cshift0_c16.c 5.95 KB
Newer Older
1
/* Helper function for cshift functions.
2
   Copyright (C) 2008-2017 Free Software Foundation, Inc.
3 4
   Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6 7 8 9

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14 15 16

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25 26 27 28 29 30 31 32

#include "libgfortran.h"
#include <string.h>


#if defined (HAVE_GFC_COMPLEX_16)

void
Janne Blomqvist committed
33
cshift0_c16 (gfc_array_c16 *ret, const gfc_array_c16 *array, ptrdiff_t shift,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
		     int which)
{
  /* r.* indicates the return array.  */
  index_type rstride[GFC_MAX_DIMENSIONS];
  index_type rstride0;
  index_type roffset;
  GFC_COMPLEX_16 *rptr;

  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  index_type soffset;
  const GFC_COMPLEX_16 *sptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dim;
  index_type len;
  index_type n;

54 55 56
  bool do_blocked;
  index_type r_ex, a_ex;

57 58 59 60 61 62 63 64 65 66 67 68
  which = which - 1;
  sstride[0] = 0;
  rstride[0] = 0;

  extent[0] = 1;
  count[0] = 0;
  n = 0;
  /* Initialized for avoiding compiler warnings.  */
  roffset = 1;
  soffset = 1;
  len = 0;

69 70 71 72
  r_ex = 1;
  a_ex = 1;

  if (which > 0)
73
    {
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
      /* Test if both ret and array are contiguous.  */
      do_blocked = true;
      dim = GFC_DESCRIPTOR_RANK (array);
      for (n = 0; n < dim; n ++)
	{
	  index_type rs, as;
	  rs = GFC_DESCRIPTOR_STRIDE (ret, n);
	  if (rs != r_ex)
	    {
	      do_blocked = false;
	      break;
	    }
	  as = GFC_DESCRIPTOR_STRIDE (array, n);
	  if (as != a_ex)
	    {
	      do_blocked = false;
	      break;
	    }
	  r_ex *= GFC_DESCRIPTOR_EXTENT (ret, n);
	  a_ex *= GFC_DESCRIPTOR_EXTENT (array, n);
	}
    }
  else
    do_blocked = false;

  n = 0;

  if (do_blocked)
    {
      /* For contiguous arrays, use the relationship that

         dimension(n1,n2,n3) :: a, b
	 b = cshift(a,sh,3)

         can be dealt with as if

	 dimension(n1*n2*n3) :: an, bn
	 bn = cshift(a,sh*n1*n2,1)

	 we can used a more blocked algorithm for dim>1.  */
      sstride[0] = 1;
      rstride[0] = 1;
      roffset = 1;
      soffset = 1;
      len = GFC_DESCRIPTOR_STRIDE(array, which)
	* GFC_DESCRIPTOR_EXTENT(array, which);      
      shift *= GFC_DESCRIPTOR_STRIDE(array, which);
      for (dim = which + 1; dim < GFC_DESCRIPTOR_RANK (array); dim++)
	{
	  count[n] = 0;
	  extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim);
	  rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
	  sstride[n] = GFC_DESCRIPTOR_STRIDE(array,dim);
	  n++;
	}
      dim = GFC_DESCRIPTOR_RANK (array) - which;
    }
  else
    {
      for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++)
	{
	  if (dim == which)
	    {
	      roffset = GFC_DESCRIPTOR_STRIDE(ret,dim);
	      if (roffset == 0)
		roffset = 1;
	      soffset = GFC_DESCRIPTOR_STRIDE(array,dim);
	      if (soffset == 0)
		soffset = 1;
	      len = GFC_DESCRIPTOR_EXTENT(array,dim);
	    }
	  else
	    {
	      count[n] = 0;
	      extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim);
	      rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
	      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,dim);
	      n++;
	    }
	}
      if (sstride[0] == 0)
	sstride[0] = 1;
      if (rstride[0] == 0)
	rstride[0] = 1;

      dim = GFC_DESCRIPTOR_RANK (array);
160 161 162 163
    }

  rstride0 = rstride[0];
  sstride0 = sstride[0];
164 165
  rptr = ret->base_addr;
  sptr = array->base_addr;
166

167 168 169 170 171 172 173
  /* Avoid the costly modulo for trivially in-bound shifts.  */
  if (shift < 0 || shift >= len)
    {
      shift = len == 0 ? 0 : shift % (ptrdiff_t)len;
      if (shift < 0)
	shift += len;
    }
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

  while (rptr)
    {
      /* Do the shift for this dimension.  */

      /* If elements are contiguous, perform the operation
	 in two block moves.  */
      if (soffset == 1 && roffset == 1)
	{
	  size_t len1 = shift * sizeof (GFC_COMPLEX_16);
	  size_t len2 = (len - shift) * sizeof (GFC_COMPLEX_16);
	  memcpy (rptr, sptr + shift, len2);
	  memcpy (rptr + (len - shift), sptr, len1);
	}
      else
	{
	  /* Otherwise, we will have to perform the copy one element at
	     a time.  */
	  GFC_COMPLEX_16 *dest = rptr;
	  const GFC_COMPLEX_16 *src = &sptr[shift * soffset];

	  for (n = 0; n < len - shift; n++)
	    {
	      *dest = *src;
	      dest += roffset;
	      src += soffset;
	    }
	  for (src = sptr, n = 0; n < shift; n++)
	    {
	      *dest = *src;
	      dest += roffset;
	      src += soffset;
	    }
	}

      /* Advance to the next section.  */
      rptr += rstride0;
      sptr += sstride0;
      count[0]++;
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          rptr -= rstride[n] * extent[n];
          sptr -= sstride[n] * extent[n];
          n++;
          if (n >= dim - 1)
            {
              /* Break out of the loop.  */
              rptr = NULL;
              break;
            }
          else
            {
              count[n]++;
              rptr += rstride[n];
              sptr += sstride[n];
            }
        }
    }

  return;
}

#endif