) == SUBREG
	    || GET_CODE (dest) == SIGN_EXTRACT
	    || GET_CODE (dest) == ZERO_EXTRACT)
Alex Samuel committed
870
	  {
871 872 873 874 875 876 877 878 879 880
	    rtx i, reg;
	    reg = dest;
	    
	    while (GET_CODE (reg) == STRICT_LOW_PART
		   || GET_CODE (reg) == SUBREG
		   || GET_CODE (reg) == SIGN_EXTRACT
		   || GET_CODE (reg) == ZERO_EXTRACT)
		reg = XEXP (reg, 0);
	    
	    if (GET_CODE (reg) == REG
881
		&& CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
882 883 884 885 886 887 888 889 890 891 892 893 894
	      {
		/* Generate (set reg reg), and do renaming on it so
		   that it becomes (set reg_1 reg_0), and we will
		   replace reg with reg_1 in the SUBREG.  */

		struct rename_set_data *saved_new_renames;
		saved_new_renames = context->new_renames;
		context->new_renames = NULL;
		i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
		for_each_rtx (&i, rename_insn_1, data);
		apply_delayed_renames (context);
		context->new_renames = saved_new_renames;
	      }
Alex Samuel committed
895
	  }
896 897
	else if (GET_CODE (dest) == REG
		 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
Alex Samuel committed
898 899 900 901 902
	  {
	    /* We found a genuine set of an interesting register.  Tag
	       it so that we can create a new name for it after we finish
	       processing this insn.  */

903
	    create_delayed_rename (context, destp);
Alex Samuel committed
904 905 906 907

	    /* Since we do not wish to (directly) traverse the
	       SET_DEST, recurse through for_each_rtx for the SET_SRC
	       and return.  */
908 909
	    if (GET_CODE (x) == SET)
	      for_each_rtx (&SET_SRC (x), rename_insn_1, data);
Alex Samuel committed
910 911 912 913 914 915 916 917 918
	    return -1;
	  }

	/* Otherwise, this was not an interesting destination.  Continue
	   on, marking uses as normal.  */
	return 0;
      }

    case REG:
919 920
      if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) &&
	  REGNO (x) < ssa_max_reg_num)
Alex Samuel committed
921
	{
922
	  rtx new_reg = ssa_rename_to_lookup (x);
Alex Samuel committed
923 924 925 926 927 928 929 930 931 932 933

	  if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
	    {
	      if (GET_MODE (x) != GET_MODE (new_reg))
		abort ();
	      *ptr = new_reg;
	    }
	  /* Else this is a use before a set.  Warn?  */
	}
      return -1;

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    case CLOBBER:
      /* There is considerable debate on how CLOBBERs ought to be
	 handled in SSA.  For now, we're keeping the CLOBBERs, which
	 means that we don't really have SSA form.  There are a couple
	 of proposals for how to fix this problem, but neither is
	 implemented yet.  */
      {
	rtx dest = XCEXP (x, 0, CLOBBER);
	if (REG_P (dest))
	  {
	    if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
		&& REGNO (dest) < ssa_max_reg_num)
	      {
		rtx new_reg = ssa_rename_to_lookup (dest);
		if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
		    XCEXP (x, 0, CLOBBER) = new_reg;
	      }
	    /* Stop traversing.  */
	    return -1;
	  }	    
	else
	  /* Continue traversing.  */
	  return 0;
      }

Alex Samuel committed
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    case PHI:
      /* Never muck with the phi.  We do that elsewhere, special-like.  */
      return -1;

    default:
      /* Anything else, continue traversing.  */
      return 0;
    }
}

static void
rename_block (bb, idom)
     int bb;
     int *idom;
{
  basic_block b = BASIC_BLOCK (bb);
  edge e;
  rtx insn, next, last;
  struct rename_set_data *set_data = NULL;
  int c;

  /* Step One: Walk the basic block, adding new names for sets and
     replacing uses.  */
     
  next = b->head;
  last = b->end;
  do
    {
      insn = next;
988
      if (INSN_P (insn))
Alex Samuel committed
989
	{
Alex Samuel committed
990
	  struct rename_context context;
991 992
	  context.done_renames = set_data;
	  context.new_renames = NULL;
Alex Samuel committed
993
	  context.current_insn = insn;
Alex Samuel committed
994

995
	  start_sequence ();
Alex Samuel committed
996 997
	  for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
	  for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
998 999 1000 1001 1002 1003 1004

	  /* Sometimes, we end up with a sequence of insns that
	     SSA needs to treat as a single insn.  Wrap these in a
	     SEQUENCE.  (Any notes now get attached to the SEQUENCE,
	     not to the old version inner insn.)  */
	  if (get_insns () != NULL_RTX)
	    {
1005
	      rtx seq;
1006 1007 1008
	      int i;
	      
	      emit (PATTERN (insn));
1009 1010 1011 1012 1013 1014
	      seq = gen_sequence ();
	      /* We really want a SEQUENCE of SETs, not a SEQUENCE
		 of INSNs.  */
	      for (i = 0; i < XVECLEN (seq, 0); i++)
		XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
	      PATTERN (insn) = seq;
1015 1016
	    }
	  end_sequence ();
Alex Samuel committed
1017
	  
1018 1019
	  apply_delayed_renames (&context);
	  set_data = context.done_renames;
Alex Samuel committed
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	}

      next = NEXT_INSN (insn);
    }
  while (insn != last);

  /* Step Two: Update the phi nodes of this block's successors.  */

  for (e = b->succ; e; e = e->succ_next)
    {
      if (e->dest == EXIT_BLOCK_PTR)
	continue;

