tree-tailcall.c 27.3 KB
Newer Older
1
/* Tail call optimization on trees.
2
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "function.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "diagnostic.h"
#include "except.h"
#include "tree-pass.h"
#include "flags.h"
#include "langhooks.h"

/* The file implements the tail recursion elimination.  It is also used to
40
   analyze the tail calls in general, passing the results to the rtl level
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
   where they are used for sibcall optimization.

   In addition to the standard tail recursion elimination, we handle the most
   trivial cases of making the call tail recursive by creating accumulators.
   For example the following function

   int sum (int n)
   {
     if (n > 0)
       return n + sum (n - 1);
     else
       return 0;
   }

   is transformed into

   int sum (int n)
   {
     int acc = 0;

     while (n > 0)
       acc += n--;

     return acc;
   }

   To do this, we maintain two accumulators (a_acc and m_acc) that indicate 
   when we reach the return x statement, we should return a_acc + x * m_acc
   instead.  They are initially initialized to 0 and 1, respectively,
   so the semantics of the function is obviously preserved.  If we are
   guaranteed that the value of the accumulator never change, we
   omit the accumulator.

   There are three cases how the function may exit.  The first one is
75
   handled in adjust_return_value, the other two in adjust_accumulator_values
76 77 78 79 80 81 82
   (the second case is actually a special case of the third one and we
   present it separately just for clarity):

   1) Just return x, where x is not in any of the remaining special shapes.
      We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
      
   2) return f (...), where f is the current function, is rewritten in a
83
      classical tail-recursion elimination way, into assignment of arguments
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
      and jump to the start of the function.  Values of the accumulators
      are unchanged.
	       
   3) return a + m * f(...), where a and m do not depend on call to f.
      To preserve the semantics described before we want this to be rewritten
      in such a way that we finally return

      a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).

      I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
      eliminate the tail call to f.  Special cases when the value is just
      added or just multiplied are obtained by setting a = 0 or m = 1.

   TODO -- it is possible to do similar tricks for other operations.  */

/* A structure that describes the tailcall.  */

struct tailcall
{
  /* The block in that the call occur.  */
  basic_block call_block;

  /* The iterator pointing to the call statement.  */
  block_stmt_iterator call_bsi;

  /* True if it is a call to the current function.  */
  bool tail_recursion;

  /* The return value of the caller is mult * f + add, where f is the return
     value of the call.  */
  tree mult, add;

  /* Next tailcall in the chain.  */
  struct tailcall *next;
};

/* The variables holding the value of multiplicative and additive
   accumulator.  */
static tree m_acc, a_acc;

static bool suitable_for_tail_opt_p (void);
static bool optimize_tail_call (struct tailcall *, bool);
static void eliminate_tail_call (struct tailcall *);
static void find_tail_calls (basic_block, struct tailcall **);

/* Returns false when the function is not suitable for tail call optimization
   from some reason (e.g. if it takes variable number of arguments).  */

static bool
suitable_for_tail_opt_p (void)
{
  int i;

  if (current_function_stdarg)
    return false;

140 141
  /* No local variable nor structure field should be call-clobbered.  We
     ignore any kind of memory tag, as these are not real variables.  */
142 143 144 145
  for (i = 0; i < (int) VARRAY_ACTIVE_SIZE (referenced_vars); i++)
    {
      tree var = VARRAY_TREE (referenced_vars, i);

146
      if (!(TREE_STATIC (var) || DECL_EXTERNAL (var))
147 148
	  && (var_ann (var)->mem_tag_kind == NOT_A_TAG
	      || var_ann (var)->mem_tag_kind == STRUCT_FIELD)
149 150 151 152 153 154 155 156 157 158 159 160 161 162
	  && is_call_clobbered (var))
	return false;
    }

  return true;
}
/* Returns false when the function is not suitable for tail call optimization
   from some reason (e.g. if it takes variable number of arguments).
   This test must pass in addition to suitable_for_tail_opt_p in order to make
   tail call discovery happen.  */

static bool
suitable_for_tail_call_opt_p (void)
{
163 164
  tree param;

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  /* alloca (until we have stack slot life analysis) inhibits
     sibling call optimizations, but not tail recursion.  */
  if (current_function_calls_alloca)
    return false;

