libgcc2.c 47.3 KB
Newer Older
Richard Stallman committed
1 2
/* More subroutines needed by GCC output code on some machines.  */
/* Compile this one with gcc.  */
3
/* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4
   2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5
   Free Software Foundation, Inc.
Richard Stallman committed
6

7
This file is part of GCC.
Richard Stallman committed
8

9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12
version.
Richard Stallman committed
13

14 15 16 17
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Stallman committed
18

19 20 21 22 23 24 25 26
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
Richard Stallman committed
27

28
#include "tconfig.h"
Kaveh R. Ghazi committed
29
#include "tsystem.h"
30 31
#include "coretypes.h"
#include "tm.h"
32

33 34 35 36 37 38
#ifdef HAVE_GAS_HIDDEN
#define ATTRIBUTE_HIDDEN  __attribute__ ((__visibility__ ("hidden")))
#else
#define ATTRIBUTE_HIDDEN
#endif

39 40 41 42
#ifndef MIN_UNITS_PER_WORD
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
#endif

43 44 45 46 47 48 49 50 51 52 53 54
/* Work out the largest "word" size that we can deal with on this target.  */
#if MIN_UNITS_PER_WORD > 4
# define LIBGCC2_MAX_UNITS_PER_WORD 8
#elif (MIN_UNITS_PER_WORD > 2 \
       || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
# define LIBGCC2_MAX_UNITS_PER_WORD 4
#else
# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
#endif

/* Work out what word size we are using for this compilation.
   The value can be set on the command line.  */
55
#ifndef LIBGCC2_UNITS_PER_WORD
56
#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
57 58
#endif

59
#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
60

Kaveh R. Ghazi committed
61
#include "libgcc2.h"
Richard Stallman committed
62

63 64 65 66
#ifdef DECLARE_LIBRARY_RENAMES
  DECLARE_LIBRARY_RENAMES
#endif

67
#if defined (L_negdi2)
68 69 70
DWtype
__negdi2 (DWtype u)
{
71 72 73
  const DWunion uu = {.ll = u};
  const DWunion w = { {.low = -uu.s.low,
		       .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
74 75 76 77

  return w.ll;
}
#endif
78 79

#ifdef L_addvsi3
80
Wtype
81
__addvSI3 (Wtype a, Wtype b)
82
{
83
  const Wtype w = (UWtype) a + (UWtype) b;
84 85 86 87 88

  if (b >= 0 ? w < a : w > a)
    abort ();

  return w;
89
}
90 91 92 93
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__addvsi3 (SItype a, SItype b)
{
94
  const SItype w = (USItype) a + (USItype) b;
95 96 97 98 99 100 101

  if (b >= 0 ? w < a : w > a)
    abort ();

  return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
102
#endif
103 104

#ifdef L_addvdi3
105
DWtype
106
__addvDI3 (DWtype a, DWtype b)
107
{
108
  const DWtype w = (UDWtype) a + (UDWtype) b;
109 110 111 112 113 114 115 116 117

  if (b >= 0 ? w < a : w > a)
    abort ();

  return w;
}
#endif

#ifdef L_subvsi3
118
Wtype
119
__subvSI3 (Wtype a, Wtype b)
120
{
121
  const Wtype w = (UWtype) a - (UWtype) b;
122 123 124 125 126 127

  if (b >= 0 ? w > a : w < a)
    abort ();

  return w;
}
128 129 130 131
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__subvsi3 (SItype a, SItype b)
{
132
  const SItype w = (USItype) a - (USItype) b;
133 134 135 136 137 138 139

  if (b >= 0 ? w > a : w < a)
    abort ();

  return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
140 141 142
#endif

#ifdef L_subvdi3
143
DWtype
144
__subvDI3 (DWtype a, DWtype b)
145
{
146
  const DWtype w = (UDWtype) a - (UDWtype) b;
147 148 149 150 151 152 153 154 155

  if (b >= 0 ? w > a : w < a)
    abort ();

  return w;
}
#endif

#ifdef L_mulvsi3
156
Wtype
157
__mulvSI3 (Wtype a, Wtype b)
158
{
159
  const DWtype w = (DWtype) a * (DWtype) b;
160

161
  if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
162 163 164 165
    abort ();

  return w;
}
166 167 168 169 170 171 172 173 174 175 176 177 178 179
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
#undef WORD_SIZE
#define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
SItype
__mulvsi3 (SItype a, SItype b)
{
  const DItype w = (DItype) a * (DItype) b;

  if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
    abort ();

  return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
180 181 182
#endif

#ifdef L_negvsi2
183
Wtype
184
__negvSI2 (Wtype a)
185
{
186
  const Wtype w = -(UWtype) a;
187 188 189 190 191 192

  if (a >= 0 ? w > 0 : w < 0)
    abort ();

   return w;
}
193 194 195 196
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__negvsi2 (SItype a)
{
197
  const SItype w = -(USItype) a;
198 199 200 201 202 203 204

  if (a >= 0 ? w > 0 : w < 0)
    abort ();

   return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
205 206 207
#endif

#ifdef L_negvdi2
208
DWtype
209
__negvDI2 (DWtype a)
210
{
211
  const DWtype w = -(UDWtype) a;
212 213 214 215

  if (a >= 0 ? w > 0 : w < 0)
    abort ();

216
  return w;
217 218 219 220
}
#endif

#ifdef L_absvsi2
221
Wtype
222
__absvSI2 (Wtype a)
223
{
224
  Wtype w = a;
225

226
  if (a < 0)
227
#ifdef L_negvsi2
228 229
    w = __negvSI2 (a);
#else
230
    w = -(UWtype) a;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

  if (w < 0)
    abort ();
#endif

   return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__absvsi2 (SItype a)
{
  SItype w = a;

  if (a < 0)
#ifdef L_negvsi2
246
    w = __negvsi2 (a);
247
#else
248
    w = -(USItype) a;
249

250 251
  if (w < 0)
    abort ();
252 253 254 255
#endif

   return w;
}
256
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
257 258 259
#endif

#ifdef L_absvdi2
260
DWtype
261
__absvDI2 (DWtype a)
262
{
263
  DWtype w = a;
264

265
  if (a < 0)
266
#ifdef L_negvdi2
267
    w = __negvDI2 (a);
268
#else
269
    w = -(UDWtype) a;
270

271 272
  if (w < 0)
    abort ();
273 274
#endif

275
  return w;
276 277 278 279
}
#endif

#ifdef L_mulvdi3
280
DWtype
281
__mulvDI3 (DWtype u, DWtype v)
282
{
283 284
  /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
     but the checked multiplication needs only two.  */
285 286
  const DWunion uu = {.ll = u};
  const DWunion vv = {.ll = v};
287

288
  if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
289 290
    {
      /* u fits in a single Wtype.  */
291
      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
292 293 294 295 296 297 298 299
	{
	  /* v fits in a single Wtype as well.  */
	  /* A single multiplication.  No overflow risk.  */
	  return (DWtype) uu.s.low * (DWtype) vv.s.low;
	}
      else
	{
	  /* Two multiplications.  */
300 301 302 303
	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.low};
	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.high};
304 305 306 307 308 309

	  if (vv.s.high < 0)
	    w1.s.high -= uu.s.low;
	  if (uu.s.low < 0)
	    w1.ll -= vv.ll;
	  w1.ll += (UWtype) w0.s.high;
310
	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
311 312 313 314 315 316 317 318
	    {
	      w0.s.high = w1.s.low;
	      return w0.ll;
	    }
	}
    }
  else
    {
319
      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
320 321 322
	{
	  /* v fits into a single Wtype.  */
	  /* Two multiplications.  */
323 324 325 326
	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.low};
	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
			* (UDWtype) (UWtype) vv.s.low};
327 328 329 330 331 332