1033
      insn = first_insn_after_basic_block_note (e->dest);
Alex Samuel committed
1034 1035 1036 1037 1038 1039 1040

      while (PHI_NODE_P (insn))
	{
	  rtx phi = PATTERN (insn);
	  rtx reg;

	  /* Find out which of our outgoing registers this node is
1041
	     intended to replace.  Note that if this is not the first PHI
Alex Samuel committed
1042 1043 1044 1045
	     node to have been created for this register, we have to
	     jump through rename links to figure out which register
	     we're talking about.  This can easily be recognized by
	     noting that the regno is new to this pass.  */
1046 1047 1048
	  reg = SET_DEST (phi);
	  if (REGNO (reg) >= ssa_max_reg_num)
	    reg = ssa_rename_from_lookup (REGNO (reg));
1049 1050
	  if (reg == NULL_RTX)
	    abort ();
1051
	  reg = ssa_rename_to_lookup (reg);
Alex Samuel committed
1052 1053 1054 1055 1056 1057

	  /* It is possible for the variable to be uninitialized on
	     edges in.  Reduce the arity of the PHI so that we don't
	     consider those edges.  */
	  if (reg == NULL || reg == RENAME_NO_RTX)
	    {
1058
	      if (! remove_phi_alternative (phi, b))
Alex Samuel committed
1059 1060 1061 1062 1063
		abort ();
	    }
	  else
	    {
	      /* When we created the PHI nodes, we did not know what mode
1064 1065
		 the register should be.  Now that we've found an original,
		 we can fill that in.  */
Alex Samuel committed
1066 1067 1068
	      if (GET_MODE (SET_DEST (phi)) == VOIDmode)
		PUT_MODE (SET_DEST (phi), GET_MODE (reg));
	      else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1069
		abort ();
Alex Samuel committed
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	      *phi_alternative (phi, bb) = reg;
	    }

	  insn = NEXT_INSN (insn);
	}
    }

  /* Step Three: Do the same to the children of this block in
     dominator order.  */

  for (c = 0; c < n_basic_blocks; ++c)
    if (idom[c] == bb)
      rename_block (c, idom);

1085 1086
  /* Step Four: Update the sets to refer to their new register,
     and restore ssa_rename_to to its previous state.  */
Alex Samuel committed
1087 1088 1089 1090

  while (set_data)
    {
      struct rename_set_data *next;
Alex Samuel committed
1091 1092
      rtx old_reg = *set_data->reg_loc;

1093
      if (*set_data->reg_loc != set_data->old_reg)
Kazu Hirata committed
1094
	abort ();
Alex Samuel committed
1095
      *set_data->reg_loc = set_data->new_reg;
1096

1097
      ssa_rename_to_insert (old_reg, set_data->prev_reg);
Alex Samuel committed
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

      next = set_data->next;
      free (set_data);
      set_data = next;
    }      
}

static void
rename_registers (nregs, idom)
     int nregs;
     int *idom;
{
  VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1111
  ssa_rename_from_initialize ();
Alex Samuel committed
1112

1113
  ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1114 1115
  memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
  memset ((char *) ssa_rename_to_hard, 0, 
1116
	 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
Alex Samuel committed
1117 1118 1119 1120 1121 1122

  rename_block (0, idom);

  /* ??? Update basic_block_live_at_start, and other flow info 
     as needed.  */

1123
  ssa_rename_to_pseudo = NULL;
Alex Samuel committed
1124 1125 1126 1127 1128
}

/* The main entry point for moving to SSA.  */

void
1129
convert_to_ssa ()
Alex Samuel committed
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
{
  /* Element I is the set of blocks that set register I.  */
  sbitmap *evals;

  /* Dominator bitmaps.  */
  sbitmap *dfs;
  sbitmap *idfs;

  /* Element I is the immediate dominator of block I.  */
  int *idom;

  int nregs;

Alex Samuel committed
1143 1144 1145 1146
  /* Don't do it twice.  */
  if (in_ssa_form)
    abort ();

1147 1148 1149
  /* Need global_live_at_{start,end} up to date.  Do not remove any
     dead code.  We'll let the SSA optimizers do that.  */
  life_analysis (get_insns (), NULL, 0);
Alex Samuel committed
1150 1151

  idom = (int *) alloca (n_basic_blocks * sizeof (int));
Kazu Hirata committed
1152
  memset ((void *) idom, -1, (size_t) n_basic_blocks * sizeof (int));
1153
  calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
Alex Samuel committed
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

  if (rtl_dump_file)
    {
      int i;
      fputs (";; Immediate Dominators:\n", rtl_dump_file);
      for (i = 0; i < n_basic_blocks; ++i)
	fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
      fflush (rtl_dump_file);
    }

  /* Compute dominance frontiers.  */

  dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  compute_dominance_frontiers (dfs, idom);

  if (rtl_dump_file)
    {
      dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
			   "; Basic Block", dfs, n_basic_blocks);
      fflush (rtl_dump_file);
    }

  /* Compute register evaluations.  */

Kazu Hirata committed
1178
  ssa_max_reg_num = max_reg_num ();
1179
  nregs = ssa_max_reg_num;
Alex Samuel committed
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
  evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
  find_evaluations (evals, nregs);

  /* Compute the iterated dominance frontier for each register.  */

  idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
  compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);

  if (rtl_dump_file)
    {
      dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1191
			   "; Register", idfs, nregs);
Alex Samuel committed
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
      fflush (rtl_dump_file);
    }

  /* Insert the phi nodes.  */

  insert_phi_nodes (idfs, evals, nregs);

  /* Rename the registers to satisfy SSA.  */

  rename_registers (nregs, idom);