  /* If we are using sjlj exceptions, we may need to add a call to
     _Unwind_SjLj_Unregister at exit of the function.  Which means
     that we cannot do any sibcall transformations.  */
  if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
    return false;

  /* Any function that calls setjmp might have longjmp called from
     any called function.  ??? We really should represent this
     properly in the CFG so that this needn't be special cased.  */
  if (current_function_calls_setjmp)
    return false;

182 183 184 185 186 187 188 189
  /* ??? It is OK if the argument of a function is taken in some cases,
     but not in all cases.  See PR15387 and PR19616.  Revisit for 4.1.  */
  for (param = DECL_ARGUMENTS (current_function_decl);
       param;
       param = TREE_CHAIN (param))
    if (TREE_ADDRESSABLE (param))
      return false;

190 191 192 193 194 195 196 197 198 199 200 201 202 203
  return true;
}

/* Checks whether the expression EXPR in stmt AT is independent of the
   statement pointed by BSI (in a sense that we already know EXPR's value
   at BSI).  We use the fact that we are only called from the chain of
   basic blocks that have only single successor.  Returns the expression
   containing the value of EXPR at BSI.  */

static tree
independent_of_stmt_p (tree expr, tree at, block_stmt_iterator bsi)
{
  basic_block bb, call_bb, at_bb;
  edge e;
204
  edge_iterator ei;
205 206 207 208 209 210 211 212 213 214

  if (is_gimple_min_invariant (expr))
    return expr;

  if (TREE_CODE (expr) != SSA_NAME)
    return NULL_TREE;

  /* Mark the blocks in the chain leading to the end.  */
  at_bb = bb_for_stmt (at);
  call_bb = bb_for_stmt (bsi_stmt (bsi));
215
  for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
216 217 218 219 220 221 222 223
    bb->aux = &bb->aux;
  bb->aux = &bb->aux;

  while (1)
    { 
      at = SSA_NAME_DEF_STMT (expr);
      bb = bb_for_stmt (at);

224
      /* The default definition or defined before the chain.  */
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      if (!bb || !bb->aux)
	break;

      if (bb == call_bb)
	{
	  for (; !bsi_end_p (bsi); bsi_next (&bsi))
	    if (bsi_stmt (bsi) == at)
	      break;

	  if (!bsi_end_p (bsi))
	    expr = NULL_TREE;
	  break;
	}

      if (TREE_CODE (at) != PHI_NODE)
	{
	  expr = NULL_TREE;
	  break;
	}

245
      FOR_EACH_EDGE (e, ei, bb->preds)
246 247
	if (e->src->aux)
	  break;
248
      gcc_assert (e);
249

250
      expr = PHI_ARG_DEF_FROM_EDGE (at, e);
251 252 253 254 255
      if (TREE_CODE (expr) != SSA_NAME)
	{
	  /* The value is a constant.  */
	  break;
	}
256 257 258
    }

  /* Unmark the blocks.  */
259
  for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    bb->aux = NULL;
  bb->aux = NULL;

  return expr;
}

/* Simulates the effect of an assignment of ASS in STMT on the return value
   of the tail recursive CALL passed in ASS_VAR.  M and A are the
   multiplicative and the additive factor for the real return value.  */

static bool
process_assignment (tree ass, tree stmt, block_stmt_iterator call, tree *m,
		    tree *a, tree *ass_var)
{
  tree op0, op1, non_ass_var;
  tree dest = TREE_OPERAND (ass, 0);
  tree src = TREE_OPERAND (ass, 1);
  enum tree_code code = TREE_CODE (src);
278 279 280 281 282 283 284 285
  tree src_var = src;

  /* See if this is a simple copy operation of an SSA name to the function
     result.  In that case we may have a simple tail call.  Ignore type
     conversions that can never produce extra code between the function
     call and the function return.  */
  STRIP_NOPS (src_var);
  if (TREE_CODE (src_var) == SSA_NAME)
286
    {
287
      if (src_var != *ass_var)
288 289 290 291 292 293
	return false;

      *ass_var = dest;
      return true;
    }

294
  if (TREE_CODE_CLASS (code) != tcc_binary)
295 296
    return false;

297 298 299 300 301 302 303
  /* Accumulator optimizations will reverse the order of operations.
     We can only do that for floating-point types if we're assuming
     that addition and multiplication are associative.  */
  if (!flag_unsafe_math_optimizations)
    if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
      return false;