	  if (uu.s.high < 0)
	    w1.s.high -= vv.s.low;
	  if (vv.s.low < 0)
	    w1.ll -= uu.ll;
	  w1.ll += (UWtype) w0.s.high;
333
	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
334 335 336 337 338 339 340 341 342 343 344 345 346 347
	    {
	      w0.s.high = w1.s.low;
	      return w0.ll;
	    }
	}
      else
	{
	  /* A few sign checks and a single multiplication.  */
	  if (uu.s.high >= 0)
	    {
	      if (vv.s.high >= 0)
		{
		  if (uu.s.high == 0 && vv.s.high == 0)
		    {
348 349
		      const DWtype w = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.low;
350 351 352 353 354 355 356 357
		      if (__builtin_expect (w >= 0, 1))
			return w;
		    }
		}
	      else
		{
		  if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
		    {
358 359
		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
				    * (UDWtype) (UWtype) vv.s.low};
360 361 362 363 364 365 366 367 368 369 370 371 372

		      ww.s.high -= uu.s.low;
		      if (__builtin_expect (ww.s.high < 0, 1))
			return ww.ll;
		    }
		}
	    }
	  else
	    {
	      if (vv.s.high >= 0)
		{
		  if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
		    {
373 374
		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
				    * (UDWtype) (UWtype) vv.s.low};
375 376 377 378 379 380 381 382 383 384

		      ww.s.high -= vv.s.low;
		      if (__builtin_expect (ww.s.high < 0, 1))
			return ww.ll;
		    }
		}
	      else
		{
		  if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
		    {
385 386
		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
				    * (UDWtype) (UWtype) vv.s.low};
387 388 389 390 391 392 393 394 395 396

		      ww.s.high -= uu.s.low;
		      ww.s.high -= vv.s.low;
		      if (__builtin_expect (ww.s.high >= 0, 1))
			return ww.ll;
		    }
		}
	    }
	}
    }
397

398 399
  /* Overflow.  */
  abort ();
400 401 402
}
#endif

Richard Stallman committed
403

404
/* Unless shift functions are defined with full ANSI prototypes,
405
   parameter b will be promoted to int if shift_count_type is smaller than an int.  */
Richard Stallman committed
406
#ifdef L_lshrdi3
407
DWtype
408
__lshrdi3 (DWtype u, shift_count_type b)
Richard Stallman committed
409 410 411 412
{
  if (b == 0)
    return u;

413
  const DWunion uu = {.ll = u};
414
  const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
415
  DWunion w;
Richard Stallman committed
416 417 418 419

  if (bm <= 0)
    {
      w.s.high = 0;
420
      w.s.low = (UWtype) uu.s.high >> -bm;
Richard Stallman committed
421 422 423
    }
  else
    {
424
      const UWtype carries = (UWtype) uu.s.high << bm;
425 426 427

      w.s.high = (UWtype) uu.s.high >> b;
      w.s.low = ((UWtype) uu.s.low >> b) | carries;
Richard Stallman committed
428 429 430 431 432 433 434
    }

  return w.ll;
}
#endif

#ifdef L_ashldi3
435
DWtype
436
__ashldi3 (DWtype u, shift_count_type b)
Richard Stallman committed
437 438 439 440
{
  if (b == 0)
    return u;

441
  const DWunion uu = {.ll = u};
442
  const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
443
  DWunion w;
Richard Stallman committed
444 445 446 447

  if (bm <= 0)
    {
      w.s.low = 0;
448
      w.s.high = (UWtype) uu.s.low << -bm;
Richard Stallman committed
449 450 451
    }
  else
    {
452
      const UWtype carries = (UWtype) uu.s.low >> bm;
453 454 455

      w.s.low = (UWtype) uu.s.low << b;
      w.s.high = ((UWtype) uu.s.high << b) | carries;
Richard Stallman committed
456 457 458 459 460 461 462
    }

  return w.ll;
}
#endif

#ifdef L_ashrdi3
463
DWtype
464
__ashrdi3 (DWtype u, shift_count_type b)
Richard Stallman committed
465 466 467 468
{
  if (b == 0)
    return u;

469
  const DWunion uu = {.ll = u};
470
  const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
471
  DWunion w;
Richard Stallman committed
472 473 474 475

  if (bm <= 0)
    {
      /* w.s.high = 1..1 or 0..0 */
476
      w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
Richard Stallman committed
477 478 479 480
      w.s.low = uu.s.high >> -bm;
    }
  else
    {
481
      const UWtype carries = (UWtype) uu.s.high << bm;
482

Richard Stallman committed
483
      w.s.high = uu.s.high >> b;
484
      w.s.low = ((UWtype) uu.s.low >> b) | carries;
Richard Stallman committed
485 486 487 488 489 490
    }

  return w.ll;
}
#endif

491
#ifdef L_bswapsi2
492 493
SItype
__bswapsi2 (SItype u)
494 495 496 497 498 499 500 501
{
  return ((((u) & 0xff000000) >> 24)
	  | (((u) & 0x00ff0000) >>  8)
	  | (((u) & 0x0000ff00) <<  8)
	  | (((u) & 0x000000ff) << 24));
}
#endif
#ifdef L_bswapdi2
502 503
DItype
__bswapdi2 (DItype u)
504 505 506 507 508 509 510 511 512 513 514
{
  return ((((u) & 0xff00000000000000ull) >> 56)
	  | (((u) & 0x00ff000000000000ull) >> 40)
	  | (((u) & 0x0000ff0000000000ull) >> 24)
	  | (((u) & 0x000000ff00000000ull) >>  8)
	  | (((u) & 0x00000000ff000000ull) <<  8)
	  | (((u) & 0x0000000000ff0000ull) << 24)
	  | (((u) & 0x000000000000ff00ull) << 40)
	  | (((u) & 0x00000000000000ffull) << 56));
}
#endif
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
#ifdef L_ffssi2
#undef int
int
__ffsSI2 (UWtype u)
{
  UWtype count;

  if (u == 0)
    return 0;

  count_trailing_zeros (count, u);
  return count + 1;
}
#endif

530
#ifdef L_ffsdi2
531 532
#undef int
int
533
__ffsDI2 (DWtype u)
534
{
535
  const DWunion uu = {.ll = u};
536 537 538 539 540 541 542 543 544 545 546
  UWtype word, count, add;

  if (uu.s.low != 0)
    word = uu.s.low, add = 0;
  else if (uu.s.high != 0)
    word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
  else
    return 0;

  count_trailing_zeros (count, word);
  return count + add + 1;
547 548 549
}
#endif

Richard Stallman committed
550
#ifdef L_muldi3
551 552
DWtype
__muldi3 (DWtype u, DWtype v)
Richard Stallman committed
553
{
554 555 556
  const DWunion uu = {.ll = u};
  const DWunion vv = {.ll = v};
  DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
Richard Stallman committed
557

558 559
  w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
	       + (UWtype) uu.s.high * (UWtype) vv.s.low);
Richard Stallman committed
560 561 562 563 564

  return w.ll;
}
#endif

565 566
#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
567
#if defined (sdiv_qrnnd)
568 569
#define L_udiv_w_sdiv
#endif
570
#endif
571

572
#ifdef L_udiv_w_sdiv
573
#if defined (sdiv_qrnnd)
574 575
#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
576
static inline __attribute__ ((__always_inline__))
577
#endif
578 579
UWtype
__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
580
{
581 582
  UWtype q, r;
  UWtype c0, c1, b1;
583

584
  if ((Wtype) d >= 0)
585
    {
586
      if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
587
	{
588
	  /* Dividend, divisor, and quotient are nonnegative.  */
589 590 591 592
	  sdiv_qrnnd (q, r, a1, a0, d);
	}
      else
	{
593
	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d.  */
594
	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
595
	  /* Divide (c1*2^32 + c0) by d.  */
596
	  sdiv_qrnnd (q, r, c1, c0, d);
597
	  /* Add 2^31 to quotient.  */
598
	  q += (UWtype) 1 << (W_TYPE_SIZE - 1);
599 600 601 602 603 604
	}
    }
  else
    {
      b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
      c1 = a1 >> 1;			/* A/2 */
605
      c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

      if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
	{
	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */

