ipa-icf.c 61.8 KB
Newer Older
Martin Liska committed
1
/* Interprocedural Identical Code Folding pass
Jakub Jelinek committed
2
   Copyright (C) 2014-2015 Free Software Foundation, Inc.
Martin Liska committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

   Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Interprocedural Identical Code Folding for functions and
   read-only variables.

   The goal of this transformation is to discover functions and read-only
   variables which do have exactly the same semantics.

   In case of functions,
   we could either create a virtual clone or do a simple function wrapper
   that will call equivalent function. If the function is just locally visible,
   all function calls can be redirected. For read-only variables, we create
   aliases if possible.

   Optimization pass arranges as follows:
   1) All functions and read-only variables are visited and internal
      data structure, either sem_function or sem_variables is created.
   2) For every symbol from the previous step, VAR_DECL and FUNCTION_DECL are
      saved and matched to corresponding sem_items.
   3) These declaration are ignored for equality check and are solved
      by Value Numbering algorithm published by Alpert, Zadeck in 1992.
   4) We compute hash value for each symbol.
   5) Congruence classes are created based on hash value. If hash value are
      equal, equals function is called and symbols are deeply compared.
      We must prove that all SSA names, declarations and other items
      correspond.
   6) Value Numbering is executed for these classes. At the end of the process
      all symbol members in remaining classes can be merged.
   7) Merge operation creates alias in case of read-only variables. For
      callgraph node, we must decide if we can redirect local calls,
      create an alias or a thunk.

*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
58 59 60 61 62 63 64 65 66 67 68
#include "predict.h"
#include "vec.h"
#include "hashtab.h"
#include "hash-set.h"
#include "machmode.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "input.h"
#include "function.h"
#include "dominance.h"
#include "cfg.h"
Martin Liska committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#include "basic-block.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
#include "gimple.h"
#include "expr.h"
#include "gimple-iterator.h"
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "tree-dfa.h"
#include "tree-pass.h"
#include "gimple-pretty-print.h"
Andrew MacLeod committed
85 86 87 88 89
#include "hash-map.h"
#include "plugin-api.h"
#include "ipa-ref.h"
#include "cgraph.h"
#include "alloc-pool.h"
90
#include "symbol-summary.h"
Andrew MacLeod committed
91
#include "ipa-prop.h"
Martin Liska committed
92 93 94 95 96 97 98 99 100 101 102 103 104
#include "ipa-inline.h"
#include "cfgloop.h"
#include "except.h"
#include "hash-table.h"
#include "coverage.h"
#include "attribs.h"
#include "print-tree.h"
#include "lto-streamer.h"
#include "data-streamer.h"
#include "ipa-utils.h"
#include <list>
#include "ipa-icf-gimple.h"
#include "ipa-icf.h"
105
#include "varasm.h"
Martin Liska committed
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

using namespace ipa_icf_gimple;

namespace ipa_icf {
/* Constructor for key value pair, where _ITEM is key and _INDEX is a target.  */

sem_usage_pair::sem_usage_pair (sem_item *_item, unsigned int _index):
  item (_item), index (_index)
{
}

/* Semantic item constructor for a node of _TYPE, where STACK is used
   for bitmap memory allocation.  */

sem_item::sem_item (sem_item_type _type,
		    bitmap_obstack *stack): type(_type), hash(0)
{
  setup (stack);
}

/* Semantic item constructor for a node of _TYPE, where STACK is used
   for bitmap memory allocation. The item is based on symtab node _NODE
   with computed _HASH.  */

sem_item::sem_item (sem_item_type _type, symtab_node *_node,
		    hashval_t _hash, bitmap_obstack *stack): type(_type),
  node (_node), hash (_hash)
{
  decl = node->decl;
  setup (stack);
}

/* Add reference to a semantic TARGET.  */

void
sem_item::add_reference (sem_item *target)
{
  refs.safe_push (target);
  unsigned index = refs.length ();
  target->usages.safe_push (new sem_usage_pair(this, index));
  bitmap_set_bit (target->usage_index_bitmap, index);
  refs_set.add (target->node);
}

/* Initialize internal data structures. Bitmap STACK is used for
   bitmap memory allocation process.  */

void
sem_item::setup (bitmap_obstack *stack)
{
  gcc_checking_assert (node);

  refs.create (0);
  tree_refs.create (0);
  usages.create (0);
  usage_index_bitmap = BITMAP_ALLOC (stack);
}

sem_item::~sem_item ()
{
  for (unsigned i = 0; i < usages.length (); i++)
    delete usages[i];

  refs.release ();
  tree_refs.release ();
  usages.release ();