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  /* We only handle the code like

     x = call ();
     y = m * x;
     z = y + a;
     return z;

     TODO -- Extend it for cases where the linear transformation of the output
     is expressed in a more complicated way.  */

  op0 = TREE_OPERAND (src, 0);
  op1 = TREE_OPERAND (src, 1);

  if (op0 == *ass_var
      && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
    ;
  else if (op1 == *ass_var
	   && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
    ;
  else
    return false;

326
  switch (code)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    {
    case PLUS_EXPR:
      /* There should be no previous addition.  TODO -- it should be fairly
	 straightforward to lift this restriction -- just allow storing
	 more complicated expressions in *A, and gimplify it in
	 adjust_accumulator_values.  */
      if (*a)
	return false;
      *a = non_ass_var;
      *ass_var = dest;
      return true;

    case MULT_EXPR:
      /* Similar remark applies here.  Handling multiplication after addition
	 is just slightly more complicated -- we need to multiply both *A and
	 *M.  */
      if (*a || *m)
	return false;
      *m = non_ass_var;
      *ass_var = dest;
      return true;

      /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR).  */

    default:
      return false;
    }
}

/* Propagate VAR through phis on edge E.  */

static tree
propagate_through_phis (tree var, edge e)
{
  basic_block dest = e->dest;
  tree phi;

364
  for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
365
    if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
      return PHI_RESULT (phi);

  return var;
}

/* Finds tailcalls falling into basic block BB. The list of found tailcalls is
   added to the start of RET.  */

static void
find_tail_calls (basic_block bb, struct tailcall **ret)
{
  tree ass_var, ret_var, stmt, func, param, args, call = NULL_TREE;
  block_stmt_iterator bsi, absi;
  bool tail_recursion;
  struct tailcall *nw;
  edge e;
  tree m, a;
  basic_block abb;
  stmt_ann_t ann;

386
  if (!single_succ_p (bb))
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    return;

  for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
    {
      stmt = bsi_stmt (bsi);

      /* Ignore labels.  */
      if (TREE_CODE (stmt) == LABEL_EXPR)
	continue;

      /* Check for a call.  */
      if (TREE_CODE (stmt) == MODIFY_EXPR)
	{
	  ass_var = TREE_OPERAND (stmt, 0);
	  call = TREE_OPERAND (stmt, 1);
402 403
	  if (TREE_CODE (call) == WITH_SIZE_EXPR)
	    call = TREE_OPERAND (call, 0);
404 405 406 407 408 409 410 411 412 413
	}
      else
	{
	  ass_var = NULL_TREE;
	  call = stmt;
	}

      if (TREE_CODE (call) == CALL_EXPR)
	break;

414
      /* If the statement has virtual or volatile operands, fail.  */
415
      ann = stmt_ann (stmt);
416 417
      if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann))
          || NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann))
418 419
	  || NUM_VUSES (VUSE_OPS (ann))
	  || ann->has_volatile_ops)
420 421 422 423 424
	return;
    }

  if (bsi_end_p (bsi))
    {
425
      edge_iterator ei;
426
      /* Recurse to the predecessors.  */
427
      FOR_EACH_EDGE (e, ei, bb->preds)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	find_tail_calls (e->src, ret);

      return;
    }

  /* We found the call, check whether it is suitable.  */
  tail_recursion = false;
  func = get_callee_fndecl (call);
  if (func == current_function_decl)
    {
      for (param = DECL_ARGUMENTS (func), args = TREE_OPERAND (call, 1);
	   param && args;
	   param = TREE_CHAIN (param), args = TREE_CHAIN (args))
	{
	  tree arg = TREE_VALUE (args);
443 444 445
	  if (param != arg)
	    {
	      /* Make sure there are no problems with copying.  The parameter
446 447 448
	         have a copyable type and the two arguments must have reasonably
	         equivalent types.  The latter requirement could be relaxed if
	         we emitted a suitable type conversion statement.  */
449
	      if (!is_gimple_reg_type (TREE_TYPE (param))
450
		  || !lang_hooks.types_compatible_p (TREE_TYPE (param),
451 452 453 454 455 456 457 458 459 460 461 462 463
						     TREE_TYPE (arg)))
		break;