	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
	  if ((d & 1) != 0)
	    {
	      if (r >= q)
		r = r - q;
	      else if (q - r <= d)
		{
		  r = r - q + d;
		  q--;
		}
	      else
		{
		  r = r - q + 2*d;
		  q -= 2;
		}
	    }
	}
      else if (c1 < b1)			/* So 2^31 <= (A/2)/b1 < 2^32 */
	{
	  c1 = (b1 - 1) - c1;
	  c0 = ~c0;			/* logical NOT */

	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */

	  q = ~q;			/* (A/2)/b1 */
	  r = (b1 - 1) - r;

	  r = 2*r + (a0 & 1);		/* A/(2*b1) */

	  if ((d & 1) != 0)
	    {
	      if (r >= q)
		r = r - q;
	      else if (q - r <= d)
		{
		  r = r - q + d;
		  q--;
		}
	      else
		{
		  r = r - q + 2*d;
		  q -= 2;
		}
	    }
	}
      else				/* Implies c1 = b1 */
	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
	  if (a0 >= -d)
	    {
	      q = -1;
	      r = a0 + d;
	    }
	  else
	    {
	      q = -2;
	      r = a0 + 2*d;
	    }
	}
    }

  *rp = r;
  return q;
}
674 675
#else
/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv.  */
676 677 678 679 680
UWtype
__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
	       UWtype a1 __attribute__ ((__unused__)),
	       UWtype a0 __attribute__ ((__unused__)),
	       UWtype d __attribute__ ((__unused__)))
Kaveh R. Ghazi committed
681 682 683
{
  return 0;
}
684
#endif
685 686
#endif

Richard Kenner committed
687 688 689 690 691
#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
#define L_udivmoddi4
#endif

692
#ifdef L_clz
693
const UQItype __clz_tab[256] =
Richard Stallman committed
694 695 696 697 698 699 700 701
{
  0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
702
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
Richard Stallman committed
703
};
704
#endif
Richard Henderson committed
705 706

#ifdef L_clzsi2
707 708
#undef int
int
709
__clzSI2 (UWtype x)
Richard Henderson committed
710
{
711
  Wtype ret;
Richard Henderson committed
712

713
  count_leading_zeros (ret, x);
714 715

  return ret;
Richard Henderson committed
716 717 718 719
}
#endif

#ifdef L_clzdi2
720 721
#undef int
int
722
__clzDI2 (UDWtype x)
Richard Henderson committed
723
{
724
  const DWunion uu = {.ll = x};
725 726 727
  UWtype word;
  Wtype ret, add;

728 729
  if (uu.s.high)
    word = uu.s.high, add = 0;
730
  else
731
    word = uu.s.low, add = W_TYPE_SIZE;
Richard Henderson committed
732

733 734
  count_leading_zeros (ret, word);
  return ret + add;
Richard Henderson committed
735 736 737 738
}
#endif

#ifdef L_ctzsi2
739 740
#undef int
int
741
__ctzSI2 (UWtype x)
Richard Henderson committed
742
{
743
  Wtype ret;
Richard Henderson committed
744

745
  count_trailing_zeros (ret, x);
Richard Henderson committed
746

747
  return ret;
Richard Henderson committed
748 749 750 751
}
#endif

#ifdef L_ctzdi2
752 753
#undef int
int
754
__ctzDI2 (UDWtype x)
Richard Henderson committed
755
{
756
  const DWunion uu = {.ll = x};
757 758 759
  UWtype word;
  Wtype ret, add;

760 761
  if (uu.s.low)
    word = uu.s.low, add = 0;
762
  else
763
    word = uu.s.high, add = W_TYPE_SIZE;
Richard Henderson committed
764

765 766
  count_trailing_zeros (ret, word);
  return ret + add;
Richard Henderson committed
767 768 769 770
}
#endif

#ifdef L_popcount_tab
771
const UQItype __popcount_tab[256] =
Richard Henderson committed
772 773 774 775 776 777 778 779
{
    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
780
    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
Richard Henderson committed
781 782 783 784
};
#endif

#ifdef L_popcountsi2
785 786
#undef int
int
787
__popcountSI2 (UWtype x)
Richard Henderson committed
788
{
789
  int i, ret = 0;
790 791 792 793 794

  for (i = 0; i < W_TYPE_SIZE; i += 8)
    ret += __popcount_tab[(x >> i) & 0xff];

  return ret;
Richard Henderson committed
795 796 797 798
}
#endif

#ifdef L_popcountdi2
799 800
#undef int
int
801
__popcountDI2 (UDWtype x)
Richard Henderson committed
802
{
803
  int i, ret = 0;
804 805 806 807 808

  for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
    ret += __popcount_tab[(x >> i) & 0xff];

  return ret;
Richard Henderson committed
809 810 811 812
}
#endif

#ifdef L_paritysi2
813 814
#undef int
int
815
__paritySI2 (UWtype x)
Richard Henderson committed
816
{
817 818 819 820 821 822 823 824 825 826 827 828 829
#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
  x ^= x >> 32;
#endif
#if W_TYPE_SIZE > 16
  x ^= x >> 16;
#endif
  x ^= x >> 8;
  x ^= x >> 4;
  x &= 0xf;
  return (0x6996 >> x) & 1;
Richard Henderson committed
830 831 832 833
}
#endif

#ifdef L_paritydi2
834 835
#undef int
int
836
__parityDI2 (UDWtype x)
Richard Henderson committed
837
{
838 839
  const DWunion uu = {.ll = x};
  UWtype nx = uu.s.low ^ uu.s.high;
840 841 842 843 844 845 846 847

#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
  nx ^= nx >> 32;
#endif
#if W_TYPE_SIZE > 16
Richard Henderson committed
848
  nx ^= nx >> 16;
849
#endif
Richard Henderson committed
850
  nx ^= nx >> 8;
851
  nx ^= nx >> 4;
852 853
  nx &= 0xf;
  return (0x6996 >> nx) & 1;
Richard Henderson committed
854 855
}
#endif
856 857

#ifdef L_udivmoddi4
Richard Stallman committed
858

Richard Kenner committed
859 860
#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
861
static inline __attribute__ ((__always_inline__))
Richard Kenner committed
862
#endif
863 864
UDWtype
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
Richard Stallman committed
865
{
866 867
  const DWunion nn = {.ll = n};
  const DWunion dd = {.ll = d};
868 869 870 871
  DWunion rr;
  UWtype d0, d1, n0, n1, n2;
  UWtype q0, q1;
  UWtype b, bm;
Richard Stallman committed
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

  d0 = dd.s.low;
  d1 = dd.s.high;
  n0 = nn.s.low;
  n1 = nn.s.high;

#if !UDIV_NEEDS_NORMALIZATION
  if (d1 == 0)
    {
      if (d0 > n1)
	{
	  /* 0q = nn / 0D */

	  udiv_qrnnd (q0, n0, n1, n0, d0);
	  q1 = 0;

	  /* Remainder in n0.  */
	}
      else
	{
	  /* qq = NN / 0d */

	  if (d0 == 0)
	    d0 = 1 / d0;	/* Divide intentionally by zero.  */

	  udiv_qrnnd (q1, n1, 0, n1, d0);
	  udiv_qrnnd (q0, n0, n1, n0, d0);

	  /* Remainder in n0.  */
	}

      if (rp != 0)
	{
	  rr.s.low = n0;
	  rr.s.high = 0;
	  *rp = rr.ll;
	}
    }

#else /* UDIV_NEEDS_NORMALIZATION */

  if (d1 == 0)
    {
      if (d0 > n1)
	{
	  /* 0q = nn / 0D */

	  count_leading_zeros (bm, d0);

	  if (bm != 0)
	    {
	      /* Normalize, i.e. make the most significant bit of the
		 denominator set.  */

	      d0 = d0 << bm;
927
	      n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
Richard Stallman committed
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	      n0 = n0 << bm;
	    }

	  udiv_qrnnd (q0, n0, n1, n0, d0);
	  q1 = 0;

	  /* Remainder in n0 >> bm.  */
	}
      else
	{
	  /* qq = NN / 0d */

	  if (d0 == 0)
	    d0 = 1 / d0;	/* Divide intentionally by zero.  */

	  count_leading_zeros (bm, d0);

	  if (bm == 0)
	    {
	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
		 conclude (the most significant bit of n1 is set) /\ (the
		 leading quotient digit q1 = 1).