  BITMAP_FREE (usage_index_bitmap);
}

/* Dump function for debugging purpose.  */

DEBUG_FUNCTION void
sem_item::dump (void)
{
  if (dump_file)
    {
      fprintf (dump_file, "[%s] %s (%u) (tree:%p)\n", type == FUNC ? "func" : "var",
	       name(), node->order, (void *) node->decl);
      fprintf (dump_file, "  hash: %u\n", get_hash ());
      fprintf (dump_file, "  references: ");

      for (unsigned i = 0; i < refs.length (); i++)
	fprintf (dump_file, "%s%s ", refs[i]->name (),
		 i < refs.length() - 1 ? "," : "");

      fprintf (dump_file, "\n");
    }
}

196 197 198 199 200 201 202 203 204 205 206 207
/* Return true if target supports alias symbols.  */

bool
sem_item::target_supports_symbol_aliases_p (void)
{
#if !defined (ASM_OUTPUT_DEF) || (!defined(ASM_OUTPUT_WEAK_ALIAS) && !defined (ASM_WEAKEN_DECL))
  return false;
#else
  return true;
#endif
}

Martin Liska committed
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/* Semantic function constructor that uses STACK as bitmap memory stack.  */

sem_function::sem_function (bitmap_obstack *stack): sem_item (FUNC, stack),
  m_checker (NULL), m_compared_func (NULL)
{
  arg_types.create (0);
  bb_sizes.create (0);
  bb_sorted.create (0);
}

/*  Constructor based on callgraph node _NODE with computed hash _HASH.
    Bitmap STACK is used for memory allocation.  */
sem_function::sem_function (cgraph_node *node, hashval_t hash,
			    bitmap_obstack *stack):
  sem_item (FUNC, node, hash, stack),
  m_checker (NULL), m_compared_func (NULL)
{
  arg_types.create (0);
  bb_sizes.create (0);
  bb_sorted.create (0);
}

sem_function::~sem_function ()
{
  for (unsigned i = 0; i < bb_sorted.length (); i++)
233
    delete (bb_sorted[i]);
Martin Liska committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

  arg_types.release ();
  bb_sizes.release ();
  bb_sorted.release ();
}

/* Calculates hash value based on a BASIC_BLOCK.  */

hashval_t
sem_function::get_bb_hash (const sem_bb *basic_block)
{
  inchash::hash hstate;

  hstate.add_int (basic_block->nondbg_stmt_count);
  hstate.add_int (basic_block->edge_count);

  return hstate.end ();
}

/* References independent hash function.  */

hashval_t
sem_function::get_hash (void)
{
  if(!hash)
    {
      inchash::hash hstate;
      hstate.add_int (177454); /* Random number for function type.  */

      hstate.add_int (arg_count);
      hstate.add_int (cfg_checksum);
      hstate.add_int (gcode_hash);

      for (unsigned i = 0; i < bb_sorted.length (); i++)
	hstate.merge_hash (get_bb_hash (bb_sorted[i]));

      for (unsigned i = 0; i < bb_sizes.length (); i++)
	hstate.add_int (bb_sizes[i]);

      hash = hstate.end ();
    }

  return hash;
}

/* For a given symbol table nodes N1 and N2, we check that FUNCTION_DECLs
   point to a same function. Comparison can be skipped if IGNORED_NODES
   contains these nodes.  */

bool
sem_function::compare_cgraph_references (hash_map <symtab_node *, sem_item *>
    &ignored_nodes,
    symtab_node *n1, symtab_node *n2)
{
  if (n1 == n2 || (ignored_nodes.get (n1) && ignored_nodes.get (n2)))
    return true;

  /* TODO: add more precise comparison for weakrefs, etc.  */

  return return_false_with_msg ("different references");
}

/* If cgraph edges E1 and E2 are indirect calls, verify that
   ECF flags are the same.  */

bool sem_function::compare_edge_flags (cgraph_edge *e1, cgraph_edge *e2)
{
  if (e1->indirect_info && e2->indirect_info)
    {
      int e1_flags = e1->indirect_info->ecf_flags;
      int e2_flags = e2->indirect_info->ecf_flags;

      if (e1_flags != e2_flags)
	return return_false_with_msg ("ICF flags are different");
    }
  else if (e1->indirect_info || e2->indirect_info)
    return false;

  return true;
}

/* Fast equality function based on knowledge known in WPA.  */

bool
sem_function::equals_wpa (sem_item *item,
			  hash_map <symtab_node *, sem_item *> &ignored_nodes)
{
  gcc_assert (item->type == FUNC);

  m_compared_func = static_cast<sem_function *> (item);

  if (arg_types.length () != m_compared_func->arg_types.length ())
    return return_false_with_msg ("different number of arguments");