  /* All done!  Clean up and go home.  */

  sbitmap_vector_free (dfs);
  sbitmap_vector_free (evals);
  sbitmap_vector_free (idfs);
Alex Samuel committed
1208
  in_ssa_form = 1;
Alex Samuel committed
1209

Alex Samuel committed
1210 1211
  reg_scan (get_insns (), max_reg_num (), 1);
}
Alex Samuel committed
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

/* REG is the representative temporary of its partition.  Add it to the
   set of nodes to be processed, if it hasn't been already.  Return the
   index of this register in the node set.  */

static inline int
ephi_add_node (reg, nodes, n_nodes)
     rtx reg, *nodes;
     int *n_nodes;
{
  int i;
  for (i = *n_nodes - 1; i >= 0; --i)
    if (REGNO (reg) == REGNO (nodes[i]))
      return i;

  nodes[i = (*n_nodes)++] = reg;
  return i;
}

/* Part one of the topological sort.  This is a forward (downward) search
   through the graph collecting a stack of nodes to process.  Assuming no
   cycles, the nodes at top of the stack when we are finished will have
1234
   no other dependencies.  */
Alex Samuel committed
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

static int *
ephi_forward (t, visited, succ, tstack)
     int t;
     sbitmap visited;
     sbitmap *succ;
     int *tstack;
{
  int s;

  SET_BIT (visited, t);

  EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
    {
      if (! TEST_BIT (visited, s))
        tstack = ephi_forward (s, visited, succ, tstack);
    });

  *tstack++ = t;
  return tstack;
}

/* Part two of the topological sort.  The is a backward search through
   a cycle in the graph, copying the data forward as we go.  */

static void
ephi_backward (t, visited, pred, nodes)
     int t;
     sbitmap visited, *pred;
     rtx *nodes;
{
  int p;

  SET_BIT (visited, t);

  EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
    {
      if (! TEST_BIT (visited, p))
	{
	  ephi_backward (p, visited, pred, nodes);
	  emit_move_insn (nodes[p], nodes[t]);
	}
    });
}

/* Part two of the topological sort.  Create the copy for a register
   and any cycle of which it is a member.  */

static void
ephi_create (t, visited, pred, succ, nodes)
     int t;
     sbitmap visited, *pred, *succ;
     rtx *nodes;
{
  rtx reg_u = NULL_RTX;
  int unvisited_predecessors = 0;
  int p;

  /* Iterate through the predecessor list looking for unvisited nodes.
     If there are any, we have a cycle, and must deal with that.  At 
     the same time, look for a visited predecessor.  If there is one,
     we won't need to create a temporary.  */

  EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
    {
      if (! TEST_BIT (visited, p))
	unvisited_predecessors = 1;
      else if (!reg_u)
	reg_u = nodes[p];
    });

  if (unvisited_predecessors)
    {
      /* We found a cycle.  Copy out one element of the ring (if necessary),
	 then traverse the ring copying as we go.  */

      if (!reg_u)
	{
	  reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
	  emit_move_insn (reg_u, nodes[t]);
	}

      EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
	{
	  if (! TEST_BIT (visited, p))
	    {
	      ephi_backward (p, visited, pred, nodes);
	      emit_move_insn (nodes[p], reg_u);
	    }
	});
    }  
  else 
    {
      /* No cycle.  Just copy the value from a successor.  */

      int s;
      EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
	{
	  SET_BIT (visited, t);
	  emit_move_insn (nodes[t], nodes[s]);
	  return;
	});
    }
}

/* Convert the edge to normal form.  */

static void
eliminate_phi (e, reg_partition)
     edge e;
     partition reg_partition;
{
  int n_nodes;
  sbitmap *pred, *succ;
  sbitmap visited;
  rtx *nodes;
  int *stack, *tstack;
  rtx insn;
  int i;

  /* Collect an upper bound on the number of registers needing processing.  */

1357
  insn = first_insn_after_basic_block_note (e->dest);
Alex Samuel committed
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

  n_nodes = 0;
  while (PHI_NODE_P (insn))
    {
      insn = next_nonnote_insn (insn);
      n_nodes += 2;
    }

  if (n_nodes == 0)
    return;

1369
  /* Build the auxiliary graph R(B). 
Alex Samuel committed
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

     The nodes of the graph are the members of the register partition
     present in Phi(B).  There is an edge from FIND(T0)->FIND(T1) for
     each T0 = PHI(...,T1,...), where T1 is for the edge from block C.  */

  nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
  pred = sbitmap_vector_alloc (n_nodes, n_nodes);
  succ = sbitmap_vector_alloc (n_nodes, n_nodes);
  sbitmap_vector_zero (pred, n_nodes);
  sbitmap_vector_zero (succ, n_nodes);

1381
  insn = first_insn_after_basic_block_note (e->dest);
Alex Samuel committed
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

  n_nodes = 0;
  for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
    {
      rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
      rtx tgt = SET_DEST (PATTERN (insn));
      rtx reg;

      /* There may be no phi alternative corresponding to this edge.
	 This indicates that the phi variable is undefined along this
	 edge.  */
      if (preg == NULL)
	continue;
      reg = *preg;

      if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
Kazu Hirata committed
1398
	abort ();
Alex Samuel committed
1399

Alex Samuel committed
1400 1401
      reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
      tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
Alex Samuel committed
1402 1403
      /* If the two registers are already in the same partition, 
	 nothing will need to be done.  */
Alex Samuel committed
1404
      if (reg != tgt)
Alex Samuel committed
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	{
	  int ireg, itgt;

	  ireg = ephi_add_node (reg, nodes, &n_nodes);
	  itgt = ephi_add_node (tgt, nodes, &n_nodes);