		 This special case is necessary, not an optimization.
952
		 (Shifts counts of W_TYPE_SIZE are undefined.)  */
Richard Stallman committed
953 954 955 956 957 958 959 960

	      n1 -= d0;
	      q1 = 1;
	    }
	  else
	    {
	      /* Normalize.  */

961
	      b = W_TYPE_SIZE - bm;
Richard Stallman committed
962 963 964 965 966 967 968 969 970

	      d0 = d0 << bm;
	      n2 = n1 >> b;
	      n1 = (n1 << bm) | (n0 >> b);
	      n0 = n0 << bm;

	      udiv_qrnnd (q1, n1, n2, n1, d0);
	    }

Mike Stump committed
971
	  /* n1 != d0...  */
Richard Stallman committed
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	  udiv_qrnnd (q0, n0, n1, n0, d0);

	  /* Remainder in n0 >> bm.  */
	}

      if (rp != 0)
	{
	  rr.s.low = n0 >> bm;
	  rr.s.high = 0;
	  *rp = rr.ll;
	}
    }
#endif /* UDIV_NEEDS_NORMALIZATION */

  else
    {
      if (d1 > n1)
	{
	  /* 00 = nn / DD */

	  q0 = 0;
	  q1 = 0;

	  /* Remainder in n1n0.  */
	  if (rp != 0)
	    {
	      rr.s.low = n0;
	      rr.s.high = n1;
	      *rp = rr.ll;
	    }
	}
      else
	{
	  /* 0q = NN / dd */

	  count_leading_zeros (bm, d1);
	  if (bm == 0)
	    {
	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
		 conclude (the most significant bit of n1 is set) /\ (the
		 quotient digit q0 = 0 or 1).

		 This special case is necessary, not an optimization.  */

	      /* The condition on the next line takes advantage of that
		 n1 >= d1 (true due to program flow).  */
	      if (n1 > d1 || n0 >= d0)
		{
		  q0 = 1;
		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
		}
	      else
		q0 = 0;

	      q1 = 0;

	      if (rp != 0)
		{
		  rr.s.low = n0;
		  rr.s.high = n1;
		  *rp = rr.ll;
		}
	    }
	  else
	    {
1038
	      UWtype m1, m0;
Richard Stallman committed
1039 1040
	      /* Normalize.  */

1041
	      b = W_TYPE_SIZE - bm;
Richard Stallman committed
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	      d1 = (d1 << bm) | (d0 >> b);
	      d0 = d0 << bm;
	      n2 = n1 >> b;
	      n1 = (n1 << bm) | (n0 >> b);
	      n0 = n0 << bm;

	      udiv_qrnnd (q0, n1, n2, n1, d1);
	      umul_ppmm (m1, m0, q0, d0);

	      if (m1 > n1 || (m1 == n1 && m0 > n0))
		{
		  q0--;
		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
		}

	      q1 = 0;

	      /* Remainder in (n1n0 - m1m0) >> bm.  */
	      if (rp != 0)
		{
		  sub_ddmmss (n1, n0, n1, n0, m1, m0);
		  rr.s.low = (n1 << b) | (n0 >> bm);
		  rr.s.high = n1 >> bm;
		  *rp = rr.ll;
		}
	    }
	}
    }

1072
  const DWunion ww = {{.low = q0, .high = q1}};
Richard Stallman committed
1073 1074 1075 1076 1077
  return ww.ll;
}
#endif

#ifdef L_divdi3
1078 1079
DWtype
__divdi3 (DWtype u, DWtype v)
Richard Stallman committed
1080
{
1081
  Wtype c = 0;
1082 1083
  DWunion uu = {.ll = u};
  DWunion vv = {.ll = v};
1084
  DWtype w;
Richard Stallman committed
1085 1086 1087

  if (uu.s.high < 0)
    c = ~c,
1088
    uu.ll = -uu.ll;
Richard Stallman committed
1089 1090
  if (vv.s.high < 0)
    c = ~c,
1091
    vv.ll = -vv.ll;
Richard Stallman committed
1092

1093
  w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
Richard Stallman committed
1094
  if (c)
1095
    w = -w;
Richard Stallman committed
1096 1097 1098 1099 1100 1101

  return w;
}
#endif

#ifdef L_moddi3
1102 1103
DWtype
__moddi3 (DWtype u, DWtype v)
Richard Stallman committed
1104
{
1105
  Wtype c = 0;
1106 1107
  DWunion uu = {.ll = u};
  DWunion vv = {.ll = v};
1108
  DWtype w;
Richard Stallman committed
1109 1110 1111

  if (uu.s.high < 0)
    c = ~c,
1112
    uu.ll = -uu.ll;
Richard Stallman committed
1113
  if (vv.s.high < 0)
1114
    vv.ll = -vv.ll;
Richard Stallman committed
1115

1116
  (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
Richard Stallman committed
1117
  if (c)
1118
    w = -w;
Richard Stallman committed
1119 1120 1121 1122 1123 1124

  return w;
}
#endif

#ifdef L_umoddi3
1125 1126
UDWtype
__umoddi3 (UDWtype u, UDWtype v)
Richard Stallman committed
1127
{
1128
  UDWtype w;
Richard Stallman committed
1129 1130 1131 1132 1133 1134 1135 1136

  (void) __udivmoddi4 (u, v, &w);

  return w;
}
#endif

#ifdef L_udivdi3
1137 1138
UDWtype
__udivdi3 (UDWtype n, UDWtype d)
Richard Stallman committed
1139
{
1140
  return __udivmoddi4 (n, d, (UDWtype *) 0);
Richard Stallman committed
1141 1142 1143 1144
}
#endif

#ifdef L_cmpdi2
1145
cmp_return_type
1146
__cmpdi2 (DWtype a, DWtype b)
Richard Stallman committed
1147
{
1148 1149
  const DWunion au = {.ll = a};
  const DWunion bu = {.ll = b};
Richard Stallman committed
1150 1151 1152 1153 1154

  if (au.s.high < bu.s.high)
    return 0;
  else if (au.s.high > bu.s.high)
    return 2;
1155
  if ((UWtype) au.s.low < (UWtype) bu.s.low)
Richard Stallman committed
1156
    return 0;
1157
  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
Richard Stallman committed
1158 1159 1160 1161 1162 1163
    return 2;
  return 1;
}
#endif

#ifdef L_ucmpdi2
1164
cmp_return_type
1165
__ucmpdi2 (DWtype a, DWtype b)
Richard Stallman committed
1166
{
1167 1168
  const DWunion au = {.ll = a};
  const DWunion bu = {.ll = b};
Richard Stallman committed
1169

1170
  if ((UWtype) au.s.high < (UWtype) bu.s.high)
Richard Stallman committed
1171
    return 0;
1172
  else if ((UWtype) au.s.high > (UWtype) bu.s.high)
Richard Stallman committed
1173
    return 2;
1174
  if ((UWtype) au.s.low < (UWtype) bu.s.low)
Richard Stallman committed
1175
    return 0;
1176
  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
Richard Stallman committed
1177 1178 1179 1180 1181
    return 2;
  return 1;
}
#endif

1182
#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1183
UDWtype
1184
__fixunstfDI (TFtype a)
1185 1186 1187 1188 1189
{
  if (a < 0)
    return 0;

