ordered.c 22.7 KB
Newer Older
1
/* Copyright (C) 2005-2019 Free Software Foundation, Inc.
Diego Novillo committed
2 3
   Contributed by Richard Henderson <rth@redhat.com>.

4 5
   This file is part of the GNU Offloading and Multi Processing Library
   (libgomp).
Diego Novillo committed
6 7

   Libgomp is free software; you can redistribute it and/or modify it
8 9 10
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
Diego Novillo committed
11 12 13

   Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14
   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
Diego Novillo committed
15 16
   more details.

17 18 19 20 21 22 23 24
   Under Section 7 of GPL version 3, you are granted additional
   permissions described in the GCC Runtime Library Exception, version
   3.1, as published by the Free Software Foundation.

   You should have received a copy of the GNU General Public License and
   a copy of the GCC Runtime Library Exception along with this program;
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
   <http://www.gnu.org/licenses/>.  */
Diego Novillo committed
25 26 27 28

/* This file handles the ORDERED construct.  */

#include "libgomp.h"
29 30 31
#include <stdarg.h>
#include <string.h>
#include "doacross.h"
Diego Novillo committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213


/* This function is called when first allocating an iteration block.  That
   is, the thread is not currently on the queue.  The work-share lock must
   be held on entry.  */

void
gomp_ordered_first (void)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;
  unsigned index;

  /* Work share constructs can be orphaned.  */
  if (team == NULL || team->nthreads == 1)
    return;

  index = ws->ordered_cur + ws->ordered_num_used;
  if (index >= team->nthreads)
    index -= team->nthreads;
  ws->ordered_team_ids[index] = thr->ts.team_id;

  /* If this is the first and only thread in the queue, then there is
     no one to release us when we get to our ordered section.  Post to
     our own release queue now so that we won't block later.  */
  if (ws->ordered_num_used++ == 0)
    gomp_sem_post (team->ordered_release[thr->ts.team_id]);
}

/* This function is called when completing the last iteration block.  That
   is, there are no more iterations to perform and so the thread should be
   removed from the queue entirely.  Because of the way ORDERED blocks are
   managed, it follows that we currently own access to the ORDERED block,
   and should now pass it on to the next thread.  The work-share lock must
   be held on entry.  */

void
gomp_ordered_last (void)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;
  unsigned next_id;

  /* Work share constructs can be orphaned.  */
  if (team == NULL || team->nthreads == 1)
    return;

  /* We're no longer the owner.  */
  ws->ordered_owner = -1;

  /* If we're not the last thread in the queue, then wake the next.  */
  if (--ws->ordered_num_used > 0)
    {
      unsigned next = ws->ordered_cur + 1;
      if (next == team->nthreads)
	next = 0;
      ws->ordered_cur = next;

      next_id = ws->ordered_team_ids[next];
      gomp_sem_post (team->ordered_release[next_id]);
    }
}


/* This function is called when allocating a subsequent allocation block.
   That is, we're done with the current iteration block and we're allocating
   another.  This is the logical combination of a call to gomp_ordered_last
   followed by a call to gomp_ordered_first.  The work-share lock must be
   held on entry. */

void
gomp_ordered_next (void)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;
  unsigned index, next_id;

  /* Work share constructs can be orphaned.  */
  if (team == NULL || team->nthreads == 1)
    return;

  /* We're no longer the owner.  */
  ws->ordered_owner = -1;

  /* If there's only one thread in the queue, that must be us.  */
  if (ws->ordered_num_used == 1)
    {
      /* We have a similar situation as in gomp_ordered_first
	 where we need to post to our own release semaphore.  */
      gomp_sem_post (team->ordered_release[thr->ts.team_id]);
      return;
    }

  /* If the queue is entirely full, then we move ourself to the end of 
     the queue merely by incrementing ordered_cur.  Only if it's not 
     full do we have to write our id.  */
  if (ws->ordered_num_used < team->nthreads)
    {
      index = ws->ordered_cur + ws->ordered_num_used;
      if (index >= team->nthreads)
	index -= team->nthreads;
      ws->ordered_team_ids[index] = thr->ts.team_id;
    }

  index = ws->ordered_cur + 1;
  if (index == team->nthreads)
    index = 0;
  ws->ordered_cur = index;

  next_id = ws->ordered_team_ids[index];
  gomp_sem_post (team->ordered_release[next_id]);
}