	  SET_BIT (pred[ireg], itgt);
	  SET_BIT (succ[itgt], ireg);
	}
    }

  if (n_nodes == 0)
    goto out;

  /* Begin a topological sort of the graph.  */

  visited = sbitmap_alloc (n_nodes);
  sbitmap_zero (visited);

  tstack = stack = (int *) alloca (n_nodes * sizeof (int));

  for (i = 0; i < n_nodes; ++i)
    if (! TEST_BIT (visited, i))
      tstack = ephi_forward (i, visited, succ, tstack);

  sbitmap_zero (visited);

  /* As we find a solution to the tsort, collect the implementation 
     insns in a sequence.  */
  start_sequence ();
  
  while (tstack != stack)
    {
      i = *--tstack;
      if (! TEST_BIT (visited, i))
	ephi_create (i, visited, pred, succ, nodes);
    }

  insn = gen_sequence ();
  end_sequence ();
  insert_insn_on_edge (insn, e);
  if (rtl_dump_file)
    fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
	     e->src->index, e->dest->index);

  sbitmap_free (visited);
out:
  sbitmap_vector_free (pred);
  sbitmap_vector_free (succ);
}

/* For basic block B, consider all phi insns which provide an
   alternative corresponding to an incoming abnormal critical edge.
   Place the phi alternative corresponding to that abnormal critical
   edge in the same register class as the destination of the set.  

   From Morgan, p. 178:

     For each abnormal critical edge (C, B), 
     if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B, 
     and C is the ith predecessor of B, 
     then T0 and Ti must be equivalent. 

   Return non-zero iff any such cases were found for which the two
   regs were not already in the same class.  */

static int
make_regs_equivalent_over_bad_edges (bb, reg_partition)
     int bb;
     partition reg_partition;
{
  int changed = 0;
  basic_block b = BASIC_BLOCK (bb);
1478
  rtx phi;
Alex Samuel committed
1479 1480

  /* Advance to the first phi node.  */
1481
  phi = first_insn_after_basic_block_note (b);
Alex Samuel committed
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

  /* Scan all the phi nodes.  */
  for (; 
       PHI_NODE_P (phi);
       phi = next_nonnote_insn (phi))
    {
      edge e;
      int tgt_regno;
      rtx set = PATTERN (phi);
      rtx tgt = SET_DEST (set);

1493
      /* The set target is expected to be an SSA register.  */
Alex Samuel committed
1494
      if (GET_CODE (tgt) != REG 
1495
	  || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
Alex Samuel committed
1496 1497 1498 1499 1500
	abort ();
      tgt_regno = REGNO (tgt);

      /* Scan incoming abnormal critical edges.  */
      for (e = b->pred; e; e = e->pred_next)
1501
	if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
Alex Samuel committed
1502 1503 1504 1505 1506 1507 1508 1509 1510
	  {
	    rtx *alt = phi_alternative (set, e->src->index);
	    int alt_regno;

	    /* If there is no alternative corresponding to this edge,
	       the value is undefined along the edge, so just go on.  */
	    if (alt == 0)
	      continue;

1511
	    /* The phi alternative is expected to be an SSA register.  */
Alex Samuel committed
1512
	    if (GET_CODE (*alt) != REG 
1513
		|| !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
Alex Samuel committed
1514 1515 1516 1517 1518 1519 1520 1521 1522
	      abort ();
	    alt_regno = REGNO (*alt);

	    /* If the set destination and the phi alternative aren't
	       already in the same class...  */
	    if (partition_find (reg_partition, tgt_regno) 
		!= partition_find (reg_partition, alt_regno))
	      {
		/* ... make them such.  */
1523 1524 1525 1526 1527
		if (conflicting_hard_regs_p (tgt_regno, alt_regno))
		  /* It is illegal to unify a hard register with a
		     different register.  */
		  abort ();
		
Alex Samuel committed
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		partition_union (reg_partition, 
				 tgt_regno, alt_regno);
		++changed;
	      }
	  }
    }

  return changed;
}

/* Consider phi insns in basic block BB pairwise.  If the set target
   of both isns are equivalent pseudos, make the corresponding phi
   alternatives in each phi corresponding equivalent.

   Return nonzero if any new register classes were unioned.  */

static int
make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
     int bb;
     partition reg_partition;
{
  int changed = 0;
  basic_block b = BASIC_BLOCK (bb);
1551
  rtx phi;
Alex Samuel committed
1552 1553

  /* Advance to the first phi node.  */
1554
  phi = first_insn_after_basic_block_note (b);
Alex Samuel committed
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

  /* Scan all the phi nodes.  */
  for (; 
       PHI_NODE_P (phi);
       phi = next_nonnote_insn (phi))
    {
      rtx set = PATTERN (phi);
      /* The regno of the destination of the set.  */
      int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));

      rtx phi2 = next_nonnote_insn (phi);

      /* Scan all phi nodes following this one.  */
      for (;
	   PHI_NODE_P (phi2);
	   phi2 = next_nonnote_insn (phi2))
	{
	  rtx set2 = PATTERN (phi2);
	  /* The regno of the destination of the set.  */
	  int tgt2_regno = REGNO (SET_DEST (set2));
		  
	  /* Are the set destinations equivalent regs?  */
	  if (partition_find (reg_partition, tgt_regno) ==
	      partition_find (reg_partition, tgt2_regno))
	    {
	      edge e;
	      /* Scan over edges.  */
	      for (e = b->pred; e; e = e->pred_next)
		{
		  int pred_block = e->src->index;
1585
		  /* Identify the phi alternatives from both phi
Alex Samuel committed
1586 1587 1588 1589 1590 1591 1592 1593 1594
		     nodes corresponding to this edge.  */
		  rtx *alt = phi_alternative (set, pred_block);
		  rtx *alt2 = phi_alternative (set2, pred_block);