  /* Compute high word of result, as a flonum.  */
1190
  const TFtype b = (a / Wtype_MAXp1_F);
1191
  /* Convert that to fixed (but not to DWtype!),
1192
     and shift it into the high word.  */
1193
  UDWtype v = (UWtype) b;
1194
  v <<= W_TYPE_SIZE;
1195 1196
  /* Remove high part from the TFtype, leaving the low part as flonum.  */
  a -= (TFtype)v;
1197
  /* Convert that to fixed (but not to DWtype!) and add it in.
1198 1199 1200
     Sometimes A comes out negative.  This is significant, since
     A has more bits than a long int does.  */
  if (a < 0)
1201
    v -= (UWtype) (- a);
1202
  else
1203
    v += (UWtype) a;
1204 1205 1206 1207
  return v;
}
#endif

1208
#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1209
DWtype
1210
__fixtfdi (TFtype a)
1211 1212
{
  if (a < 0)
1213 1214
    return - __fixunstfDI (-a);
  return __fixunstfDI (a);
1215 1216 1217
}
#endif

1218
#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1219
UDWtype
1220
__fixunsxfDI (XFtype a)
1221 1222 1223 1224 1225
{
  if (a < 0)
    return 0;

  /* Compute high word of result, as a flonum.  */
1226
  const XFtype b = (a / Wtype_MAXp1_F);
1227
  /* Convert that to fixed (but not to DWtype!),
1228
     and shift it into the high word.  */
1229
  UDWtype v = (UWtype) b;
1230
  v <<= W_TYPE_SIZE;
1231 1232
  /* Remove high part from the XFtype, leaving the low part as flonum.  */
  a -= (XFtype)v;
1233
  /* Convert that to fixed (but not to DWtype!) and add it in.
1234 1235 1236
     Sometimes A comes out negative.  This is significant, since
     A has more bits than a long int does.  */
  if (a < 0)
1237
    v -= (UWtype) (- a);
1238
  else
1239
    v += (UWtype) a;
1240 1241 1242 1243
  return v;
}
#endif

1244
#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1245
DWtype
1246
__fixxfdi (XFtype a)
1247 1248
{
  if (a < 0)
1249 1250
    return - __fixunsxfDI (-a);
  return __fixunsxfDI (a);
1251 1252 1253
}
#endif

1254
#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1255
UDWtype
1256
__fixunsdfDI (DFtype a)
Richard Stallman committed
1257
{
1258 1259 1260
  /* Get high part of result.  The division here will just moves the radix
     point and will not cause any rounding.  Then the conversion to integral
     type chops result as desired.  */
1261
  const UWtype hi = a / Wtype_MAXp1_F;
Richard Stallman committed
1262

1263 1264 1265
  /* Get low part of result.  Convert `hi' to floating type and scale it back,
     then subtract this from the number being converted.  This leaves the low
     part.  Convert that to integral type.  */
1266
  const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1267 1268

  /* Assemble result from the two parts.  */
1269
  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
Richard Stallman committed
1270 1271 1272
}
#endif

1273
#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1274
DWtype
1275
__fixdfdi (DFtype a)
Richard Stallman committed
1276 1277
{
  if (a < 0)
1278 1279
    return - __fixunsdfDI (-a);
  return __fixunsdfDI (a);
Richard Stallman committed
1280 1281 1282
}
#endif

1283
#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1284
UDWtype
1285
__fixunssfDI (SFtype a)
Richard Stallman committed
1286
{
1287
#if LIBGCC2_HAS_DF_MODE
1288
  /* Convert the SFtype to a DFtype, because that is surely not going
Richard Stallman committed
1289
     to lose any bits.  Some day someone else can write a faster version
1290
     that avoids converting to DFtype, and verify it really works right.  */
1291
  const DFtype dfa = a;
Richard Stallman committed
1292

1293 1294 1295
  /* Get high part of result.  The division here will just moves the radix
     point and will not cause any rounding.  Then the conversion to integral
     type chops result as desired.  */
1296
  const UWtype hi = dfa / Wtype_MAXp1_F;
Richard Stallman committed
1297

1298 1299 1300
  /* Get low part of result.  Convert `hi' to floating type and scale it back,
     then subtract this from the number being converted.  This leaves the low
     part.  Convert that to integral type.  */
1301
  const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1302 1303

  /* Assemble result from the two parts.  */
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
#elif FLT_MANT_DIG < W_TYPE_SIZE
  if (a < 1)
    return 0;
  if (a < Wtype_MAXp1_F)
    return (UWtype)a;
  if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
    {
      /* Since we know that there are fewer significant bits in the SFmode
	 quantity than in a word, we know that we can convert out all the
1314
	 significant bits in one step, and thus avoid losing bits.  */
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

      /* ??? This following loop essentially performs frexpf.  If we could
	 use the real libm function, or poke at the actual bits of the fp
	 format, it would be significantly faster.  */

      UWtype shift = 0, counter;
      SFtype msb;

      a /= Wtype_MAXp1_F;
      for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
	{
	  SFtype counterf = (UWtype)1 << counter;
	  if (a >= counterf)
	    {
	      shift |= counter;
	      a /= counterf;
	    }
	}

      /* Rescale into the range of one word, extract the bits of that
	 one word, and shift the result into position.  */
      a *= Wtype_MAXp1_F;
      counter = a;
      return (DWtype)counter << shift;
    }
  return -1;
#else
# error
#endif
Richard Stallman committed
1344 1345 1346
}
#endif

1347
#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1348
DWtype
1349
__fixsfdi (SFtype a)
Richard Stallman committed
1350 1351
{
  if (a < 0)
1352 1353
    return - __fixunssfDI (-a);
  return __fixunssfDI (a);
Richard Stallman committed
1354 1355 1356
}
#endif

1357
#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1358
XFtype
1359
__floatdixf (DWtype u)
1360
{
1361 1362 1363
#if W_TYPE_SIZE > XF_SIZE
# error
#endif
1364 1365 1366
  XFtype d = (Wtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
1367
  return d;
1368 1369 1370
}
#endif

1371 1372 1373 1374
#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatundixf (UDWtype u)
{
1375 1376 1377
#if W_TYPE_SIZE > XF_SIZE
# error
#endif
1378 1379 1380 1381 1382 1383 1384
  XFtype d = (UWtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
  return d;
}
#endif

1385
#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1386
TFtype
1387
__floatditf (DWtype u)
1388
{
1389 1390 1391
#if W_TYPE_SIZE > TF_SIZE
# error
#endif
1392 1393 1394
  TFtype d = (Wtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
1395
  return d;
1396 1397 1398
}
#endif

1399 1400 1401 1402
#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatunditf (UDWtype u)
{
1403 1404
#if W_TYPE_SIZE > TF_SIZE
# error
Richard Stallman committed
1405
#endif
1406
  TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1407 1408 1409 1410 1411 1412
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
  return d;
}
#endif

1413 1414
#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE)	\
     || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1415
#define DI_SIZE (W_TYPE_SIZE * 2)
1416 1417 1418
#define F_MODE_OK(SIZE) \
  (SIZE < DI_SIZE							\
   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1419
   && !AVOID_FP_TYPE_CONVERSION(SIZE))
1420 1421 1422 1423 1424 1425 1426 1427 1428
#if defined(L_floatdisf)
#define FUNC __floatdisf
#define FSTYPE SFtype
#define FSSIZE SF_SIZE
#else
#define FUNC __floatdidf
#define FSTYPE DFtype
#define FSSIZE DF_SIZE
#endif
Richard Stallman committed
1429

1430 1431
FSTYPE
FUNC (DWtype u)
Richard Stallman committed
1432
{
1433
#if FSSIZE >= W_TYPE_SIZE
1434
  /* When the word size is small, we never get any rounding error.  */
1435
  FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1436 1437 1438
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
  return f;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))