/* This function is called when a statically scheduled loop is first
   being created.  */

void
gomp_ordered_static_init (void)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;

  if (team == NULL || team->nthreads == 1)
    return;

  gomp_sem_post (team->ordered_release[0]);
}

/* This function is called when a statically scheduled loop is moving to
   the next allocation block.  Static schedules are not first come first
   served like the others, so we're to move to the numerically next thread,
   not the next thread on a list.  The work-share lock should *not* be held
   on entry.  */

void
gomp_ordered_static_next (void)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;
  unsigned id = thr->ts.team_id;

  if (team == NULL || team->nthreads == 1)
    return;

  ws->ordered_owner = -1;

  /* This thread currently owns the lock.  Increment the owner.  */
  if (++id == team->nthreads)
    id = 0;
  ws->ordered_team_ids[0] = id;
  gomp_sem_post (team->ordered_release[id]);
}

/* This function is called when we need to assert that the thread owns the
   ordered section.  Due to the problem of posted-but-not-waited semaphores,
   this needs to happen before completing a loop iteration.  */

void
gomp_ordered_sync (void)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;

  /* Work share constructs can be orphaned.  But this clearly means that
     we are the only thread, and so we automatically own the section.  */
  if (team == NULL || team->nthreads == 1)
    return;

  /* ??? I believe it to be safe to access this data without taking the
     ws->lock.  The only presumed race condition is with the previous
     thread on the queue incrementing ordered_cur such that it points
     to us, concurrently with our check below.  But our team_id is
     already present in the queue, and the other thread will always
     post to our release semaphore.  So the two cases are that we will
     either win the race an momentarily block on the semaphore, or lose
     the race and find the semaphore already unlocked and so not block.
214 215 216 217 218
     Either way we get correct results.
     However, there is an implicit flush on entry to an ordered region,
     so we do need to have a barrier here.  If we were taking a lock
     this could be MEMMODEL_RELEASE since the acquire would be coverd
     by the lock.  */
Diego Novillo committed
219

220
  __atomic_thread_fence (MEMMODEL_ACQ_REL);
Diego Novillo committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  if (ws->ordered_owner != thr->ts.team_id)
    {
      gomp_sem_wait (team->ordered_release[thr->ts.team_id]);
      ws->ordered_owner = thr->ts.team_id;
    }
}

/* This function is called by user code when encountering the start of an
   ORDERED block.  We must check to see if the current thread is at the
   head of the queue, and if not, block.  */

#ifdef HAVE_ATTRIBUTE_ALIAS
extern void GOMP_ordered_start (void)
	__attribute__((alias ("gomp_ordered_sync")));
#else
void
GOMP_ordered_start (void)
{
  gomp_ordered_sync ();
}
#endif

/* This function is called by user code when encountering the end of an
   ORDERED block.  With the current ORDERED implementation there's nothing
   for us to do.

   However, the current implementation has a flaw in that it does not allow
   the next thread into the ORDERED section immediately after the current
   thread exits the ORDERED section in its last iteration.  The existance
   of this function allows the implementation to change.  */

void
GOMP_ordered_end (void)
{
}
256 257 258 259 260 261

/* DOACROSS initialization.  */

#define MAX_COLLAPSED_BITS (__SIZEOF_LONG__ * __CHAR_BIT__)

void
262 263
gomp_doacross_init (unsigned ncounts, long *counts, long chunk_size,
		    size_t extra)
264 265 266 267 268 269 270 271 272
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;
  unsigned int i, bits[MAX_COLLAPSED_BITS], num_bits = 0;
  unsigned long ent, num_ents, elt_sz, shift_sz;
  struct gomp_doacross_work_share *doacross;

  if (team == NULL || team->nthreads == 1)
273 274 275 276 277 278 279 280 281 282 283 284
    {
    empty:
      if (!extra)
	ws->doacross = NULL;
      else
	{
	  doacross = gomp_malloc_cleared (sizeof (*doacross) + extra);
	  doacross->extra = (void *) (doacross + 1);
	  ws->doacross = doacross;
	}
      return;
    }
285 286 287 288 289

  for (i = 0; i < ncounts; i++)
    {
      /* If any count is 0, GOMP_doacross_{post,wait} can't be called.  */
      if (counts[i] == 0)
290
	goto empty;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