		  /* If one of the phi nodes doesn't have a
		     corresponding alternative, just skip it.  */
		  if (alt == 0 || alt2 == 0)
		    continue;

1595
		  /* Both alternatives should be SSA registers.  */
Alex Samuel committed
1596
		  if (GET_CODE (*alt) != REG
1597
		      || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
Alex Samuel committed
1598 1599
		    abort ();
		  if (GET_CODE (*alt2) != REG
1600
		      || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
Alex Samuel committed
1601 1602
		    abort ();

1603
		  /* If the alternatives aren't already in the same
1604
		     class ...  */
Alex Samuel committed
1605 1606 1607 1608
		  if (partition_find (reg_partition, REGNO (*alt)) 
		      != partition_find (reg_partition, REGNO (*alt2)))
		    {
		      /* ... make them so.  */
1609 1610
		      if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
			/* It is illegal to unify a hard register with
1611
			   a different register.  */
1612 1613
			abort ();

Alex Samuel committed
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		      partition_union (reg_partition, 
				       REGNO (*alt), REGNO (*alt2));
		      ++changed;
		    }
		}
	    }
	}
    }

  return changed;
}

/* Compute a conservative partition of outstanding pseudo registers.
   See Morgan 7.3.1.  */

static partition
compute_conservative_reg_partition ()
{
  int bb;
  int changed = 0;

  /* We don't actually work with hard registers, but it's easier to
     carry them around anyway rather than constantly doing register
     number arithmetic.  */
  partition p = 
1639
    partition_new (ssa_definition->num_elements);
Alex Samuel committed
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

  /* The first priority is to make sure registers that might have to
     be copied on abnormal critical edges are placed in the same
     partition.  This saves us from having to split abnormal critical
     edges.  */
  for (bb = n_basic_blocks; --bb >= 0; )
    changed += make_regs_equivalent_over_bad_edges (bb, p);
  
  /* Now we have to insure that corresponding arguments of phi nodes
     assigning to corresponding regs are equivalent.  Iterate until
     nothing changes.  */
  while (changed > 0)
    {
      changed = 0;
      for (bb = n_basic_blocks; --bb >= 0; )
	changed += make_equivalent_phi_alternatives_equivalent (bb, p);
    }

  return p;
}

Alex Samuel committed
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/* The following functions compute a register partition that attempts
   to eliminate as many reg copies and phi node copies as possible by
   coalescing registers.   This is the strategy:

    1. As in the conservative case, the top priority is to coalesce
       registers that otherwise would cause copies to be placed on
       abnormal critical edges (which isn't possible).

    2. Figure out which regs are involved (in the LHS or RHS) of
       copies and phi nodes.  Compute conflicts among these regs.  

    3. Walk around the instruction stream, placing two regs in the
       same class of the partition if one appears on the LHS and the
       other on the RHS of a copy or phi node and the two regs don't
       conflict.  The conflict information of course needs to be
       updated.  

    4. If anything has changed, there may be new opportunities to
       coalesce regs, so go back to 2.
*/

/* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
   same class of partition P, if they aren't already.  Update
   CONFLICTS appropriately.  

   Returns one if REG1 and REG2 were placed in the same class but were
   not previously; zero otherwise.  

   See Morgan figure 11.15.  */

static int 
coalesce_if_unconflicting (p, conflicts, reg1, reg2)
     partition p;
     conflict_graph conflicts;
     int reg1;
     int reg2;
{
  int reg;

1700
  /* Work only on SSA registers.  */
1701
  if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
Alex Samuel committed
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    return 0;

  /* Find the canonical regs for the classes containing REG1 and
     REG2.  */
  reg1 = partition_find (p, reg1);
  reg2 = partition_find (p, reg2);
  
  /* If they're already in the same class, there's nothing to do.  */
  if (reg1 == reg2)
    return 0;

  /* If the regs conflict, our hands are tied.  */
1714 1715
  if (conflicting_hard_regs_p (reg1, reg2) ||
      conflict_graph_conflict_p (conflicts, reg1, reg2))
Alex Samuel committed
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
    return 0;

  /* We're good to go.  Put the regs in the same partition.  */
  partition_union (p, reg1, reg2);

  /* Find the new canonical reg for the merged class.  */
  reg = partition_find (p, reg1);
  
  /* Merge conflicts from the two previous classes.  */
  conflict_graph_merge_regs (conflicts, reg, reg1);
  conflict_graph_merge_regs (conflicts, reg, reg2);

  return 1;
}

/* For each register copy insn in basic block BB, place the LHS and
   RHS regs in the same class in partition P if they do not conflict
   according to CONFLICTS.

   Returns the number of changes that were made to P.

   See Morgan figure 11.14.  */

static int
coalesce_regs_in_copies (bb, p, conflicts)
1741
     basic_block bb;
Alex Samuel committed
1742 1743 1744 1745 1746
     partition p;
     conflict_graph conflicts;
{
  int changed = 0;
  rtx insn;
1747
  rtx end = bb->end;
Alex Samuel committed
1748 1749

  /* Scan the instruction stream of the block.  */
1750
  for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
Alex Samuel committed
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    {
      rtx pattern;
      rtx src;
      rtx dest;

      /* If this isn't a set insn, go to the next insn.  */
      if (GET_CODE (insn) != INSN)
	continue;
      pattern = PATTERN (insn);
      if (GET_CODE (pattern) != SET)
	continue;

      src = SET_SRC (pattern);
      dest = SET_DEST (pattern);

      /* We're only looking for copies.  */
      if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
	continue;

      /* Coalesce only if the reg modes are the same.  As long as
	 each reg's rtx is unique, it can have only one mode, so two
	 pseudos of different modes can't be coalesced into one.  