	      /* The parameter should be a real operand, so that phi node
		 created for it at the start of the function has the meaning
		 of copying the value.  This test implies is_gimple_reg_type
		 from the previous condition, however this one could be
		 relaxed by being more careful with copying the new value
		 of the parameter (emitting appropriate MODIFY_EXPR and
		 updating the virtual operands).  */
	      if (!is_gimple_reg (param))
		break;
	    }
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	}
      if (!args && !param)
	tail_recursion = true;
    }

  /* Now check the statements after the call.  None of them has virtual
     operands, so they may only depend on the call through its return
     value.  The return value should also be dependent on each of them,
     since we are running after dce.  */
  m = NULL_TREE;
  a = NULL_TREE;

  abb = bb;
  absi = bsi;
  while (1)
    {
      bsi_next (&absi);

      while (bsi_end_p (absi))
	{
484 485
	  ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
	  abb = single_succ (abb);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	  absi = bsi_start (abb);
	}

      stmt = bsi_stmt (absi);

      if (TREE_CODE (stmt) == LABEL_EXPR)
	continue;

      if (TREE_CODE (stmt) == RETURN_EXPR)
	break;

      if (TREE_CODE (stmt) != MODIFY_EXPR)
	return;

      if (!process_assignment (stmt, stmt, bsi, &m, &a, &ass_var))
	return;
    }

504
  /* See if this is a tail call we can handle.  */
505 506 507 508
  ret_var = TREE_OPERAND (stmt, 0);
  if (ret_var
      && TREE_CODE (ret_var) == MODIFY_EXPR)
    {
509 510
      tree ret_op = TREE_OPERAND (ret_var, 1);
      STRIP_NOPS (ret_op);
511
      if (!tail_recursion
512
	  && TREE_CODE (ret_op) != SSA_NAME)
513 514 515 516 517 518 519 520 521 522 523 524 525
	return;

      if (!process_assignment (ret_var, stmt, bsi, &m, &a, &ass_var))
	return;
      ret_var = TREE_OPERAND (ret_var, 0);
    }

  /* We may proceed if there either is no return value, or the return value
     is identical to the call's return.  */
  if (ret_var
      && (ret_var != ass_var))
    return;

526 527 528 529 530
  /* If this is not a tail recursive call, we cannot handle addends or
     multiplicands.  */
  if (!tail_recursion && (m || a))
    return;

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
  nw = xmalloc (sizeof (struct tailcall));

  nw->call_block = bb;
  nw->call_bsi = bsi;

  nw->tail_recursion = tail_recursion;

  nw->mult = m;
  nw->add = a;

  nw->next = *ret;
  *ret = nw;
}

/* Adjust the accumulator values according to A and M after BSI, and update
   the phi nodes on edge BACK.  */

static void
adjust_accumulator_values (block_stmt_iterator bsi, tree m, tree a, edge back)
{
  tree stmt, var, phi, tmp;
  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
  tree a_acc_arg = a_acc, m_acc_arg = m_acc;

  if (a)
    {
      if (m_acc)
	{
	  if (integer_onep (a))
	    var = m_acc;
	  else
	    {
	      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
			    build (MULT_EXPR, ret_type, m_acc, a));

	      tmp = create_tmp_var (ret_type, "acc_tmp");
	      add_referenced_tmp_var (tmp);

	      var = make_ssa_name (tmp, stmt);
	      TREE_OPERAND (stmt, 0) = var;
	      bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
	    }
	}
      else
	var = a;

      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (PLUS_EXPR, ret_type, a_acc, var));
      var = make_ssa_name (SSA_NAME_VAR (a_acc), stmt);
      TREE_OPERAND (stmt, 0) = var;
      bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
      a_acc_arg = var;
    }

  if (m)
    {
      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (MULT_EXPR, ret_type, m_acc, m));
      var = make_ssa_name (SSA_NAME_VAR (m_acc), stmt);
      TREE_OPERAND (stmt, 0) = var;
      bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
      m_acc_arg = var;
    }

  if (a_acc)
    {
597
      for (phi = phi_nodes (back->dest); phi; phi = PHI_CHAIN (phi))
598 599 600
	if (PHI_RESULT (phi) == a_acc)
	  break;

601
      add_phi_arg (phi, a_acc_arg, back);
602 603 604 605
    }

  if (m_acc)
    {
606
      for (phi = phi_nodes (back->dest); phi; phi = PHI_CHAIN (phi))
607 608 609
	if (PHI_RESULT (phi) == m_acc)
	  break;