      if (num_bits <= MAX_COLLAPSED_BITS)
	{
	  unsigned int this_bits;
	  if (counts[i] == 1)
	    this_bits = 1;
	  else
	    this_bits = __SIZEOF_LONG__ * __CHAR_BIT__
			- __builtin_clzl (counts[i] - 1);
	  if (num_bits + this_bits <= MAX_COLLAPSED_BITS)
	    {
	      bits[i] = this_bits;
	      num_bits += this_bits;
	    }
	  else
	    num_bits = MAX_COLLAPSED_BITS + 1;
	}
    }

  if (ws->sched == GFS_STATIC)
    num_ents = team->nthreads;
312 313
  else if (ws->sched == GFS_GUIDED)
    num_ents = counts[0];
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  else
    num_ents = (counts[0] - 1) / chunk_size + 1;
  if (num_bits <= MAX_COLLAPSED_BITS)
    {
      elt_sz = sizeof (unsigned long);
      shift_sz = ncounts * sizeof (unsigned int);
    }
  else
    {
      elt_sz = sizeof (unsigned long) * ncounts;
      shift_sz = 0;
    }
  elt_sz = (elt_sz + 63) & ~63UL;

  doacross = gomp_malloc (sizeof (*doacross) + 63 + num_ents * elt_sz
329
			  + shift_sz + extra);
330 331 332 333 334 335 336
  doacross->chunk_size = chunk_size;
  doacross->elt_sz = elt_sz;
  doacross->ncounts = ncounts;
  doacross->flattened = false;
  doacross->array = (unsigned char *)
		    ((((uintptr_t) (doacross + 1)) + 63 + shift_sz)
		     & ~(uintptr_t) 63);
337 338 339 340 341 342 343
  if (extra)
    {
      doacross->extra = doacross->array + num_ents * elt_sz;
      memset (doacross->extra, '\0', extra);
    }
  else
    doacross->extra = NULL;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  if (num_bits <= MAX_COLLAPSED_BITS)
    {
      unsigned int shift_count = 0;
      doacross->flattened = true;
      for (i = ncounts; i > 0; i--)
	{
	  doacross->shift_counts[i - 1] = shift_count;
	  shift_count += bits[i - 1];
	}
      for (ent = 0; ent < num_ents; ent++)
	*(unsigned long *) (doacross->array + ent * elt_sz) = 0;
    }
  else
    for (ent = 0; ent < num_ents; ent++)
      memset (doacross->array + ent * elt_sz, '\0',
	      sizeof (unsigned long) * ncounts);
  if (ws->sched == GFS_STATIC && chunk_size == 0)
    {
      unsigned long q = counts[0] / num_ents;
      unsigned long t = counts[0] % num_ents;
      doacross->boundary = t * (q + 1);
      doacross->q = q;
      doacross->t = t;
    }
  ws->doacross = doacross;
}

/* DOACROSS POST operation.  */

void
GOMP_doacross_post (long *counts)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_work_share *ws = thr->ts.work_share;
  struct gomp_doacross_work_share *doacross = ws->doacross;
  unsigned long ent;
  unsigned int i;

382 383
  if (__builtin_expect (doacross == NULL, 0)
      || __builtin_expect (doacross->array == NULL, 0))
384 385 386 387 388 389 390
    {
      __sync_synchronize ();
      return;
    }

  if (__builtin_expect (ws->sched == GFS_STATIC, 1))
    ent = thr->ts.team_id;
391 392
  else if (ws->sched == GFS_GUIDED)
    ent = counts[0];
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  else
    ent = counts[0] / doacross->chunk_size;
  unsigned long *array = (unsigned long *) (doacross->array
					    + ent * doacross->elt_sz);

  if (__builtin_expect (doacross->flattened, 1))
    {
      unsigned long flattened
	= (unsigned long) counts[0] << doacross->shift_counts[0];

      for (i = 1; i < doacross->ncounts; i++)
	flattened |= (unsigned long) counts[i]
		     << doacross->shift_counts[i];
      flattened++;
      if (flattened == __atomic_load_n (array, MEMMODEL_ACQUIRE))
	__atomic_thread_fence (MEMMODEL_RELEASE);
      else
	__atomic_store_n (array, flattened, MEMMODEL_RELEASE);
      return;
    }

  __atomic_thread_fence (MEMMODEL_ACQUIRE);
  for (i = doacross->ncounts; i-- > 0; )
    {
      if (counts[i] + 1UL != __atomic_load_n (&array[i], MEMMODEL_RELAXED))
	__atomic_store_n (&array[i], counts[i] + 1UL, MEMMODEL_RELEASE);
    }
}

