vector-builder.h 14.5 KB
Newer Older
1
/* A class for building vector constant patterns.
2
   Copyright (C) 2017-2018 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_VECTOR_BUILDER_H
#define GCC_VECTOR_BUILDER_H

/* This class is a wrapper around auto_vec<T> for building vectors of T.
   It aims to encode each vector as npatterns interleaved patterns,
   where each pattern represents a sequence:

     { BASE0, BASE1, BASE1 + STEP, BASE1 + STEP*2, BASE1 + STEP*3, ... }

   The first three elements in each pattern provide enough information
   to derive the other elements.  If all patterns have a STEP of zero,
   we only need to encode the first two elements in each pattern.
   If BASE1 is also equal to BASE0 for all patterns, we only need to
   encode the first element in each pattern.  The number of encoded
   elements per pattern is given by nelts_per_pattern.

   The class can be used in two ways:

   1. It can be used to build a full image of the vector, which is then
      canonicalized by finalize ().  In this case npatterns is initially
      the number of elements in the vector and nelts_per_pattern is
      initially 1.

   2. It can be used to build a vector that already has a known encoding.
      This is preferred since it is more efficient and copes with
      variable-length vectors.  finalize () then canonicalizes the encoding
      to a simpler form if possible.

   The derived class Derived provides this functionality for specific Ts.
   Derived needs to provide the following interface:

      bool equal_p (T elt1, T elt2) const;

	  Return true if elements ELT1 and ELT2 are equal.

      bool allow_steps_p () const;

	  Return true if a stepped representation is OK.  We don't allow
	  linear series for anything other than integers, to avoid problems
	  with rounding.

      bool integral_p (T elt) const;

	  Return true if element ELT can be interpreted as an integer.

      StepType step (T elt1, T elt2) const;

	  Return the value of element ELT2 minus the value of element ELT1,
	  given integral_p (ELT1) && integral_p (ELT2).  There is no fixed
	  choice of StepType.

71 72 73 74
      T apply_step (T base, unsigned int factor, StepType step) const;

	  Return a vector element with the value BASE + FACTOR * STEP.

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
      bool can_elide_p (T elt) const;

	  Return true if we can drop element ELT, even if the retained
	  elements are different.  This is provided for TREE_OVERFLOW
	  handling.

      void note_representative (T *elt1_ptr, T elt2);

	  Record that ELT2 is being elided, given that ELT1_PTR points to
	  the last encoded element for the containing pattern.  This is
	  again provided for TREE_OVERFLOW handling.  */

template<typename T, typename Derived>
class vector_builder : public auto_vec<T, 32>
{
public:
  vector_builder ();

93
  poly_uint64 full_nelts () const { return m_full_nelts; }
94 95 96 97
  unsigned int npatterns () const { return m_npatterns; }
  unsigned int nelts_per_pattern () const { return m_nelts_per_pattern; }
  unsigned int encoded_nelts () const;
  bool encoded_full_vector_p () const;
98
  T elt (unsigned int) const;
99

100 101 102
  bool operator == (const Derived &) const;
  bool operator != (const Derived &x) const { return !operator == (x); }

103 104 105
  void finalize ();

protected:
106
  void new_vector (poly_uint64, unsigned int, unsigned int);
107 108 109 110 111 112 113 114 115 116 117
  void reshape (unsigned int, unsigned int);
  bool repeating_sequence_p (unsigned int, unsigned int, unsigned int);
  bool stepped_sequence_p (unsigned int, unsigned int, unsigned int);
  bool try_npatterns (unsigned int);

private:
  vector_builder (const vector_builder &);
  vector_builder &operator= (const vector_builder &);
  Derived *derived () { return static_cast<Derived *> (this); }
  const Derived *derived () const;