         FIXME: We can probably get around this by inserting SUBREGs
         where appropriate, but for now we don't bother.  */
      if (GET_MODE (src) != GET_MODE (dest))
	continue;

      /* Found a copy; see if we can use the same reg for both the
	 source and destination (and thus eliminate the copy,
	 ultimately).  */
      changed += coalesce_if_unconflicting (p, conflicts, 
					    REGNO (src), REGNO (dest));
    }

  return changed;
}

struct phi_coalesce_context
{
  partition p;
  conflict_graph conflicts;
  int changed;
};

/* Callback function for for_each_successor_phi.  If the set
   destination and the phi alternative regs do not conflict, place
   them in the same paritition class.  DATA is a pointer to a
   phi_coalesce_context struct.  */

static int
coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
     rtx insn ATTRIBUTE_UNUSED;
     int dest_regno;
     int src_regno;
     void *data;
{
  struct phi_coalesce_context *context = 
    (struct phi_coalesce_context *) data;
  
  /* Attempt to use the same reg, if they don't conflict.  */
  context->changed 
    += coalesce_if_unconflicting (context->p, context->conflicts, 
				  dest_regno, src_regno);
  return 0;
}

/* For each alternative in a phi function corresponding to basic block
   BB (in phi nodes in successor block to BB), place the reg in the
   phi alternative and the reg to which the phi value is set into the
   same class in partition P, if allowed by CONFLICTS.  

   Return the number of changes that were made to P.
   
   See Morgan figure 11.14.  */

static int
coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1829
     basic_block bb;
Alex Samuel committed
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
     partition p;
     conflict_graph conflicts;
{
  struct phi_coalesce_context context;
  context.p = p;
  context.conflicts = conflicts;
  context.changed = 0;

  for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);

  return context.changed;
}

/* Compute and return a partition of pseudos.  Where possible,
   non-conflicting pseudos are placed in the same class.  

   The caller is responsible for deallocating the returned partition.  */

static partition
compute_coalesced_reg_partition ()
{
  int bb;
  int changed = 0;
1853 1854
  regset_head phi_set_head;
  regset phi_set = &phi_set_head;
Alex Samuel committed
1855 1856

  partition p = 
1857
    partition_new (ssa_definition->num_elements);
Alex Samuel committed
1858 1859 1860 1861 1862 1863 1864 1865

  /* The first priority is to make sure registers that might have to
     be copied on abnormal critical edges are placed in the same
     partition.  This saves us from having to split abnormal critical
     edges (which can't be done).  */
  for (bb = n_basic_blocks; --bb >= 0; )
    make_regs_equivalent_over_bad_edges (bb, p);

1866 1867
  INIT_REG_SET (phi_set);

Alex Samuel committed
1868 1869 1870 1871 1872 1873 1874 1875
  do
    {
      conflict_graph conflicts;

      changed = 0;

      /* Build the set of registers involved in phi nodes, either as
	 arguments to the phi function or as the target of a set.  */
1876 1877
      CLEAR_REG_SET (phi_set);
      mark_phi_and_copy_regs (phi_set);
Alex Samuel committed
1878 1879

      /* Compute conflicts.  */
1880
      conflicts = conflict_graph_compute (phi_set, p);
Alex Samuel committed
1881 1882 1883 1884 1885 1886 1887

      /* FIXME: Better would be to process most frequently executed
	 blocks first, so that most frequently executed copies would
	 be more likely to be removed by register coalescing.  But any
	 order will generate correct, if non-optimal, results.  */
      for (bb = n_basic_blocks; --bb >= 0; )
	{
1888 1889 1890 1891
	  basic_block block = BASIC_BLOCK (bb);
	  changed += coalesce_regs_in_copies (block, p, conflicts);
	  changed += 
	    coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
Alex Samuel committed
1892 1893 1894 1895 1896 1897
	}

      conflict_graph_delete (conflicts);
    }
  while (changed > 0);

1898 1899
  FREE_REG_SET (phi_set);

Alex Samuel committed
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
  return p;
}

/* Mark the regs in a phi node.  PTR is a phi expression or one of its
   components (a REG or a CONST_INT).  DATA is a reg set in which to
   set all regs.  Called from for_each_rtx.  */

static int
mark_reg_in_phi (ptr, data)
     rtx *ptr;
     void *data;
{
  rtx expr = *ptr;
  regset set = (regset) data;

  switch (GET_CODE (expr))
    {
    case REG:
      SET_REGNO_REG_SET (set, REGNO (expr));
      /* Fall through.  */
    case CONST_INT:
    case PHI:
      return 0;
    default:
      abort ();
    }
}

/* Mark in PHI_SET all pseudos that are used in a phi node -- either
   set from a phi expression, or used as an argument in one.  Also
   mark regs that are the source or target of a reg copy.  Uses
   ssa_definition.  */

static void
mark_phi_and_copy_regs (phi_set)
     regset phi_set;
{
1937
  unsigned int reg;
Alex Samuel committed
1938 1939

  /* Scan the definitions of all regs.  */
1940 1941 1942 1943 1944 1945 1946
  for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
    if (CONVERT_REGISTER_TO_SSA_P (reg))
      {
	rtx insn = VARRAY_RTX (ssa_definition, reg);
	rtx pattern;
	rtx src;

