vec.h 49.5 KB
Newer Older
1
/* Vector API for GNU compiler.
2 3
   Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
4 5 6 7 8 9
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24

#ifndef GCC_VEC_H
#define GCC_VEC_H

25 26
#include "statistics.h"		/* For MEM_STAT_DECL.  */

27 28 29 30 31 32 33
/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

34 35 36 37 38 39 40 41
   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.
42

43 44 45 46 47
   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

48 49 50 51 52
   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
53 54 55 56 57 58
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.
59 60 61 62

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
63
   (it dies if there is not).  The latter will reallocate the
64 65 66
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
67 68 69 70
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
71 72
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
73
   specific size from the get go.
74 75

   You should prefer the push and pop operations, as they append and
76 77
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
78 79 80 81
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
82 83
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
84
   array using insert that will maintain sorted order.
85

86 87 88 89 90 91
   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
H.J. Lu committed
92

93 94 95 96
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
H.J. Lu committed
97

98
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
99
   get the non-memory allocation version, and then a
100
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
101 102 103 104 105
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
106 107 108 109 110 111 112 113 114 115
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.
116 117 118

   An example of their use would be,

119 120 121
   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.
122 123

   struct my_struct {
124
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
125 126 127 128
   };

   struct my_struct *s;

129
   if (VEC_length(tree,s->v)) { we have some contents }
130
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
131 132
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }
133 134 135 136 137

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
138 139 140 141 142
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */
143 144

/* Length of vector
145
   unsigned VEC_T_length(const VEC(T) *v);
146 147 148

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */
149

150
#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
151

152 153 154 155

/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

156
   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
157 158 159 160

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


161
/* Get the final element of the vector.
162
   T VEC_T_last(VEC(T) *v); // Integer
163 164 165
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

166
   Return the final element.  V must not be empty.  */
167

168
#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
169 170

/* Index into vector
171
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
172 173
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
174

175
   Return the IX'th element.  If IX must be in the domain of V.  */
176

177
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
178 179

/* Iterate over vector
180
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
181 182
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
183

184 185 186
   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,
187

188
     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
189
       continue;  */
190

191
#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
192

193 194 195 196 197
/* Convenience macro for forward iteration.  */

#define FOR_EACH_VEC_ELT(T, V, I, P)		\
  for (I = 0; VEC_iterate (T, (V), (I), (P)); ++(I))

198 199 200 201 202 203 204
/* Convenience macro for reverse iteration.  */

#define FOR_EACH_VEC_ELT_REVERSE(T,V,I,P) \
  for (I = VEC_length (T, (V)) - 1;           \
       VEC_iterate (T, (V), (I), (P));	  \
       (I)--)

205
/* Allocate new vector.
206
   VEC(T,A) *VEC_T_A_alloc(int reserve);
207

208
   Allocate a new vector with space for RESERVE objects.  If RESERVE
209
   is zero, NO vector is created.  */
210

211
#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
212

213
/* Free a vector.
214
   void VEC_T_A_free(VEC(T,A) *&);
215 216 217

   Free a vector and set it to NULL.  */

218
#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
219

220 221
/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
H.J. Lu committed
222

223 224
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
H.J. Lu committed
225

226
   These allow the caller to perform the memory allocation.  */
227

228 229
#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
230

231 232 233 234
/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
235
   old vectors need not be allocated by the same mechanism.  */
236 237 238

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

239
/* Determine if a vector has additional capacity.
H.J. Lu committed
240

241 242
   int VEC_T_space (VEC(T) *v,int reserve)

243
   If V has space for RESERVE additional entries, return nonzero.  You
244 245
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
246
   nonzero in exactly the same circumstances that VEC_T_reserve
247 248
   will.  */

249 250
#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
251 252

/* Reserve space.
253
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
254

255 256 257 258
   Ensure that V has at least RESERVE slots available.  This will
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */
259

260 261
#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
262

263 264 265 266 267 268 269 270 271 272 273
/* Reserve space exactly.
   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will not
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve_exact(T,A,V,R)	\
	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Copy elements with no reallocation
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Integer
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Pointer
   void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Object