118
  poly_uint64 m_full_nelts;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  unsigned int m_npatterns;
  unsigned int m_nelts_per_pattern;
};

template<typename T, typename Derived>
inline const Derived *
vector_builder<T, Derived>::derived () const
{
  return static_cast<const Derived *> (this);
}

template<typename T, typename Derived>
inline
vector_builder<T, Derived>::vector_builder ()
  : m_full_nelts (0),
    m_npatterns (0),
    m_nelts_per_pattern (0)
{}

/* Return the number of elements that are explicitly encoded.  The vec
   starts with these explicitly-encoded elements and may contain additional
   elided elements.  */

template<typename T, typename Derived>
inline unsigned int
vector_builder<T, Derived>::encoded_nelts () const
{
  return m_npatterns * m_nelts_per_pattern;
}

/* Return true if every element of the vector is explicitly encoded.  */

template<typename T, typename Derived>
inline bool
vector_builder<T, Derived>::encoded_full_vector_p () const
{
155
  return known_eq (m_npatterns * m_nelts_per_pattern, m_full_nelts);
156 157 158 159 160 161 162
}

/* Start building a vector that has FULL_NELTS elements.  Initially
   encode it using NPATTERNS patterns with NELTS_PER_PATTERN each.  */

template<typename T, typename Derived>
void
163
vector_builder<T, Derived>::new_vector (poly_uint64 full_nelts,
164 165 166 167 168 169 170 171 172 173
					unsigned int npatterns,
					unsigned int nelts_per_pattern)
{
  m_full_nelts = full_nelts;
  m_npatterns = npatterns;
  m_nelts_per_pattern = nelts_per_pattern;
  this->reserve (encoded_nelts ());
  this->truncate (0);
}

174 175 176 177 178 179 180
/* Return true if this vector and OTHER have the same elements and
   are encoded in the same way.  */

template<typename T, typename Derived>
bool
vector_builder<T, Derived>::operator == (const Derived &other) const
{
181
  if (maybe_ne (m_full_nelts, other.m_full_nelts)
182 183 184 185 186 187 188 189 190 191 192 193
      || m_npatterns != other.m_npatterns
      || m_nelts_per_pattern != other.m_nelts_per_pattern)
    return false;

  unsigned int nelts = encoded_nelts ();
  for (unsigned int i = 0; i < nelts; ++i)
    if (!derived ()->equal_p ((*this)[i], other[i]))
      return false;

  return true;
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* Return the value of vector element I, which might or might not be
   encoded explicitly.  */

template<typename T, typename Derived>
T
vector_builder<T, Derived>::elt (unsigned int i) const
{
  /* This only makes sense if the encoding has been fully populated.  */
  gcc_checking_assert (encoded_nelts () <= this->length ());

  /* First handle elements that are already present in the underlying
     vector, regardless of whether they're part of the encoding or not.  */
  if (i < this->length ())
    return (*this)[i];

  /* Identify the pattern that contains element I and work out the index of
     the last encoded element for that pattern.  */
  unsigned int pattern = i % m_npatterns;
  unsigned int count = i / m_npatterns;
  unsigned int final_i = encoded_nelts () - m_npatterns + pattern;
  T final = (*this)[final_i];

  /* If there are no steps, the final encoded value is the right one.  */
  if (m_nelts_per_pattern <= 2)
    return final;

  /* Otherwise work out the value from the last two encoded elements.  */
  T prev = (*this)[final_i - m_npatterns];
  return derived ()->apply_step (final, count - 2,
				 derived ()->step (prev, final));
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/* Change the encoding to NPATTERNS patterns of NELTS_PER_PATTERN each,
   but without changing the underlying vector.  */

template<typename T, typename Derived>
void
vector_builder<T, Derived>::reshape (unsigned int npatterns,
				     unsigned int nelts_per_pattern)
{
  unsigned int old_encoded_nelts = encoded_nelts ();
  unsigned int new_encoded_nelts = npatterns * nelts_per_pattern;
  gcc_checking_assert (new_encoded_nelts <= old_encoded_nelts);
  unsigned int next = new_encoded_nelts - npatterns;
  for (unsigned int i = new_encoded_nelts; i < old_encoded_nelts; ++i)
    {
      derived ()->note_representative (&(*this)[next], (*this)[i]);
      next += 1;
      if (next == new_encoded_nelts)
	next -= npatterns;
    }
  m_npatterns = npatterns;
  m_nelts_per_pattern = nelts_per_pattern;
}