1947 1948 1949
	if (insn == NULL
	    || (GET_CODE (insn) == NOTE
		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED))
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	  continue;
	pattern = PATTERN (insn);
	/* Sometimes we get PARALLEL insns.  These aren't phi nodes or
	   copies.  */
	if (GET_CODE (pattern) != SET)
	  continue;
	src = SET_SRC (pattern);

	if (GET_CODE (src) == REG)
	  {
	    /* It's a reg copy.  */
	    SET_REGNO_REG_SET (phi_set, reg);
	    SET_REGNO_REG_SET (phi_set, REGNO (src));
	  }
	else if (GET_CODE (src) == PHI)
	  {
	    /* It's a phi node.  Mark the reg being set.  */
	    SET_REGNO_REG_SET (phi_set, reg);
	    /* Mark the regs used in the phi function.  */
	    for_each_rtx (&src, mark_reg_in_phi, phi_set);
	  }
	/* ... else nothing to do.  */
      }
Alex Samuel committed
1973
}
Alex Samuel committed
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

/* Rename regs in insn PTR that are equivalent.  DATA is the register
   partition which specifies equivalences.  */

static int
rename_equivalent_regs_in_insn (ptr, data)
     rtx *ptr;
     void* data;
{
  rtx x = *ptr;
  partition reg_partition = (partition) data;

  if (x == NULL_RTX)
    return 0;

  switch (GET_CODE (x))
    {
    case REG:
1992
      if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
Alex Samuel committed
1993
	{
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	  unsigned int regno = REGNO (x);
	  unsigned int new_regno = partition_find (reg_partition, regno);
	  rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);

	  if (canonical_element_rtx != NULL_RTX && 
	      HARD_REGISTER_P (canonical_element_rtx))
	    {
	      if (REGNO (canonical_element_rtx) != regno)
		*ptr = canonical_element_rtx;
	    }
	  else if (regno != new_regno)
Alex Samuel committed
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	    {
	      rtx new_reg = regno_reg_rtx[new_regno];
	      if (GET_MODE (x) != GET_MODE (new_reg))
		abort ();
	      *ptr = new_reg;
	    }
	}
      return -1;

    case PHI:
      /* No need to rename the phi nodes.  We'll check equivalence
	 when inserting copies.  */
      return -1;

    default:
      /* Anything else, continue traversing.  */
      return 0;
    }
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/* Record the register's canonical element stored in SRFP in the
   canonical_elements sbitmap packaged in DATA.  This function is used
   as a callback function for traversing ssa_rename_from.  */

static int
record_canonical_element_1 (srfp, data)
     void **srfp;
     void *data;
{
  unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
  sbitmap canonical_elements =
    ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
  partition reg_partition =
    ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
  
  SET_BIT (canonical_elements, partition_find (reg_partition, reg));
  return 1;
}

/* For each class in the REG_PARTITION corresponding to a particular
   hard register and machine mode, check that there are no other
   classes with the same hard register and machine mode.  Returns
   nonzero if this is the case, i.e., the partition is acceptable.  */

static int
check_hard_regs_in_partition (reg_partition)
     partition reg_partition;
{
  /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
     number and machine mode has already been seen.  This is a
     problem with the partition.  */
  sbitmap canonical_elements;
  int element_index;
  int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
  int reg;
  int mach_mode;

  /* Collect a list of canonical elements.  */
  canonical_elements = sbitmap_alloc (max_reg_num ());
  sbitmap_zero (canonical_elements);
  ssa_rename_from_traverse (&record_canonical_element_1,
			    canonical_elements, reg_partition);

  /* We have not seen any hard register uses.  */
  for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
    for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
      already_seen[reg][mach_mode] = 0;

  /* Check for classes with the same hard register and machine mode.  */
  EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
  {
    rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
    if (hard_reg_rtx != NULL_RTX &&
	HARD_REGISTER_P (hard_reg_rtx) &&
	already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
	  /* Two distinct partition classes should be mapped to the same
	     hard register.  */
	  return 0;
  });

  sbitmap_free (canonical_elements);

  return 1;
}

/* Rename regs that are equivalent in REG_PARTITION.  Also collapse
   any SEQUENCE insns.  */
Alex Samuel committed
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

static void
rename_equivalent_regs (reg_partition)
     partition reg_partition;
{
  int bb;

  for (bb = n_basic_blocks; --bb >= 0; )
    {
      basic_block b = BASIC_BLOCK (bb);
      rtx next = b->head;
      rtx last = b->end;
      rtx insn;

      do
	{
	  insn = next;
2109
	  if (INSN_P (insn))
Alex Samuel committed
2110 2111 2112 2113 2114 2115 2116
	    {
	      for_each_rtx (&PATTERN (insn), 
			    rename_equivalent_regs_in_insn, 
			    reg_partition);
	      for_each_rtx (&REG_NOTES (insn), 
			    rename_equivalent_regs_in_insn, 
			    reg_partition);
2117 2118 2119 2120 2121 2122 2123 2124

	      if (GET_CODE (PATTERN (insn)) == SEQUENCE)
		{
		  rtx s = PATTERN (insn);
		  int slen = XVECLEN (s, 0);
		  int i;

		  if (slen <= 1)
Kazu Hirata committed
2125
		    abort ();
2126

2127
		  PATTERN (insn) = XVECEXP (s, 0, slen-1);
2128
		  for (i = 0; i < slen - 1; i++)
2129
		    emit_insn_before (XVECEXP (s, 0, i), insn);
2130
		}
Alex Samuel committed
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	    }

	  next = NEXT_INSN (insn);
	}
      while (insn != last);
    }
}

/* The main entry point for moving from SSA.  */

void
Kazu Hirata committed
2142
convert_from_ssa ()
Alex Samuel committed
2143 2144 2145
{
  int bb;
  partition reg_partition;
Alex Samuel committed
2146
  rtx insns = get_insns ();
2147

2148 2149 2150 2151
  /* Need global_live_at_{start,end} up to date.  There should not be
     any significant dead code at this point, except perhaps dead
     stores.  So do not take the time to perform dead code elimination. 