   Copy the elements in SRC to the end of DST as if by memcpy.  DST and
   SRC need not be allocated with the same mechanism, although they most
   often will be.  DST is assumed to have sufficient headroom
   available.  */

#define VEC_splice(T,DST,SRC)			\
  (VEC_OP(T,base,splice)(VEC_BASE(DST), VEC_BASE(SRC) VEC_CHECK_INFO))

/* Copy elements with reallocation
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Integer
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Pointer
   void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Object

   Copy the elements in SRC to the end of DST as if by memcpy.  DST and
   SRC need not be allocated with the same mechanism, although they most
   often will be.  DST need not have sufficient headroom and will be
   reallocated if needed.  */

#define VEC_safe_splice(T,A,DST,SRC)					\
  (VEC_OP(T,A,safe_splice)(&(DST), VEC_BASE(SRC) VEC_CHECK_INFO MEM_STAT_INFO))
  
300
/* Push object with no reallocation
301
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
302 303
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
H.J. Lu committed
304

305 306
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
307 308
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */
309

310 311
#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
312 313

/* Push object with reallocation
314
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
315 316
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
H.J. Lu committed
317

318 319 320
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */
321

322 323
#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
324 325

/* Pop element off end
326
   T VEC_T_pop (VEC(T) *v);		// Integer
327 328 329 330 331
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */
332

333
#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
334

335
/* Truncate to specific length
336
   void VEC_T_truncate (VEC(T) *v, unsigned len);
H.J. Lu committed
337

338 339
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */
340

341 342 343 344 345 346 347 348 349 350 351
#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
352
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
353

354 355 356 357 358 359 360 361 362 363
/* Grow to a specific length.
   void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  */

#define VEC_safe_grow_cleared(T,A,V,I)		\
	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))

364
/* Replace element
365
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
366 367
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
H.J. Lu committed
368

369 370 371 372 373
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */
374

375 376
#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
377 378

/* Insert object with no reallocation
379
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
380 381
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
H.J. Lu committed
382

383 384 385
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
386
   place. There must be sufficient space.  */
387

388 389
#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
390 391

/* Insert object with reallocation
392
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
393 394
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
H.J. Lu committed
395

396 397 398 399
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */
400

401 402
#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
H.J. Lu committed
403

404
/* Remove element retaining order
405
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
406 407
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
408

409
   Remove an element from the IXth position of V. Ordering of
410
   remaining elements is preserved.  For pointer vectors returns the
411
   removed object.  This is an O(N) operation due to a memmove.  */
412

413 414
#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
415 416

/* Remove element destroying order
417
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
418 419
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
420

421 422 423
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */
424

425 426
#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
427

428 429
/* Remove a block of elements
   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
H.J. Lu committed
430

431
   Remove LEN elements starting at the IXth.  Ordering is retained.
432
   This is an O(N) operation due to memmove.  */
433 434 435 436

#define VEC_block_remove(T,V,I,L)	\
	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))

437 438 439 440 441
/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */
442

443
#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
444

445
/* Find the first index in the vector not less than the object.
H.J. Lu committed
446
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
447
                               bool (*lessthan) (const T, const T)); // Integer
H.J. Lu committed
448
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
449 450 451
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
H.J. Lu committed
452

453 454
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
455
   true if the first argument is strictly less than the second.  */
H.J. Lu committed
456

457 458
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
459

460
/* Reallocate an array of elements with prefix.  */
461
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
462
extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
463
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
464 465
extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
				     MEM_STAT_DECL);
466 467
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
468
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
469
extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
470
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
471 472
extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
				       MEM_STAT_DECL);
473 474 475 476
extern void dump_vec_loc_statistics (void);
#ifdef GATHER_STATISTICS
void vec_heap_free (void *);
#else
477 478
/* Avoid problems with frontends that #define free(x).  */
#define vec_heap_free(V) (free) (V)
479
#endif
480 481

#if ENABLE_CHECKING
482 483 484
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
H.J. Lu committed
485