/* DOACROSS WAIT operation.  */

void
GOMP_doacross_wait (long first, ...)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_work_share *ws = thr->ts.work_share;
  struct gomp_doacross_work_share *doacross = ws->doacross;
  va_list ap;
  unsigned long ent;
  unsigned int i;

434 435
  if (__builtin_expect (doacross == NULL, 0)
      || __builtin_expect (doacross->array == NULL, 0))
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    {
      __sync_synchronize ();
      return;
    }

  if (__builtin_expect (ws->sched == GFS_STATIC, 1))
    {
      if (ws->chunk_size == 0)
	{
	  if (first < doacross->boundary)
	    ent = first / (doacross->q + 1);
	  else
	    ent = (first - doacross->boundary) / doacross->q
		  + doacross->t;
	}
      else
	ent = first / ws->chunk_size % thr->ts.team->nthreads;
    }
454 455
  else if (ws->sched == GFS_GUIDED)
    ent = first;
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  else
    ent = first / doacross->chunk_size;
  unsigned long *array = (unsigned long *) (doacross->array
					    + ent * doacross->elt_sz);

  if (__builtin_expect (doacross->flattened, 1))
    {
      unsigned long flattened
	= (unsigned long) first << doacross->shift_counts[0];
      unsigned long cur;

      va_start (ap, first);
      for (i = 1; i < doacross->ncounts; i++)
	flattened |= (unsigned long) va_arg (ap, long)
		     << doacross->shift_counts[i];
      cur = __atomic_load_n (array, MEMMODEL_ACQUIRE);
      if (flattened < cur)
	{
	  __atomic_thread_fence (MEMMODEL_RELEASE);
	  va_end (ap);
	  return;
	}
      doacross_spin (array, flattened, cur);
      __atomic_thread_fence (MEMMODEL_RELEASE);
      va_end (ap);
      return;
    }

  do
    {
      va_start (ap, first);
      for (i = 0; i < doacross->ncounts; i++)
	{
	  unsigned long thisv
	    = (unsigned long) (i ? va_arg (ap, long) : first) + 1;
	  unsigned long cur = __atomic_load_n (&array[i], MEMMODEL_RELAXED);
	  if (thisv < cur)
	    {
	      i = doacross->ncounts;
	      break;
	    }
	  if (thisv > cur)
	    break;
	}
      va_end (ap);
      if (i == doacross->ncounts)
	break;
      cpu_relax ();
    }
  while (1);
  __sync_synchronize ();
}

typedef unsigned long long gomp_ull;

void
512 513
gomp_doacross_ull_init (unsigned ncounts, gomp_ull *counts,
			gomp_ull chunk_size, size_t extra)
514 515 516 517 518 519 520 521 522
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_team *team = thr->ts.team;
  struct gomp_work_share *ws = thr->ts.work_share;
  unsigned int i, bits[MAX_COLLAPSED_BITS], num_bits = 0;
  unsigned long ent, num_ents, elt_sz, shift_sz;
  struct gomp_doacross_work_share *doacross;

  if (team == NULL || team->nthreads == 1)
523 524 525 526 527 528 529 530 531 532 533 534
    {
    empty:
      if (!extra)
	ws->doacross = NULL;
      else
	{
	  doacross = gomp_malloc_cleared (sizeof (*doacross) + extra);
	  doacross->extra = (void *) (doacross + 1);
	  ws->doacross = doacross;
	}
      return;
    }
535 536 537 538 539

  for (i = 0; i < ncounts; i++)
    {
      /* If any count is 0, GOMP_doacross_{post,wait} can't be called.  */
      if (counts[i] == 0)
540
	goto empty;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

      if (num_bits <= MAX_COLLAPSED_BITS)
	{
	  unsigned int this_bits;
	  if (counts[i] == 1)
	    this_bits = 1;
	  else
	    this_bits = __SIZEOF_LONG_LONG__ * __CHAR_BIT__
			- __builtin_clzll (counts[i] - 1);
	  if (num_bits + this_bits <= MAX_COLLAPSED_BITS)
	    {
	      bits[i] = this_bits;
	      num_bits += this_bits;
	    }
	  else
	    num_bits = MAX_COLLAPSED_BITS + 1;
	}
    }