/* Return true if elements [START, END) contain a repeating sequence of
   STEP elements.  */

template<typename T, typename Derived>
bool
vector_builder<T, Derived>::repeating_sequence_p (unsigned int start,
						  unsigned int end,
						  unsigned int step)
{
  for (unsigned int i = start; i < end - step; ++i)
    if (!derived ()->equal_p ((*this)[i], (*this)[i + step]))
      return false;
  return true;
}

/* Return true if elements [START, END) contain STEP interleaved linear
   series.  */

template<typename T, typename Derived>
bool
vector_builder<T, Derived>::stepped_sequence_p (unsigned int start,
						unsigned int end,
						unsigned int step)
{
  if (!derived ()->allow_steps_p ())
    return false;

  for (unsigned int i = start + step * 2; i < end; ++i)
    {
      T elt1 = (*this)[i - step * 2];
      T elt2 = (*this)[i - step];
      T elt3 = (*this)[i];

      if (!derived ()->integral_p (elt1)
	  || !derived ()->integral_p (elt2)
	  || !derived ()->integral_p (elt3))
	return false;

287 288
      if (maybe_ne (derived ()->step (elt1, elt2),
		    derived ()->step (elt2, elt3)))
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	return false;

      if (!derived ()->can_elide_p (elt3))
	return false;
    }
  return true;
}

/* Try to change the number of encoded patterns to NPATTERNS, returning
   true on success.  */

template<typename T, typename Derived>
bool
vector_builder<T, Derived>::try_npatterns (unsigned int npatterns)
{
  if (m_nelts_per_pattern == 1)
    {
      /* See whether NPATTERNS is valid with the current 1-element-per-pattern
	 encoding.  */
      if (repeating_sequence_p (0, encoded_nelts (), npatterns))
	{
	  reshape (npatterns, 1);
	  return true;
	}

      /* We can only increase the number of elements per pattern if all
	 elements are still encoded explicitly.  */
      if (!encoded_full_vector_p ())
	return false;
    }

  if (m_nelts_per_pattern <= 2)
    {
      /* See whether NPATTERNS is valid with a 2-element-per-pattern
	 encoding.  */
      if (repeating_sequence_p (npatterns, encoded_nelts (), npatterns))
	{
	  reshape (npatterns, 2);
	  return true;
	}

      /* We can only increase the number of elements per pattern if all
	 elements are still encoded explicitly.  */
      if (!encoded_full_vector_p ())
	return false;
    }

  if (m_nelts_per_pattern <= 3)
    {
      /* See whether we have NPATTERNS interleaved linear series,
	 giving a 3-element-per-pattern encoding.  */
      if (stepped_sequence_p (npatterns, encoded_nelts (), npatterns))
	{
	  reshape (npatterns, 3);
	  return true;
	}
      return false;
    }

  gcc_unreachable ();
}

/* Replace the current encoding with the canonical form.  */

template<typename T, typename Derived>
void
vector_builder<T, Derived>::finalize ()
{
  /* The encoding requires the same number of elements to come from each
     pattern.  */
359
  gcc_assert (multiple_p (m_full_nelts, m_npatterns));
360 361 362 363

  /* Allow the caller to build more elements than necessary.  For example,
     it's often convenient to build a stepped vector from the natural
     encoding of three elements even if the vector itself only has two.  */
364 365 366
  unsigned HOST_WIDE_INT const_full_nelts;
  if (m_full_nelts.is_constant (&const_full_nelts)
      && const_full_nelts <= encoded_nelts ())
367
    {
368
      m_npatterns = const_full_nelts;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
      m_nelts_per_pattern = 1;
    }