486 487
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
488 489 490 491

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
492
#else
493 494 495
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
496
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
497 498
#endif

499 500 501 502
/* Note: gengtype has hardwired knowledge of the expansions of the
   VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
   expansions of these macros you may need to change gengtype too.  */

503 504
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
505

H.J. Lu committed
506
/* Base of vector type, not user visible.  */
507
#define VEC_T(T,B)							  \
508 509 510 511 512 513 514 515
typedef struct VEC(T,B) 				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
516
typedef struct GTY(()) VEC(T,B)				 		  \
517
{									  \
518 519
  unsigned num;								  \
  unsigned alloc;							  \
520 521 522 523
  T GTY ((length ("%h.num"))) vec[1];					  \
} VEC(T,B)

/* Derived vector type, user visible.  */
524
#define VEC_TA_GTY(T,B,A,GTY)						  \
525
typedef struct GTY VEC(T,A)						  \
526 527 528 529
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

530 531 532 533 534 535
#define VEC_TA(T,B,A)							  \
typedef struct VEC(T,A)							  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

536 537
/* Convert to base type.  */
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
538

539 540 541 542 543 544 545 546
/* Vector of integer-like object.  */
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
547
VEC_TA(T,base,none);							  \
548 549 550
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
551
VEC_TA(T,base,A);							  \
552
DEF_VEC_ALLOC_FUNC_I(T,A)						  \
553
DEF_VEC_NONALLOC_FUNCS_I(T,A)						  \
554 555
struct vec_swallow_trailing_semi

556
/* Vector of pointer to object.  */
557
#define DEF_VEC_P(T) 							  \
558
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
559
{									  \
560
  (void)((T)1 == (void *)1);						  \
561 562
}									  \
									  \
563
VEC_T_GTY(T,base);							  \
564
VEC_TA(T,base,none);							  \
565 566 567
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
568
VEC_TA(T,base,A);							  \
569
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
570
DEF_VEC_NONALLOC_FUNCS_P(T,A)						  \
571 572 573
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_P(T)						  \
574
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
575 576 577 578
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
579 580
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
581
{									  \
582
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
583
  									  \
Nathan Sidwell committed
584
  return vec_->vec[vec_->num - 1];					  \
585 586
}									  \
									  \
587 588
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
589
{									  \
590
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
591 592 593 594
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
595 596
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
597
{									  \
598 599 600 601 602 603 604
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
605
      *ptr = (T) 0;							  \
606 607
      return 0;								  \
    }									  \
608 609
}									  \
									  \
610
static inline size_t VEC_OP (T,base,embedded_size)			  \
611
     (int alloc_)							  \
612
{									  \
613
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
614 615
}									  \
									  \
616 617
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
618 619 620
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
621 622
}									  \
									  \
623 624
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
625
{									  \
626 627
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
628 629
}									  \
									  \
630 631 632 633 634 635 636 637 638 639 640 641 642
static inline void VEC_OP(T,base,splice)				  \
     (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL)		  \
{									  \
  if (src_)								  \
    {									  \
      unsigned len_ = src_->num;					  \
      VEC_ASSERT (dst_->num + len_ <= dst_->alloc, "splice", T, base);	  \
									  \
      memcpy (&dst_->vec[dst_->num], &src_->vec[0], len_ * sizeof (T));	  \
      dst_->num += len_;						  \
    }									  \
}									  \
									  \
643 644
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
645
{									  \
646
  T *slot_;								  \
647
  									  \
648
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
649 650 651 652 653 654
  slot_ = &vec_->vec[vec_->num++];					  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
655
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
656
{									  \
657
  T obj_;								  \
658
									  \
659
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
660 661 662 663 664
  obj_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
665 666
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
667
{									  \
668
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
669 670
  if (vec_)								  \
    vec_->num = size_;							  \
671 672
}									  \
									  \
673 674
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
675
{									  \
676
  T old_obj_;								  \
677
									  \
678
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
679 680 681 682 683 684
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
685 686 687 688 689 690 691
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
692
  slot_ = &vec_->vec[ix_];						  \
693
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
694 695 696 697 698
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
699 700
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
701
{									  \
702 703
  T *slot_;								  \
  T obj_;								  \
704
									  \
705
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
706 707
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
708
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
709 710 711 712
									  \
  return obj_;								  \
}									  \
									  \
713 714
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
715
{									  \
716 717
  T *slot_;								  \
  T obj_;								  \
718
									  \
719
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
720 721 722 723 724 725 726
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  *slot_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
727 728 729 730 731 732 733 734 735 736 737
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
738 739
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
740 741 742 743
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
768 769 770
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
771 772 773
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
774 775
  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
						 PASS_MEM_STAT);	  \
776 777 778 779
}