2152 2153
     Register coalescing needs death notes, so generate them.  */
  life_analysis (insns, NULL, PROP_DEATH_NOTES);
Alex Samuel committed
2154 2155 2156 2157 2158 2159 2160 2161

  /* Figure out which regs in copies and phi nodes don't conflict and
     therefore can be coalesced.  */
  if (conservative_reg_partition)
    reg_partition = compute_conservative_reg_partition ();
  else
    reg_partition = compute_coalesced_reg_partition ();

2162 2163 2164 2165 2166
  if (!check_hard_regs_in_partition (reg_partition))
    /* Two separate partitions should correspond to the same hard
       register but do not.  */
    abort ();

Alex Samuel committed
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
  rename_equivalent_regs (reg_partition);

  /* Eliminate the PHI nodes.  */
  for (bb = n_basic_blocks; --bb >= 0; )
    {
      basic_block b = BASIC_BLOCK (bb);
      edge e;

      for (e = b->pred; e; e = e->pred_next)
	if (e->src != ENTRY_BLOCK_PTR)
	  eliminate_phi (e, reg_partition);
    }

  partition_delete (reg_partition);

  /* Actually delete the PHI nodes.  */
  for (bb = n_basic_blocks; --bb >= 0; )
    {
      rtx insn = BLOCK_HEAD (bb);

2187
      while (1)
Alex Samuel committed
2188
	{
2189 2190 2191 2192 2193
	  /* If this is a PHI node delete it.  */
	  if (PHI_NODE_P (insn))
	    {
	      if (insn == BLOCK_END (bb))
		BLOCK_END (bb) = PREV_INSN (insn);
2194
	      insn = delete_insn (insn);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	    }
	  /* Since all the phi nodes come at the beginning of the
	     block, if we find an ordinary insn, we can stop looking
	     for more phi nodes.  */
	  else if (INSN_P (insn))
	    break;
	  /* If we've reached the end of the block, stop.  */
	  else if (insn == BLOCK_END (bb))
	    break;
	  else 
	    insn = NEXT_INSN (insn);
Alex Samuel committed
2206 2207 2208 2209 2210 2211
	}
    }

  /* Commit all the copy nodes needed to convert out of SSA form.  */
  commit_edge_insertions ();

Alex Samuel committed
2212 2213
  in_ssa_form = 0;

Alex Samuel committed
2214
  count_or_remove_death_notes (NULL, 1);
2215 2216 2217 2218

  /* Deallocate the data structures.  */
  VARRAY_FREE (ssa_definition);
  ssa_rename_from_free ();
Alex Samuel committed
2219
}
Alex Samuel committed
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

/* Scan phi nodes in successors to BB.  For each such phi node that
   has a phi alternative value corresponding to BB, invoke FN.  FN
   is passed the entire phi node insn, the regno of the set
   destination, the regno of the phi argument corresponding to BB,
   and DATA.

   If FN ever returns non-zero, stops immediately and returns this
   value.  Otherwise, returns zero.  */

int
for_each_successor_phi (bb, fn, data)
2232
     basic_block bb;
Alex Samuel committed
2233 2234 2235 2236 2237
     successor_phi_fn fn;
     void *data;
{
  edge e;
  
2238
  if (bb == EXIT_BLOCK_PTR)
Alex Samuel committed
2239 2240 2241
    return 0;

  /* Scan outgoing edges.  */
2242
  for (e = bb->succ; e != NULL; e = e->succ_next)
Alex Samuel committed
2243 2244 2245 2246
    {
      rtx insn;

      basic_block successor = e->dest;
2247 2248
      if (successor == ENTRY_BLOCK_PTR 
	  || successor == EXIT_BLOCK_PTR)
Alex Samuel committed
2249 2250 2251
	continue;

      /* Advance to the first non-label insn of the successor block.  */
2252
      insn = first_insn_after_basic_block_note (successor);
Alex Samuel committed
2253 2254 2255 2256 2257 2258 2259 2260 2261

      if (insn == NULL)
	continue;

      /* Scan phi nodes in the successor.  */
      for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
	{
	  int result;
	  rtx phi_set = PATTERN (insn);
2262
	  rtx *alternative = phi_alternative (phi_set, bb->index);
Alex Samuel committed
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	  rtx phi_src;
	  
	  /* This phi function may not have an alternative
	     corresponding to the incoming edge, indicating the
	     assigned variable is not defined along the edge.  */
	  if (alternative == NULL)
	    continue;
	  phi_src = *alternative;

	  /* Invoke the callback.  */
	  result = (*fn) (insn, REGNO (SET_DEST (phi_set)), 
			  REGNO (phi_src), data);

	  /* Terminate if requested.  */
	  if (result != 0)
	    return result;
	}
    }

  return 0;
}
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

/* Assuming the ssa_rename_from mapping has been established, yields
   nonzero if 1) only one SSA register of REG1 and REG2 comes from a
   hard register or 2) both SSA registers REG1 and REG2 come from
   different hard registers.  */

static int
conflicting_hard_regs_p (reg1, reg2)
     int reg1;
     int reg2;
{
  int orig_reg1 = original_register (reg1);
  int orig_reg2 = original_register (reg2);
  if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
      && orig_reg1 != orig_reg2)
    return 1;
  if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
    return 1;
  if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
    return 1;
  
  return 0;
}