#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
# define FSIZE DF_SIZE
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
# define FSIZE XF_SIZE
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
# define FSIZE TF_SIZE
# define FTYPE TFtype
1452 1453 1454 1455
#else
# error
#endif

1456
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1457

1458
  /* Protect against double-rounding error.
1459 1460
     Represent any low-order bits, that might be truncated by a bit that
     won't be lost.  The bit can go in anywhere below the rounding position
1461 1462 1463 1464
     of the FSTYPE.  A fixed mask and bit position handles all usual
     configurations.  */
  if (! (- ((DWtype) 1 << FSIZE) < u
	 && u < ((DWtype) 1 << FSIZE)))
1465
    {
1466
      if ((UDWtype) u & (REP_BIT - 1))
1467
	{
1468 1469
	  u &= ~ (REP_BIT - 1);
	  u |= REP_BIT;
1470 1471
	}
    }
Richard Stallman committed
1472

1473 1474 1475
  /* Do the calculation in a wider type so that we don't lose any of
     the precision of the high word while multiplying it.  */
  FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1476 1477
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
1478
  return (FSTYPE) f;
1479
#else
1480 1481 1482 1483 1484 1485 1486
#if FSSIZE >= W_TYPE_SIZE - 2
# error
#endif
  /* Finally, the word size is larger than the number of bits in the
     required FSTYPE, and we've got no suitable wider type.  The only
     way to avoid double rounding is to special case the
     extraction.  */
1487 1488 1489

  /* If there are no high bits set, fall back to one conversion.  */
  if ((Wtype)u == u)
1490
    return (FSTYPE)(Wtype)u;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

  /* Otherwise, find the power of two.  */
  Wtype hi = u >> W_TYPE_SIZE;
  if (hi < 0)
    hi = -hi;

  UWtype count, shift;
  count_leading_zeros (count, hi);

  /* No leading bits means u == minimum.  */
  if (count == 0)
1502
    return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1503

1504
  shift = 1 + W_TYPE_SIZE - count;
1505 1506 1507 1508 1509

  /* Shift down the most significant bits.  */
  hi = u >> shift;

  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1510
  if ((UWtype)u << (W_TYPE_SIZE - shift))
1511 1512 1513
    hi |= 1;

  /* Convert the one word of data, and rescale.  */
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  FSTYPE f = hi, e;
  if (shift == W_TYPE_SIZE)
    e = Wtype_MAXp1_F;
  /* The following two cases could be merged if we knew that the target
     supported a native unsigned->float conversion.  More often, we only
     have a signed conversion, and have to add extra fixup code.  */
  else if (shift == W_TYPE_SIZE - 1)
    e = Wtype_MAXp1_F / 2;
  else
    e = (Wtype)1 << shift;
  return f * e;
1525
#endif
Richard Stallman committed
1526 1527 1528
}
#endif

1529 1530
#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE)	\
     || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1531
#define DI_SIZE (W_TYPE_SIZE * 2)
1532 1533 1534
#define F_MODE_OK(SIZE) \
  (SIZE < DI_SIZE							\
   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1535
   && !AVOID_FP_TYPE_CONVERSION(SIZE))
1536 1537 1538 1539 1540 1541 1542 1543 1544
#if defined(L_floatundisf)
#define FUNC __floatundisf
#define FSTYPE SFtype
#define FSSIZE SF_SIZE
#else
#define FUNC __floatundidf
#define FSTYPE DFtype
#define FSSIZE DF_SIZE
#endif
1545

1546 1547
FSTYPE
FUNC (UDWtype u)
1548
{
1549
#if FSSIZE >= W_TYPE_SIZE
1550
  /* When the word size is small, we never get any rounding error.  */
1551
  FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1552 1553 1554
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
  return f;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))

#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
# define FSIZE DF_SIZE
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
# define FSIZE XF_SIZE
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
# define FSIZE TF_SIZE
# define FTYPE TFtype
1568 1569 1570 1571
#else
# error
#endif

1572
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1573 1574 1575 1576

  /* Protect against double-rounding error.
     Represent any low-order bits, that might be truncated by a bit that
     won't be lost.  The bit can go in anywhere below the rounding position
1577 1578 1579
     of the FSTYPE.  A fixed mask and bit position handles all usual
     configurations.  */
  if (u >= ((UDWtype) 1 << FSIZE))
1580
    {
1581
      if ((UDWtype) u & (REP_BIT - 1))
1582
	{
1583 1584
	  u &= ~ (REP_BIT - 1);
	  u |= REP_BIT;
1585 1586 1587
	}
    }

1588 1589 1590
  /* Do the calculation in a wider type so that we don't lose any of
     the precision of the high word while multiplying it.  */
  FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1591 1592
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
1593
  return (FSTYPE) f;
1594
#else
1595 1596 1597 1598 1599 1600 1601
#if FSSIZE == W_TYPE_SIZE - 1
# error
#endif
  /* Finally, the word size is larger than the number of bits in the
     required FSTYPE, and we've got no suitable wider type.  The only
     way to avoid double rounding is to special case the
     extraction.  */
1602 1603 1604

  /* If there are no high bits set, fall back to one conversion.  */
  if ((UWtype)u == u)
1605
    return (FSTYPE)(UWtype)u;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

  /* Otherwise, find the power of two.  */
  UWtype hi = u >> W_TYPE_SIZE;

  UWtype count, shift;
  count_leading_zeros (count, hi);

  shift = W_TYPE_SIZE - count;

  /* Shift down the most significant bits.  */
  hi = u >> shift;

  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1619
  if ((UWtype)u << (W_TYPE_SIZE - shift))
1620 1621 1622
    hi |= 1;

  /* Convert the one word of data, and rescale.  */
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
  FSTYPE f = hi, e;
  if (shift == W_TYPE_SIZE)
    e = Wtype_MAXp1_F;
  /* The following two cases could be merged if we knew that the target
     supported a native unsigned->float conversion.  More often, we only
     have a signed conversion, and have to add extra fixup code.  */
  else if (shift == W_TYPE_SIZE - 1)
    e = Wtype_MAXp1_F / 2;
  else
    e = (Wtype)1 << shift;
  return f * e;
1634 1635 1636 1637
#endif
}
#endif

1638
#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1639 1640 1641 1642 1643 1644 1645 1646
/* Reenable the normal types, in case limits.h needs them.  */
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
1647 1648
#undef MIN
#undef MAX
1649
#include <limits.h>
1650

1651
UWtype
1652
__fixunsxfSI (XFtype a)
1653
{
1654 1655
  if (a >= - (DFtype) Wtype_MIN)
    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1656
  return (Wtype) a;
1657 1658 1659
}
#endif

1660
#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1661 1662 1663 1664 1665 1666 1667 1668
/* Reenable the normal types, in case limits.h needs them.  */
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
1669 1670
#undef MIN
#undef MAX
1671
#include <limits.h>
Richard Stallman committed
1672

1673
UWtype
1674
__fixunsdfSI (DFtype a)
Richard Stallman committed
1675
{
1676 1677
  if (a >= - (DFtype) Wtype_MIN)
    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1678
  return (Wtype) a;
Richard Stallman committed
1679 1680 1681
}
#endif

1682
#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1683 1684 1685 1686 1687 1688 1689 1690
/* Reenable the normal types, in case limits.h needs them.  */
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
1691 1692
#undef MIN
#undef MAX
1693
#include <limits.h>
Richard Stallman committed
1694

1695
UWtype
1696
__fixunssfSI (SFtype a)
Richard Stallman committed
1697
{
1698 1699
  if (a >= - (SFtype) Wtype_MIN)
    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1700
  return (Wtype) a;
Richard Stallman committed
1701 1702 1703
}
#endif

1704 1705 1706
/* Integer power helper used from __builtin_powi for non-constant
   exponents.  */