610
      add_phi_arg (phi, m_acc_arg, back);
611 612 613
    }
}

614
/* Adjust value of the return at the end of BB according to M and A
615 616 617 618 619 620 621 622 623
   accumulators.  */

static void
adjust_return_value (basic_block bb, tree m, tree a)
{
  tree ret_stmt = last_stmt (bb), ret_var, var, stmt, tmp;
  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
  block_stmt_iterator bsi = bsi_last (bb);

624
  gcc_assert (TREE_CODE (ret_stmt) == RETURN_EXPR);
625 626 627 628 629 630 631

  ret_var = TREE_OPERAND (ret_stmt, 0);
  if (!ret_var)
    return;

  if (TREE_CODE (ret_var) == MODIFY_EXPR)
    {
632
      ret_var->common.ann = (tree_ann_t) stmt_ann (ret_stmt);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
      bsi_replace (&bsi, ret_var, true);
      SSA_NAME_DEF_STMT (TREE_OPERAND (ret_var, 0)) = ret_var;
      ret_var = TREE_OPERAND (ret_var, 0);
      ret_stmt = build1 (RETURN_EXPR, TREE_TYPE (ret_stmt), ret_var);
      bsi_insert_after (&bsi, ret_stmt, BSI_NEW_STMT);
    }

  if (m)
    {
      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (MULT_EXPR, ret_type, m_acc, ret_var));

      tmp = create_tmp_var (ret_type, "acc_tmp");
      add_referenced_tmp_var (tmp);

      var = make_ssa_name (tmp, stmt);
      TREE_OPERAND (stmt, 0) = var;
650
      bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
651 652 653 654 655 656 657 658 659 660 661 662 663 664
    }
  else
    var = ret_var;

  if (a)
    {
      stmt = build (MODIFY_EXPR, ret_type, NULL_TREE,
		    build (PLUS_EXPR, ret_type, a_acc, var));

      tmp = create_tmp_var (ret_type, "acc_tmp");
      add_referenced_tmp_var (tmp);

      var = make_ssa_name (tmp, stmt);
      TREE_OPERAND (stmt, 0) = var;
665
      bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
666 667 668
    }

  TREE_OPERAND (ret_stmt, 0) = var;
669
  update_stmt (ret_stmt);
670 671 672 673 674 675 676 677 678 679 680 681 682
}

/* Eliminates tail call described by T.  TMP_VARS is a list of
   temporary variables used to copy the function arguments.  */

static void
eliminate_tail_call (struct tailcall *t)
{
  tree param, stmt, args, rslt, call;
  basic_block bb, first;
  edge e;
  tree phi;
  stmt_ann_t ann;
683
  v_may_def_optype v_may_defs;
684
  unsigned i;
685
  block_stmt_iterator bsi;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

  stmt = bsi_stmt (t->call_bsi);
  ann = stmt_ann (stmt);
  bb = t->call_block;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
	       bb->index);
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  if (TREE_CODE (stmt) == MODIFY_EXPR)
    stmt = TREE_OPERAND (stmt, 1);

702
  first = single_succ (ENTRY_BLOCK_PTR);
703

704 705 706 707 708 709 710
  /* Remove the code after call_bsi that will become unreachable.  The
     possibly unreachable code in other blocks is removed later in
     cfg cleanup.  */
  bsi = t->call_bsi;
  bsi_next (&bsi);
  while (!bsi_end_p (bsi))
    {
711
      tree t = bsi_stmt (bsi);
712 713
      /* Do not remove the return statement, so that redirect_edge_and_branch
	 sees how the block ends.  */
714
      if (TREE_CODE (t) == RETURN_EXPR)
715 716 717
	break;

      bsi_remove (&bsi);
718
      release_defs (t);
719 720
    }

721
  /* Replace the call by a jump to the start of function.  */
722
  e = redirect_edge_and_branch (single_succ_edge (t->call_block), first);
723
  gcc_assert (e);
724 725 726 727 728 729 730 731 732 733 734 735 736 737
  PENDING_STMT (e) = NULL_TREE;