#define DEF_VEC_NONALLOC_FUNCS_P(T,A)					  \
780 781 782 783 784 785 786 787
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
788 789 790 791 792 793 794
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
795 796
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
			       (NULL, len_ PASS_MEM_STAT));		  \
797 798 799 800 801 802 803
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
804 805 806
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
807
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
808 809 810 811 812 813 814 815
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
816 817 818 819 820 821 822 823 824 825 826 827 828
static inline int VEC_OP (T,A,reserve_exact)  				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
						    PASS_MEM_STAT);	  \
		  							  \
  return extend;							  \
}									  \
									  \
829 830 831 832 833 834
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
835 836 837
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
838 839 840
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
841 842 843 844 845 846 847 848 849
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
850 851 852 853 854 855 856 857 858 859 860 861 862
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
      VEC_OP (T,A,reserve_exact) (dst_, src_->num			  \
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
878
}
879 880

/* Vector of object.  */
881
#define DEF_VEC_O(T)							  \
882
VEC_T_GTY(T,base);							  \
883
VEC_TA(T,base,none);						  \
884 885 886
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
887
VEC_TA(T,base,A);							  \
888
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
889
DEF_VEC_NONALLOC_FUNCS_O(T,A)						  \
890 891 892
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_O(T)						  \
893
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
894 895 896 897
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
898
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
899
{									  \
900
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
901 902 903 904
  									  \
  return &vec_->vec[vec_->num - 1];					  \
}									  \
									  \
905 906
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
907
{									  \
908
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
909 910 911 912
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
913 914
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
915
{									  \
916 917 918 919 920 921 922 923 924 925
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
926 927
}									  \
									  \
928
static inline size_t VEC_OP (T,base,embedded_size)			  \
929
     (int alloc_)							  \
930
{									  \
931
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
932 933
}									  \
									  \
934 935
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
936
{									  \
937 938
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
939 940
}									  \
									  \
941 942
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
943
{									  \
944 945
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
946 947
}									  \
									  \
948 949 950 951 952 953 954 955 956 957 958 959 960
static inline void VEC_OP(T,base,splice)				  \
     (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL)		  \
{									  \
  if (src_)								  \
    {									  \
      unsigned len_ = src_->num;					  \
      VEC_ASSERT (dst_->num + len_ <= dst_->alloc, "splice", T, base);	  \
									  \
      memcpy (&dst_->vec[dst_->num], &src_->vec[0], len_ * sizeof (T));	  \
      dst_->num += len_;						  \
    }									  \
}									  \
									  \
961 962
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
963
{									  \
964
  T *slot_;								  \
965
  									  \
966
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
967 968 969 970 971 972 973
  slot_ = &vec_->vec[vec_->num++];					  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
974
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
975
{									  \
976
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
977 978 979
  --vec_->num;								  \
}									  \
									  \
980 981
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
982
{									  \
983
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
984 985
  if (vec_)								  \
    vec_->num = size_;							  \
986 987
}									  \
									  \
988 989
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
990
{									  \
991
  T *slot_;								  \
992
									  \
993
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
994 995 996 997 998 999 1000
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
1001 1002 1003 1004 1005 1006 1007
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
1008
  slot_ = &vec_->vec[ix_];						  \
1009
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
1010 1011 1012 1013 1014 1015
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
1016 1017
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
1018
{									  \
1019
  T *slot_;								  \
1020
									  \
1021 1022 1023
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
1024 1025
}									  \
									  \
1026 1027
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
1028
{									  \
1029 1030 1031
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
}									  \
1032
									  \
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
1044 1045 1046 1047
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
1048 1049
}									  \
									  \
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
1074
}
1075