  if (ws->sched == GFS_STATIC)
    num_ents = team->nthreads;
562 563
  else if (ws->sched == GFS_GUIDED)
    num_ents = counts[0];
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  else
    num_ents = (counts[0] - 1) / chunk_size + 1;
  if (num_bits <= MAX_COLLAPSED_BITS)
    {
      elt_sz = sizeof (unsigned long);
      shift_sz = ncounts * sizeof (unsigned int);
    }
  else
    {
      if (sizeof (gomp_ull) == sizeof (unsigned long))
	elt_sz = sizeof (gomp_ull) * ncounts;
      else if (sizeof (gomp_ull) == 2 * sizeof (unsigned long))
	elt_sz = sizeof (unsigned long) * 2 * ncounts;
      else
	abort ();
      shift_sz = 0;
    }
  elt_sz = (elt_sz + 63) & ~63UL;

  doacross = gomp_malloc (sizeof (*doacross) + 63 + num_ents * elt_sz
			  + shift_sz);
  doacross->chunk_size_ull = chunk_size;
  doacross->elt_sz = elt_sz;
  doacross->ncounts = ncounts;
  doacross->flattened = false;
  doacross->boundary = 0;
  doacross->array = (unsigned char *)
		    ((((uintptr_t) (doacross + 1)) + 63 + shift_sz)
		     & ~(uintptr_t) 63);
593 594 595 596 597 598 599
  if (extra)
    {
      doacross->extra = doacross->array + num_ents * elt_sz;
      memset (doacross->extra, '\0', extra);
    }
  else
    doacross->extra = NULL;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  if (num_bits <= MAX_COLLAPSED_BITS)
    {
      unsigned int shift_count = 0;
      doacross->flattened = true;
      for (i = ncounts; i > 0; i--)
	{
	  doacross->shift_counts[i - 1] = shift_count;
	  shift_count += bits[i - 1];
	}
      for (ent = 0; ent < num_ents; ent++)
	*(unsigned long *) (doacross->array + ent * elt_sz) = 0;
    }
  else
    for (ent = 0; ent < num_ents; ent++)
      memset (doacross->array + ent * elt_sz, '\0',
	      sizeof (unsigned long) * ncounts);
  if (ws->sched == GFS_STATIC && chunk_size == 0)
    {
      gomp_ull q = counts[0] / num_ents;
      gomp_ull t = counts[0] % num_ents;
      doacross->boundary_ull = t * (q + 1);
      doacross->q_ull = q;
      doacross->t = t;
    }
  ws->doacross = doacross;
}

/* DOACROSS POST operation.  */

void
GOMP_doacross_ull_post (gomp_ull *counts)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_work_share *ws = thr->ts.work_share;
  struct gomp_doacross_work_share *doacross = ws->doacross;
  unsigned long ent;
  unsigned int i;

638 639
  if (__builtin_expect (doacross == NULL, 0)
      || __builtin_expect (doacross->array == NULL, 0))
640 641 642 643 644 645 646
    {
      __sync_synchronize ();
      return;
    }

  if (__builtin_expect (ws->sched == GFS_STATIC, 1))
    ent = thr->ts.team_id;
647 648
  else if (ws->sched == GFS_GUIDED)
    ent = counts[0];
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  else
    ent = counts[0] / doacross->chunk_size_ull;

  if (__builtin_expect (doacross->flattened, 1))
    {
      unsigned long *array = (unsigned long *) (doacross->array
			      + ent * doacross->elt_sz);
      gomp_ull flattened
	= counts[0] << doacross->shift_counts[0];

      for (i = 1; i < doacross->ncounts; i++)
	flattened |= counts[i] << doacross->shift_counts[i];
      flattened++;
      if (flattened == __atomic_load_n (array, MEMMODEL_ACQUIRE))
	__atomic_thread_fence (MEMMODEL_RELEASE);
      else
	__atomic_store_n (array, flattened, MEMMODEL_RELEASE);
      return;
    }

  __atomic_thread_fence (MEMMODEL_ACQUIRE);
  if (sizeof (gomp_ull) == sizeof (unsigned long))
    {
      gomp_ull *array = (gomp_ull *) (doacross->array
				      + ent * doacross->elt_sz);

      for (i = doacross->ncounts; i-- > 0; )
	{
	  if (counts[i] + 1UL != __atomic_load_n (&array[i], MEMMODEL_RELAXED))
	    __atomic_store_n (&array[i], counts[i] + 1UL, MEMMODEL_RELEASE);
	}
    }
  else
    {
      unsigned long *array = (unsigned long *) (doacross->array
						+ ent * doacross->elt_sz);

      for (i = doacross->ncounts; i-- > 0; )
	{
	  gomp_ull cull = counts[i] + 1UL;
	  unsigned long c = (unsigned long) cull;
	  if (c != __atomic_load_n (&array[2 * i + 1], MEMMODEL_RELAXED))
	    __atomic_store_n (&array[2 * i + 1], c, MEMMODEL_RELEASE);
	  c = cull >> (__SIZEOF_LONG_LONG__ * __CHAR_BIT__ / 2);
	  if (c != __atomic_load_n (&array[2 * i], MEMMODEL_RELAXED))
	    __atomic_store_n (&array[2 * i], c, MEMMODEL_RELEASE);
	}
    }
}