  /* Try to whittle down the number of elements per pattern.  That is:

     1. If we have stepped patterns whose steps are all 0, reduce the
        number of elements per pattern from 3 to 2.

     2. If we have background fill values that are the same as the
        foreground values, reduce the number of elements per pattern
        from 2 to 1.  */
  while (m_nelts_per_pattern > 1
	 && repeating_sequence_p (encoded_nelts () - m_npatterns * 2,
				  encoded_nelts (), m_npatterns))
    /* The last two sequences of M_NPATTERNS elements are equal,
       so remove the last one.  */
    reshape (m_npatterns, m_nelts_per_pattern - 1);

  if (pow2p_hwi (m_npatterns))
    {
      /* Try to halve the number of patterns while doing so gives a
	 valid pattern.  This approach is linear in the number of
	 elements, whereas searcing from 1 up would be O(n*log(n)).

	 Each halving step tries to keep the number of elements per pattern
	 the same.  If that isn't possible, and if all elements are still
	 explicitly encoded, the halving step can instead increase the number
	 of elements per pattern.

	 E.g. for:

	     { 0, 2, 3, 4, 5, 6, 7, 8 }  npatterns == 8  full_nelts == 8

	 we first realize that the second half of the sequence is not
	 equal to the first, so we cannot maintain 1 element per pattern
	 for npatterns == 4.  Instead we halve the number of patterns
	 and double the number of elements per pattern, treating this
	 as a "foreground" { 0, 2, 3, 4 } against a "background" of
	 { 5, 6, 7, 8 | 5, 6, 7, 8 ... }:

	     { 0, 2, 3, 4 | 5, 6, 7, 8 }  npatterns == 4

	 Next we realize that this is *not* a foreround of { 0, 2 }
	 against a background of { 3, 4 | 3, 4 ... }, so the only
	 remaining option for reducing the number of patterns is
	 to use a foreground of { 0, 2 } against a stepped background
	 of { 1, 2 | 3, 4 | 5, 6 ... }.  This is valid because we still
	 haven't elided any elements:

	     { 0, 2 | 3, 4 | 5, 6 }  npatterns == 2

	 This in turn can be reduced to a foreground of { 0 } against a
	 stepped background of { 1 | 2 | 3 ... }:

	     { 0 | 2 | 3 }  npatterns == 1

	 This last step would not have been possible for:

	     { 0, 0 | 3, 4 | 5, 6 }  npatterns == 2.  */
      while ((m_npatterns & 1) == 0 && try_npatterns (m_npatterns / 2))
	continue;

      /* Builders of arbitrary fixed-length vectors can use:

	     new_vector (x, x, 1)

	 so that every element is specified explicitly.  Handle cases
	 that are actually wrapping series, like { 0, 1, 2, 3, 0, 1, 2, 3 }
	 would be for 2-bit elements.  We'll have treated them as
	 duplicates in the loop above.  */
      if (m_nelts_per_pattern == 1
440 441
	  && m_full_nelts.is_constant (&const_full_nelts)
	  && this->length () >= const_full_nelts
442
	  && (m_npatterns & 3) == 0
443
	  && stepped_sequence_p (m_npatterns / 4, const_full_nelts,
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
				 m_npatterns / 4))
	{
	  reshape (m_npatterns / 4, 3);
	  while ((m_npatterns & 1) == 0 && try_npatterns (m_npatterns / 2))
	    continue;
	}
    }
  else
    /* For the non-power-of-2 case, do a simple search up from 1.  */
    for (unsigned int i = 1; i <= m_npatterns / 2; ++i)
      if (m_npatterns % i == 0 && try_npatterns (i))
	break;
}

#endif