1076
#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
1077 1078
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
1079
{									  \
1080 1081 1082 1083
  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
						 offsetof (VEC(T,A),base.vec), \
						 sizeof (T)		  \
						 PASS_MEM_STAT);	  \
1084 1085 1086
}

#define DEF_VEC_NONALLOC_FUNCS_O(T,A)					  \
1087 1088 1089 1090 1091 1092 1093
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1094 1095
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1096 1097 1098 1099 1100 1101 1102 1103 1104
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
1105 1106
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
1107
{									  \
1108 1109 1110 1111 1112 1113 1114 1115
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1116
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_,				  \
			  offsetof (VEC(T,A),base.vec),			  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1143 1144 1145 1146 1147 1148
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1149 1150 1151
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1152 1153 1154
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1155 1156 1157 1158 1159 1160 1161 1162 1163
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
      VEC_OP (T,A,reserve_exact) (dst_, src_->num			  \
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
1193
}
1194 1195 1196 1197 1198

#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
1199 1200 1201
  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
		       sizeof (T) PASS_MEM_STAT);			  \
1202 1203 1204
}

#define DEF_VEC_NONALLOC_FUNCS_I(T,A)					  \
1205 1206 1207 1208 1209 1210 1211
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1212 1213
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1234
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1260 1261 1262 1263 1264 1265
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1266 1267 1268
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1269 1270 1271
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1272 1273 1274 1275 1276 1277 1278 1279 1280
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static inline void VEC_OP(T,A,safe_splice)				  \
     (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  if (src_)								  \
    {									  \
      VEC_OP (T,A,reserve_exact) (dst_, src_->num			  \
				  VEC_CHECK_PASS MEM_STAT_INFO);	  \
									  \
      VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_			  \
			      VEC_CHECK_PASS);				  \
    }									  \
}									  \
									  \
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/* We support a vector which starts out with space on the stack and
   switches to heap space when forced to reallocate.  This works a
   little differently.  Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
   DEF_VEC_ALLOC_P_STACK(TYPE).  This uses alloca to get the initial
   space; because alloca can not be usefully called in an inline
   function, and because a macro can not define a macro, you must then
   write a #define for each type:

   #define VEC_{TYPE}_stack_alloc(alloc)                          \
     VEC_stack_alloc({TYPE}, alloc)

   This is really a hack and perhaps can be made better.  Note that
   this macro will wind up evaluating the ALLOC parameter twice.

   Only the initial allocation will be made using alloca, so pass a
   reasonable estimate that doesn't use too much stack space; don't
   pass zero.  Don't return a VEC(TYPE,stack) vector from the function
   which allocated it.  */

extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact_1 (int, void *);
extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
					 MEM_STAT_DECL);
extern void vec_stack_free (void *);

1339 1340 1341 1342 1343
#ifdef GATHER_STATISTICS
#define VEC_stack_alloc(T,alloc,name,line,function)			  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
#else
1344 1345 1346
#define VEC_stack_alloc(T,alloc)					  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1347
#endif
1348 1349 1350 1351 1352 1353 1354 1355 1356

#define DEF_VEC_ALLOC_P_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_P_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_P(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_P_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1357
     (int alloc_, VEC(T,stack)* space)					  \
1358
{									  \
1359
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
}

#define DEF_VEC_ALLOC_O_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_O_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_O(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_O_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1370
     (int alloc_, VEC(T,stack)* space)					  \
1371
{									  \
1372
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
}

#define DEF_VEC_ALLOC_I_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_I_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_I(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_I_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1383
     (int alloc_, VEC(T,stack)* space)					  \
1384
{									  \
1385
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);   \
1386 1387
}

1388
#endif /* GCC_VEC_H */