  /* Add phi node entries for arguments.  Not every PHI node corresponds to
     a function argument (there may be PHI nodes for virtual definitions of the
     eliminated calls), so we search for a PHI corresponding to each argument
     rather than searching for which argument a PHI node corresponds to.  */
  
  for (param = DECL_ARGUMENTS (current_function_decl),
       args = TREE_OPERAND (stmt, 1);
       param;
       param = TREE_CHAIN (param),
       args = TREE_CHAIN (args))
    {
      
738
      for (phi = phi_nodes (first); phi; phi = PHI_CHAIN (phi))
739 740 741 742 743 744 745 746
	if (param == SSA_NAME_VAR (PHI_RESULT (phi)))
	  break;

      /* The phi node indeed does not have to be there, in case the operand is
	 invariant in the function.  */
      if (!phi)
	continue;

747
      add_phi_arg (phi, TREE_VALUE (args), e);
748 749 750
    }

  /* Add phi nodes for the call clobbered variables.  */
751 752
  v_may_defs = V_MAY_DEF_OPS (ann);
  for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
753
    {
754
      param = SSA_NAME_VAR (V_MAY_DEF_RESULT (v_may_defs, i));
755
      for (phi = phi_nodes (first); phi; phi = PHI_CHAIN (phi))
756 757 758 759 760 761
	if (param == SSA_NAME_VAR (PHI_RESULT (phi)))
	  break;

      if (!phi)
	{
	  tree name = var_ann (param)->default_def;
762 763 764 765 766 767 768 769 770 771 772
	  tree new_name;

	  if (!name)
	    {
	      /* It may happen that the tag does not have a default_def in case
		 when all uses of it are dominated by a MUST_DEF.  This however
		 means that it is not necessary to add a phi node for this
		 tag.  */
	      continue;
	    }
	  new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
773 774 775 776

	  var_ann (param)->default_def = new_name;
	  phi = create_phi_node (name, first);
	  SSA_NAME_DEF_STMT (name) = phi;
777
	  add_phi_arg (phi, new_name, single_succ_edge (ENTRY_BLOCK_PTR));
778 779 780 781

	  /* For all calls the same set of variables should be clobbered.  This
	     means that there always should be the appropriate phi node except
	     for the first time we eliminate the call.  */
782
	  gcc_assert (EDGE_COUNT (first->preds) <= 2);
783 784
	}

785
      add_phi_arg (phi, V_MAY_DEF_OP (v_may_defs, i), e);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    }

  /* Update the values of accumulators.  */
  adjust_accumulator_values (t->call_bsi, t->mult, t->add, e);

  call = bsi_stmt (t->call_bsi);
  if (TREE_CODE (call) == MODIFY_EXPR)
    {
      rslt = TREE_OPERAND (call, 0);

      /* Result of the call will no longer be defined.  So adjust the
	 SSA_NAME_DEF_STMT accordingly.  */
      SSA_NAME_DEF_STMT (rslt) = build_empty_stmt ();
    }

  bsi_remove (&t->call_bsi);
802
  release_defs (call);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
}

/* Optimizes the tailcall described by T.  If OPT_TAILCALLS is true, also
   mark the tailcalls for the sibcall optimization.  */

static bool
optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
{
  if (t->tail_recursion)
    {
      eliminate_tail_call (t);
      return true;
    }

  if (opt_tailcalls)
    {
      tree stmt = bsi_stmt (t->call_bsi);

821
      stmt = get_call_expr_in (stmt);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
      CALL_EXPR_TAILCALL (stmt) = 1;
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
	  fprintf (dump_file, "Found tail call ");
	  print_generic_expr (dump_file, stmt, dump_flags);
	  fprintf (dump_file, " in bb %i\n", t->call_block->index);
	}
    }

  return false;
}

/* Optimizes tail calls in the function, turning the tail recursion
   into iteration.  */

static void
tree_optimize_tail_calls_1 (bool opt_tailcalls)
{
  edge e;
  bool phis_constructed = false;
  struct tailcall *tailcalls = NULL, *act, *next;
  bool changed = false;
844
  basic_block first = single_succ (ENTRY_BLOCK_PTR);
845
  tree stmt, param, ret_type, tmp, phi;
846
  edge_iterator ei;
847 848 849 850 851 852

  if (!suitable_for_tail_opt_p ())
    return;
  if (opt_tailcalls)
    opt_tailcalls = suitable_for_tail_call_opt_p ();