1707
#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1708 1709 1710
    || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
    || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
    || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
# if defined(L_powisf2)
#  define TYPE SFtype
#  define NAME __powisf2
# elif defined(L_powidf2)
#  define TYPE DFtype
#  define NAME __powidf2
# elif defined(L_powixf2)
#  define TYPE XFtype
#  define NAME __powixf2
# elif defined(L_powitf2)
#  define TYPE TFtype
#  define NAME __powitf2
# endif

1725 1726
#undef int
#undef unsigned
1727
TYPE
1728
NAME (TYPE x, int m)
1729
{
1730
  unsigned int n = m < 0 ? -m : m;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
  TYPE y = n % 2 ? x : 1;
  while (n >>= 1)
    {
      x = x * x;
      if (n % 2)
	y = y * x;
    }
  return m < 0 ? 1/y : y;
}

#endif

1743
#if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1744 1745 1746
    || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
    || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
    || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

#undef float
#undef double
#undef long

#if defined(L_mulsc3) || defined(L_divsc3)
# define MTYPE	SFtype
# define CTYPE	SCtype
# define MODE	sc
# define CEXT	f
# define NOTRUNC __FLT_EVAL_METHOD__ == 0
#elif defined(L_muldc3) || defined(L_divdc3)
# define MTYPE	DFtype
# define CTYPE	DCtype
# define MODE	dc
# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
#  define CEXT	l
#  define NOTRUNC 1
# else
#  define CEXT
#  define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
# endif
#elif defined(L_mulxc3) || defined(L_divxc3)
# define MTYPE	XFtype
# define CTYPE	XCtype
# define MODE	xc
# define CEXT	l
# define NOTRUNC 1
#elif defined(L_multc3) || defined(L_divtc3)
# define MTYPE	TFtype
# define CTYPE	TCtype
# define MODE	tc
1779 1780 1781 1782 1783
# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
#  define CEXT l
# else
#  define CEXT LIBGCC2_TF_CEXT
# endif
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
# define NOTRUNC 1
#else
# error
#endif

#define CONCAT3(A,B,C)	_CONCAT3(A,B,C)
#define _CONCAT3(A,B,C)	A##B##C

#define CONCAT2(A,B)	_CONCAT2(A,B)
#define _CONCAT2(A,B)	A##B

/* All of these would be present in a full C99 implementation of <math.h>
   and <complex.h>.  Our problem is that only a few systems have such full
1797
   implementations.  Further, libgcc_s.so isn't currently linked against
1798 1799 1800 1801 1802 1803 1804
   libm.so, and even for systems that do provide full C99, the extra overhead
   of all programs using libgcc having to link against libm.  So avoid it.  */

#define isnan(x)	__builtin_expect ((x) != (x), 0)
#define isfinite(x)	__builtin_expect (!isnan((x) - (x)), 1)
#define isinf(x)	__builtin_expect (!isnan(x) & !isfinite(x), 0)

1805
#define INFINITY	CONCAT2(__builtin_huge_val, CEXT) ()
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
#define I		1i

/* Helpers to make the following code slightly less gross.  */
#define COPYSIGN	CONCAT2(__builtin_copysign, CEXT)
#define FABS		CONCAT2(__builtin_fabs, CEXT)

/* Verify that MTYPE matches up with CEXT.  */
extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];

/* Ensure that we've lost any extra precision.  */
#if NOTRUNC
# define TRUNC(x)
#else
# define TRUNC(x)	__asm__ ("" : "=m"(x) : "m"(x))
#endif

#if defined(L_mulsc3) || defined(L_muldc3) \
    || defined(L_mulxc3) || defined(L_multc3)

CTYPE
CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
  MTYPE ac, bd, ad, bc, x, y;
1829
  CTYPE res;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

  ac = a * c;
  bd = b * d;
  ad = a * d;
  bc = b * c;

  TRUNC (ac);
  TRUNC (bd);
  TRUNC (ad);
  TRUNC (bc);

  x = ac - bd;
  y = ad + bc;

  if (isnan (x) && isnan (y))
    {
      /* Recover infinities that computed as NaN + iNaN.  */
      _Bool recalc = 0;
      if (isinf (a) || isinf (b))
	{
	  /* z is infinite.  "Box" the infinity and change NaNs in
	     the other factor to 0.  */
	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
	  if (isnan (c)) c = COPYSIGN (0, c);
	  if (isnan (d)) d = COPYSIGN (0, d);
          recalc = 1;
	}
     if (isinf (c) || isinf (d))
	{
	  /* w is infinite.  "Box" the infinity and change NaNs in
	     the other factor to 0.  */
	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
	  if (isnan (a)) a = COPYSIGN (0, a);
	  if (isnan (b)) b = COPYSIGN (0, b);
	  recalc = 1;
	}
     if (!recalc
	  && (isinf (ac) || isinf (bd)
	      || isinf (ad) || isinf (bc)))
	{
	  /* Recover infinities from overflow by changing NaNs to 0.  */
	  if (isnan (a)) a = COPYSIGN (0, a);
	  if (isnan (b)) b = COPYSIGN (0, b);
	  if (isnan (c)) c = COPYSIGN (0, c);
	  if (isnan (d)) d = COPYSIGN (0, d);
	  recalc = 1;
	}
      if (recalc)
	{
	  x = INFINITY * (a * c - b * d);
	  y = INFINITY * (a * d + b * c);
	}
    }

1886 1887 1888
  __real__ res = x;
  __imag__ res = y;
  return res;
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
}
#endif /* complex multiply */

#if defined(L_divsc3) || defined(L_divdc3) \
    || defined(L_divxc3) || defined(L_divtc3)

CTYPE
CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
  MTYPE denom, ratio, x, y;
1899
  CTYPE res;
1900

1901
  /* ??? We can get better behavior from logarithmic scaling instead of
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
     the division.  But that would mean starting to link libgcc against
     libm.  We could implement something akin to ldexp/frexp as gcc builtins
     fairly easily...  */
  if (FABS (c) < FABS (d))
    {
      ratio = c / d;
      denom = (c * ratio) + d;
      x = ((a * ratio) + b) / denom;
      y = ((b * ratio) - a) / denom;
    }
  else
    {
      ratio = d / c;
      denom = (d * ratio) + c;
      x = ((b * ratio) + a) / denom;
      y = (b - (a * ratio)) / denom;
    }

  /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1921
     are nonzero/zero, infinite/finite, and finite/infinite.  */
1922 1923
  if (isnan (x) && isnan (y))
    {
1924
      if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	{
	  x = COPYSIGN (INFINITY, c) * a;
	  y = COPYSIGN (INFINITY, c) * b;
	}
      else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
	{
	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
	  x = INFINITY * (a * c + b * d);
	  y = INFINITY * (b * c - a * d);
	}
      else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
	{
	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
	  x = 0.0 * (a * c + b * d);
	  y = 0.0 * (b * c - a * d);
	}
    }

1945 1946 1947
  __real__ res = x;
  __imag__ res = y;
  return res;
1948 1949 1950 1951 1952
}
#endif /* complex divide */

#endif /* all complex float routines */

1953 1954 1955 1956 1957 1958 1959 1960
/* From here on down, the routines use normal data types.  */

#define SItype bogus_type
#define USItype bogus_type
#define DItype bogus_type
#define UDItype bogus_type
#define SFtype bogus_type
#define DFtype bogus_type
1961 1962 1963 1964 1965 1966
#undef Wtype
#undef UWtype
#undef HWtype
#undef UHWtype
#undef DWtype
#undef UDWtype
1967 1968 1969 1970 1971 1972 1973 1974

#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
1975 1976 1977 1978

#ifdef L__gcc_bcmp

/* Like bcmp except the sign is meaningful.
Richard Kenner committed
1979
   Result is negative if S1 is less than S2,
1980 1981 1982
   positive if S1 is greater, 0 if S1 and S2 are equal.  */

int
Kaveh R. Ghazi committed
1983
__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1984 1985 1986
{
  while (size > 0)
    {
1987
      const unsigned char c1 = *s1++, c2 = *s2++;
1988 1989 1990 1991 1992 1993
      if (c1 != c2)
	return c1 - c2;
      size--;
    }
  return 0;
}
1994