/* DOACROSS WAIT operation.  */

void
GOMP_doacross_ull_wait (gomp_ull first, ...)
{
  struct gomp_thread *thr = gomp_thread ();
  struct gomp_work_share *ws = thr->ts.work_share;
  struct gomp_doacross_work_share *doacross = ws->doacross;
  va_list ap;
  unsigned long ent;
  unsigned int i;

711 712
  if (__builtin_expect (doacross == NULL, 0)
      || __builtin_expect (doacross->array == NULL, 0))
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    {
      __sync_synchronize ();
      return;
    }

  if (__builtin_expect (ws->sched == GFS_STATIC, 1))
    {
      if (ws->chunk_size_ull == 0)
	{
	  if (first < doacross->boundary_ull)
	    ent = first / (doacross->q_ull + 1);
	  else
	    ent = (first - doacross->boundary_ull) / doacross->q_ull
		  + doacross->t;
	}
      else
	ent = first / ws->chunk_size_ull % thr->ts.team->nthreads;
    }
731 732
  else if (ws->sched == GFS_GUIDED)
    ent = first;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
  else
    ent = first / doacross->chunk_size_ull;

  if (__builtin_expect (doacross->flattened, 1))
    {
      unsigned long *array = (unsigned long *) (doacross->array
						+ ent * doacross->elt_sz);
      gomp_ull flattened = first << doacross->shift_counts[0];
      unsigned long cur;

      va_start (ap, first);
      for (i = 1; i < doacross->ncounts; i++)
	flattened |= va_arg (ap, gomp_ull)
		     << doacross->shift_counts[i];
      cur = __atomic_load_n (array, MEMMODEL_ACQUIRE);
      if (flattened < cur)
	{
	  __atomic_thread_fence (MEMMODEL_RELEASE);
	  va_end (ap);
	  return;
	}
      doacross_spin (array, flattened, cur);
      __atomic_thread_fence (MEMMODEL_RELEASE);
      va_end (ap);
      return;
    }

  if (sizeof (gomp_ull) == sizeof (unsigned long))
    {
      gomp_ull *array = (gomp_ull *) (doacross->array
				      + ent * doacross->elt_sz);
      do
	{
	  va_start (ap, first);
	  for (i = 0; i < doacross->ncounts; i++)
	    {
	      gomp_ull thisv
		= (i ? va_arg (ap, gomp_ull) : first) + 1;
	      gomp_ull cur = __atomic_load_n (&array[i], MEMMODEL_RELAXED);
	      if (thisv < cur)
		{
		  i = doacross->ncounts;
		  break;
		}
	      if (thisv > cur)
		break;
	    }
	  va_end (ap);
	  if (i == doacross->ncounts)
	    break;
	  cpu_relax ();
	}
      while (1);
    }
  else
    {
      unsigned long *array = (unsigned long *) (doacross->array
						+ ent * doacross->elt_sz);
      do
	{
	  va_start (ap, first);
	  for (i = 0; i < doacross->ncounts; i++)
	    {
	      gomp_ull thisv
		= (i ? va_arg (ap, gomp_ull) : first) + 1;
	      unsigned long t
		= thisv >> (__SIZEOF_LONG_LONG__ * __CHAR_BIT__ / 2);
	      unsigned long cur
		= __atomic_load_n (&array[2 * i], MEMMODEL_RELAXED);
	      if (t < cur)
		{
		  i = doacross->ncounts;
		  break;
		}
	      if (t > cur)
		break;
	      t = thisv;
	      cur = __atomic_load_n (&array[2 * i + 1], MEMMODEL_RELAXED);
	      if (t < cur)
		{
		  i = doacross->ncounts;
		  break;
		}
	      if (t > cur)
		break;
	    }
	  va_end (ap);
	  if (i == doacross->ncounts)
	    break;
	  cpu_relax ();
	}
      while (1);
    }
  __sync_synchronize ();
}