853
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    {
      /* Only traverse the normal exits, i.e. those that end with return
	 statement.  */
      stmt = last_stmt (e->src);

      if (stmt
	  && TREE_CODE (stmt) == RETURN_EXPR)
	find_tail_calls (e->src, &tailcalls);
    }

  /* Construct the phi nodes and accumulators if necessary.  */
  a_acc = m_acc = NULL_TREE;
  for (act = tailcalls; act; act = act->next)
    {
      if (!act->tail_recursion)
	continue;

      if (!phis_constructed)
	{
	  /* Ensure that there is only one predecessor of the block.  */
874 875
	  if (!single_pred_p (first))
	    first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
876 877 878 879 880

	  /* Copy the args if needed.  */
	  for (param = DECL_ARGUMENTS (current_function_decl);
	       param;
	       param = TREE_CHAIN (param))
881 882
	    if (is_gimple_reg (param)
		&& var_ann (param)
883 884 885 886 887 888 889 890 891 892 893 894
		/* Also parameters that are only defined but never used need not
		   be copied.  */
		&& (var_ann (param)->default_def
		    && TREE_CODE (var_ann (param)->default_def) == SSA_NAME))
	    {
	      tree name = var_ann (param)->default_def;
	      tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
	      tree phi;

	      var_ann (param)->default_def = new_name;
	      phi = create_phi_node (name, first);
	      SSA_NAME_DEF_STMT (name) = phi;
895
	      add_phi_arg (phi, new_name, single_pred_edge (first));
896 897 898 899 900 901 902 903 904 905 906 907
	    }
	  phis_constructed = true;
	}

      if (act->add && !a_acc)
	{
	  ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));

	  tmp = create_tmp_var (ret_type, "add_acc");
	  add_referenced_tmp_var (tmp);

	  phi = create_phi_node (tmp, first);
908
	  add_phi_arg (phi,
909 910 911
		       /* RET_TYPE can be a float when -ffast-maths is
			  enabled.  */
		       fold_convert (ret_type, integer_zero_node),
912
		       single_pred_edge (first));
913 914 915 916 917 918 919 920 921 922 923
	  a_acc = PHI_RESULT (phi);
	}

      if (act->mult && !m_acc)
	{
	  ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));

	  tmp = create_tmp_var (ret_type, "mult_acc");
	  add_referenced_tmp_var (tmp);

	  phi = create_phi_node (tmp, first);
924
	  add_phi_arg (phi,
925 926 927
		       /* RET_TYPE can be a float when -ffast-maths is
			  enabled.  */
		       fold_convert (ret_type, integer_one_node),
928
		       single_pred_edge (first));
929 930 931 932 933 934 935 936 937 938 939 940 941 942
	  m_acc = PHI_RESULT (phi);
	}
    }

  for (; tailcalls; tailcalls = next)
    {
      next = tailcalls->next;
      changed |= optimize_tail_call (tailcalls, opt_tailcalls);
      free (tailcalls);
    }

  if (a_acc || m_acc)
    {
      /* Modify the remaining return statements.  */
943
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	{
	  stmt = last_stmt (e->src);

	  if (stmt
	      && TREE_CODE (stmt) == RETURN_EXPR)
	    adjust_return_value (e->src, m_acc, a_acc);
	}
    }

  if (changed)
    {
      free_dominance_info (CDI_DOMINATORS);
      cleanup_tree_cfg ();
    }
}

static void
execute_tail_recursion (void)
{
  tree_optimize_tail_calls_1 (false);
}

static bool
gate_tail_calls (void)
{
  return flag_optimize_sibling_calls != 0;
}

static void
execute_tail_calls (void)
{
  tree_optimize_tail_calls_1 (true);
}

struct tree_opt_pass pass_tail_recursion = 
{
  "tailr",				/* name */
  NULL,					/* gate */
  execute_tail_recursion,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
987
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
988 989 990
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
991 992
  TODO_dump_func | TODO_verify_ssa,	/* todo_flags_finish */
  0					/* letter */
993 994 995 996 997 998 999 1000 1001 1002 1003
};

struct tree_opt_pass pass_tail_calls = 
{
  "tailc",				/* name */
  gate_tail_calls,			/* gate */
  execute_tail_calls,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
1004
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
1005 1006 1007
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
1008 1009
  TODO_dump_func | TODO_verify_ssa,	/* todo_flags_finish */
  0					/* letter */
1010
};