1995
#endif
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

/* __eprintf used to be used by GCC's private version of <assert.h>.
   We no longer provide that header, but this routine remains in libgcc.a
   for binary backward compatibility.  Note that it is not included in
   the shared version of libgcc.  */
#ifdef L_eprintf
#ifndef inhibit_libc

#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch.  */
#include <stdio.h>

void
__eprintf (const char *string, const char *expression,
	   unsigned int line, const char *filename)
{
  fprintf (stderr, string, expression, line, filename);
  fflush (stderr);
  abort ();
}

#endif
#endif
Richard Stallman committed
2018 2019 2020 2021 2022 2023


#ifdef L_clear_cache
/* Clear part of an instruction cache.  */

void
Michael Meissner committed
2024 2025
__clear_cache (char *beg __attribute__((__unused__)),
	       char *end __attribute__((__unused__)))
Richard Stallman committed
2026
{
2027
#ifdef CLEAR_INSN_CACHE
2028 2029
  CLEAR_INSN_CACHE (beg, end);
#endif /* CLEAR_INSN_CACHE */
Richard Stallman committed
2030 2031 2032 2033
}

#endif /* L_clear_cache */

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
#ifdef L_enable_execute_stack
/* Attempt to turn on execute permission for the stack.  */

#ifdef ENABLE_EXECUTE_STACK
  ENABLE_EXECUTE_STACK
#else
void
__enable_execute_stack (void *addr __attribute__((__unused__)))
{}
#endif /* ENABLE_EXECUTE_STACK */

#endif /* L_enable_execute_stack */

Richard Stallman committed
2047 2048 2049 2050
#ifdef L_trampoline

/* Jump to a trampoline, loading the static chain address.  */

2051
#if defined(WINNT) && ! defined(__CYGWIN__)
2052 2053
int getpagesize (void);
int mprotect (char *,int, int);
2054

2055
int
2056
getpagesize (void)
2057 2058 2059 2060 2061 2062 2063 2064
{
#ifdef _ALPHA_
  return 8192;
#else
  return 4096;
#endif
}

2065 2066
int
mprotect (char *addr, int len, int prot)
2067
{
2068
  DWORD np, op;
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
  if (prot == 7)
    np = 0x40;
  else if (prot == 5)
    np = 0x20;
  else if (prot == 4)
    np = 0x10;
  else if (prot == 3)
    np = 0x04;
  else if (prot == 1)
    np = 0x02;
  else if (prot == 0)
    np = 0x01;
2082 2083
  else
    return -1;
2084 2085 2086 2087 2088 2089 2090

  if (VirtualProtect (addr, len, np, &op))
    return 0;
  else
    return -1;
}

2091
#endif /* WINNT && ! __CYGWIN__ */
2092

2093 2094
#ifdef TRANSFER_FROM_TRAMPOLINE
TRANSFER_FROM_TRAMPOLINE
Richard Stallman committed
2095 2096 2097
#endif
#endif /* L_trampoline */

2098
#ifndef __CYGWIN__
Richard Stallman committed
2099 2100 2101
#ifdef L__main

#include "gbl-ctors.h"
2102

2103 2104 2105
/* Some systems use __main in a way incompatible with its use in gcc, in these
   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
   give the same symbol without quotes for an alternative entry point.  You
Mike Stump committed
2106
   must define both, or neither.  */
2107 2108 2109 2110
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#define SYMBOL__MAIN __main
#endif
Richard Stallman committed
2111

2112
#if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
Jason Merrill committed
2113 2114 2115 2116 2117
#undef HAS_INIT_SECTION
#define HAS_INIT_SECTION
#endif

#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2118 2119 2120 2121

/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
   code to run constructors.  In that case, we need to handle EH here, too.  */

2122
#ifdef EH_FRAME_SECTION_NAME
2123
#include "unwind-dw2-fde.h"
2124 2125 2126
extern unsigned char __EH_FRAME_BEGIN__[];
#endif

Richard Stallman committed
2127 2128 2129
/* Run all the global destructors on exit from the program.  */

void
2130
__do_global_dtors (void)
Richard Stallman committed
2131
{
2132 2133 2134
#ifdef DO_GLOBAL_DTORS_BODY
  DO_GLOBAL_DTORS_BODY;
#else
2135 2136 2137 2138 2139 2140
  static func_ptr *p = __DTOR_LIST__ + 1;
  while (*p)
    {
      p++;
      (*(p-1)) ();
    }
2141
#endif
2142
#if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2143 2144 2145 2146 2147 2148 2149 2150
  {
    static int completed = 0;
    if (! completed)
      {
	completed = 1;
	__deregister_frame_info (__EH_FRAME_BEGIN__);
      }
  }
2151
#endif
Richard Stallman committed
2152
}
Jason Merrill committed
2153
#endif
Richard Stallman committed
2154

Jason Merrill committed
2155
#ifndef HAS_INIT_SECTION
Richard Stallman committed
2156 2157 2158
/* Run all the global constructors on entry to the program.  */

void
2159
__do_global_ctors (void)
Richard Stallman committed
2160
{
2161
#ifdef EH_FRAME_SECTION_NAME
2162 2163 2164 2165 2166
  {
    static struct object object;
    __register_frame_info (__EH_FRAME_BEGIN__, &object);
  }
#endif
Richard Stallman committed
2167
  DO_GLOBAL_CTORS_BODY;
2168
  atexit (__do_global_dtors);
Richard Stallman committed
2169
}
Jason Merrill committed
2170
#endif /* no HAS_INIT_SECTION */
Richard Stallman committed
2171

Jason Merrill committed
2172
#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
Richard Stallman committed
2173 2174 2175 2176 2177 2178 2179 2180
/* Subroutine called automatically by `main'.
   Compiling a global function named `main'
   produces an automatic call to this function at the beginning.

   For many systems, this routine calls __do_global_ctors.
   For systems which support a .init section we use the .init section
   to run __do_global_ctors, so we need not do anything here.  */

2181
extern void SYMBOL__MAIN (void);
Richard Stallman committed
2182
void
2183
SYMBOL__MAIN (void)
Richard Stallman committed
2184 2185
{
  /* Support recursive calls to `main': run initializers just once.  */
2186
  static int initialized;
Richard Stallman committed
2187 2188 2189 2190 2191 2192
  if (! initialized)
    {
      initialized = 1;
      __do_global_ctors ();
    }
}
Jason Merrill committed
2193
#endif /* no HAS_INIT_SECTION or INVOKE__main */
Richard Stallman committed
2194 2195

#endif /* L__main */
2196
#endif /* __CYGWIN__ */
Richard Stallman committed
2197

2198
#ifdef L_ctors
Richard Stallman committed
2199 2200 2201 2202

#include "gbl-ctors.h"

/* Provide default definitions for the lists of constructors and
2203 2204 2205
   destructors, so that we don't get linker errors.  These symbols are
   intentionally bss symbols, so that gld and/or collect will provide
   the right values.  */
Richard Stallman committed
2206 2207

/* We declare the lists here with two elements each,
2208 2209 2210 2211 2212 2213 2214
   so that they are valid empty lists if no other definition is loaded.

   If we are using the old "set" extensions to have the gnu linker
   collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
   must be in the bss/common section.

   Long term no port should use those extensions.  But many still do.  */
Tom Wood committed
2215
#if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2216
#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2217 2218
func_ptr __CTOR_LIST__[2] = {0, 0};
func_ptr __DTOR_LIST__[2] = {0, 0};
2219 2220 2221 2222
#else
func_ptr __CTOR_LIST__[2];
func_ptr __DTOR_LIST__[2];
#endif
Tom Wood committed
2223
#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2224
#endif /* L_ctors */
2225
#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */