reshape_r10.c 9.38 KB
Newer Older
1
/* Implementation of the RESHAPE intrinsic
2
   Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6 7 8 9

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14 15 16

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25

26 27
#include "libgfortran.h"

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

#if defined (HAVE_GFC_REAL_10)

typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;


extern void reshape_r10 (gfc_array_r10 * const restrict, 
	gfc_array_r10 * const restrict, 
	shape_type * const restrict,
	gfc_array_r10 * const restrict, 
	shape_type * const restrict);
export_proto(reshape_r10);

void
reshape_r10 (gfc_array_r10 * const restrict ret, 
	gfc_array_r10 * const restrict source, 
	shape_type * const restrict shape,
	gfc_array_r10 * const restrict pad, 
	shape_type * const restrict order)
{
  /* r.* indicates the return array.  */
  index_type rcount[GFC_MAX_DIMENSIONS];
  index_type rextent[GFC_MAX_DIMENSIONS];
  index_type rstride[GFC_MAX_DIMENSIONS];
  index_type rstride0;
  index_type rdim;
  index_type rsize;
  index_type rs;
  index_type rex;
  GFC_REAL_10 *rptr;
  /* s.* indicates the source array.  */
  index_type scount[GFC_MAX_DIMENSIONS];
  index_type sextent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  index_type sdim;
  index_type ssize;
  const GFC_REAL_10 *sptr;
  /* p.* indicates the pad array.  */
  index_type pcount[GFC_MAX_DIMENSIONS];
  index_type pextent[GFC_MAX_DIMENSIONS];
  index_type pstride[GFC_MAX_DIMENSIONS];
  index_type pdim;
  index_type psize;
  const GFC_REAL_10 *pptr;

  const GFC_REAL_10 *src;
  int n;
  int dim;
77 78 79
  int sempty, pempty, shape_empty;
  index_type shape_data[GFC_MAX_DIMENSIONS];

80
  rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
81 82
  /* rdim is always > 0; this lets the compiler optimize more and
   avoids a potential warning.  */
83
  GFC_ASSERT(rdim>0);
84

85 86 87 88 89 90 91
  if (rdim != GFC_DESCRIPTOR_RANK(ret))
    runtime_error("rank of return array incorrect in RESHAPE intrinsic");

  shape_empty = 0;

  for (n = 0; n < rdim; n++)
    {
92
      shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
93 94 95 96 97 98
      if (shape_data[n] <= 0)
      {
        shape_data[n] = 0;
	shape_empty = 1;
      }
    }
99

100
  if (ret->base_addr == NULL)
101
    {
102 103
      index_type alloc_size;

104
      rs = 1;
105
      for (n = 0; n < rdim; n++)
106
	{
107
	  rex = shape_data[n];
108 109 110

	  GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);

111 112 113
	  rs *= rex;
	}
      ret->offset = 0;
114 115

      if (unlikely (rs < 1))
116
        alloc_size = 0;
117
      else
118
        alloc_size = rs;
119

120
      ret->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_10));
121 122
      ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
    }
123 124 125

  if (shape_empty)
    return;
126

127 128 129 130 131 132 133 134
  if (pad)
    {
      pdim = GFC_DESCRIPTOR_RANK (pad);
      psize = 1;
      pempty = 0;
      for (n = 0; n < pdim; n++)
        {
          pcount[n] = 0;
135 136
          pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
          pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
137 138 139 140 141 142 143 144 145 146 147
          if (pextent[n] <= 0)
	    {
	      pempty = 1;
	      pextent[n] = 0;
	    }

          if (psize == pstride[n])
            psize *= pextent[n];
          else
            psize = 0;
        }
148
      pptr = pad->base_addr;
149 150 151 152 153 154 155 156 157
    }
  else
    {
      pdim = 0;
      psize = 1;
      pempty = 1;
      pptr = NULL;
    }

158 159
  if (unlikely (compile_options.bounds_check))
    {
160 161 162 163 164 165
      index_type ret_extent, source_extent;

      rs = 1;
      for (n = 0; n < rdim; n++)
	{
	  rs *= shape_data[n];
166
	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
167 168 169 170 171 172 173
	  if (ret_extent != shape_data[n])
	    runtime_error("Incorrect extent in return value of RESHAPE"
			  " intrinsic in dimension %ld: is %ld,"
			  " should be %ld", (long int) n+1,
			  (long int) ret_extent, (long int) shape_data[n]);
	}

174 175 176 177 178
      source_extent = 1;
      sdim = GFC_DESCRIPTOR_RANK (source);
      for (n = 0; n < sdim; n++)
	{
	  index_type se;
179
	  se = GFC_DESCRIPTOR_EXTENT(source,n);
180 181
	  source_extent *= se > 0 ? se : 0;
	}
182

183
      if (rs > source_extent && (!pad || pempty))
184 185 186 187
	runtime_error("Incorrect size in SOURCE argument to RESHAPE"
		      " intrinsic: is %ld, should be %ld",
		      (long int) source_extent, (long int) rs);

188 189 190 191 192 193 194 195 196 197
      if (order)
	{
	  int seen[GFC_MAX_DIMENSIONS];
	  index_type v;

	  for (n = 0; n < rdim; n++)
	    seen[n] = 0;

	  for (n = 0; n < rdim; n++)
	    {
198
	      v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
199 200 201 202 203 204 205 206 207 208 209 210 211 212

	      if (v < 0 || v >= rdim)
		runtime_error("Value %ld out of range in ORDER argument"
			      " to RESHAPE intrinsic", (long int) v + 1);

	      if (seen[v] != 0)
		runtime_error("Duplicate value %ld in ORDER argument to"
			      " RESHAPE intrinsic", (long int) v + 1);
		
	      seen[v] = 1;
	    }
	}
    }

213 214 215 216
  rsize = 1;
  for (n = 0; n < rdim; n++)
    {
      if (order)
217
        dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
218 219 220 221
      else
        dim = n;

      rcount[n] = 0;
222 223
      rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
      rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
224
      if (rextent[n] < 0)
225
        rextent[n] = 0;
226

227
      if (rextent[n] != shape_data[dim])
228 229 230 231 232 233 234 235 236 237 238
        runtime_error ("shape and target do not conform");

      if (rsize == rstride[n])
        rsize *= rextent[n];
      else
        rsize = 0;
      if (rextent[n] <= 0)
        return;
    }

  sdim = GFC_DESCRIPTOR_RANK (source);
239 240 241 242 243

  /* sdim is always > 0; this lets the compiler optimize more and
   avoids a warning.  */
  GFC_ASSERT(sdim>0);

244
  ssize = 1;
245
  sempty = 0;
246 247 248
  for (n = 0; n < sdim; n++)
    {
      scount[n] = 0;
249 250
      sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
      sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
251
      if (sextent[n] <= 0)
252 253 254 255
	{
	  sempty = 1;
	  sextent[n] = 0;
	}
256 257 258 259 260 261 262 263 264 265 266 267

      if (ssize == sstride[n])
        ssize *= sextent[n];
      else
        ssize = 0;
    }

  if (rsize != 0 && ssize != 0 && psize != 0)
    {
      rsize *= sizeof (GFC_REAL_10);
      ssize *= sizeof (GFC_REAL_10);
      psize *= sizeof (GFC_REAL_10);
268 269
      reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
		      ssize, pad ? (char *)pad->base_addr : NULL, psize);
270 271
      return;
    }
272 273
  rptr = ret->base_addr;
  src = sptr = source->base_addr;
274 275 276
  rstride0 = rstride[0];
  sstride0 = sstride[0];

277 278 279 280 281
  if (sempty && pempty)
    abort ();

  if (sempty)
    {
282
      /* Pretend we are using the pad array the first time around, too.  */
283
      src = pptr;
284
      sptr = pptr;
285 286 287 288 289 290
      sdim = pdim;
      for (dim = 0; dim < pdim; dim++)
	{
	  scount[dim] = pcount[dim];
	  sextent[dim] = pextent[dim];
	  sstride[dim] = pstride[dim];
291
	  sstride0 = pstride[0];
292 293 294
	}
    }

295 296 297 298 299 300 301 302 303
  while (rptr)
    {
      /* Select between the source and pad arrays.  */
      *rptr = *src;
      /* Advance to the next element.  */
      rptr += rstride0;
      src += sstride0;
      rcount[0]++;
      scount[0]++;
304

305 306 307 308 309 310 311 312
      /* Advance to the next destination element.  */
      n = 0;
      while (rcount[n] == rextent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          rcount[n] = 0;
          /* We could precalculate these products, but this is a less
313
             frequently used path so probably not worth it.  */
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
          rptr -= rstride[n] * rextent[n];
          n++;
          if (n == rdim)
            {
              /* Break out of the loop.  */
              rptr = NULL;
              break;
            }
          else
            {
              rcount[n]++;
              rptr += rstride[n];
            }
        }
      /* Advance to the next source element.  */
      n = 0;
      while (scount[n] == sextent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          scount[n] = 0;
          /* We could precalculate these products, but this is a less
336
             frequently used path so probably not worth it.  */
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
          src -= sstride[n] * sextent[n];
          n++;
          if (n == sdim)
            {
              if (sptr && pad)
                {
                  /* Switch to the pad array.  */
                  sptr = NULL;
                  sdim = pdim;
                  for (dim = 0; dim < pdim; dim++)
                    {
                      scount[dim] = pcount[dim];
                      sextent[dim] = pextent[dim];
                      sstride[dim] = pstride[dim];
                      sstride0 = sstride[0];
                    }
                }
              /* We now start again from the beginning of the pad array.  */
              src = pptr;
              break;
            }
          else
            {
              scount[n]++;
              src += sstride[n];
            }
        }
    }
}

#endif