  /* Checking types of arguments.  */
  for (unsigned i = 0; i < arg_types.length (); i++)
    {
      /* This guard is here for function pointer with attributes (pr59927.c).  */
      if (!arg_types[i] || !m_compared_func->arg_types[i])
	return return_false_with_msg ("NULL argument type");

      /* Polymorphic comparison is executed just for non-leaf functions.  */
      bool is_not_leaf = get_node ()->callees != NULL;

      if (!func_checker::compatible_types_p (arg_types[i],
					     m_compared_func->arg_types[i],
					     is_not_leaf, i == 0))
	return return_false_with_msg ("argument type is different");
    }

  /* Result type checking.  */
  if (!func_checker::compatible_types_p (result_type,
					 m_compared_func->result_type))
    return return_false_with_msg ("result types are different");

  if (node->num_references () != item->node->num_references ())
    return return_false_with_msg ("different number of references");

  ipa_ref *ref = NULL, *ref2 = NULL;
  for (unsigned i = 0; node->iterate_reference (i, ref); i++)
    {
      item->node->iterate_reference (i, ref2);

      if (!compare_cgraph_references (ignored_nodes, ref->referred, ref2->referred))
	return false;
    }

  cgraph_edge *e1 = dyn_cast <cgraph_node *> (node)->callees;
  cgraph_edge *e2 = dyn_cast <cgraph_node *> (item->node)->callees;

  while (e1 && e2)
    {
      if (!compare_cgraph_references (ignored_nodes, e1->callee, e2->callee))
	return false;

      e1 = e1->next_callee;
      e2 = e2->next_callee;
    }

  if (e1 || e2)
    return return_false_with_msg ("different number of edges");

  return true;
}

/* Returns true if the item equals to ITEM given as argument.  */

bool
sem_function::equals (sem_item *item,
		      hash_map <symtab_node *, sem_item *> &ignored_nodes)
{
  gcc_assert (item->type == FUNC);
  bool eq = equals_private (item, ignored_nodes);

  if (m_checker != NULL)
    {
      delete m_checker;
      m_checker = NULL;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	     "Equals called for:%s:%s (%u:%u) (%s:%s) with result: %s\n\n",
	     name(), item->name (), node->order, item->node->order, asm_name (),
	     item->asm_name (), eq ? "true" : "false");

  return eq;
}

/* Processes function equality comparison.  */

bool
sem_function::equals_private (sem_item *item,
			      hash_map <symtab_node *, sem_item *> &ignored_nodes)
{
  if (item->type != FUNC)
    return false;

  basic_block bb1, bb2;
  edge e1, e2;
  edge_iterator ei1, ei2;
  bool result = true;
  tree arg1, arg2;

  m_compared_func = static_cast<sem_function *> (item);

  gcc_assert (decl != item->decl);

  if (bb_sorted.length () != m_compared_func->bb_sorted.length ()
      || edge_count != m_compared_func->edge_count
      || cfg_checksum != m_compared_func->cfg_checksum)
    return return_false ();

  if (!equals_wpa (item, ignored_nodes))
    return false;

  /* Checking function arguments.  */
  tree decl1 = DECL_ATTRIBUTES (decl);
  tree decl2 = DECL_ATTRIBUTES (m_compared_func->decl);

  m_checker = new func_checker (decl, m_compared_func->decl,
				compare_polymorphic_p (),
				false,
				&refs_set,
				&m_compared_func->refs_set);
  while (decl1)
    {
      if (decl2 == NULL)
	return return_false ();

      if (get_attribute_name (decl1) != get_attribute_name (decl2))
	return return_false ();

      tree attr_value1 = TREE_VALUE (decl1);
      tree attr_value2 = TREE_VALUE (decl2);

      if (attr_value1 && attr_value2)
	{
	  bool ret = m_checker->compare_operand (TREE_VALUE (attr_value1),
						 TREE_VALUE (attr_value2));
	  if (!ret)
	    return return_false_with_msg ("attribute values are different");
	}
      else if (!attr_value1 && !attr_value2)
	{}
      else
	return return_false ();

      decl1 = TREE_CHAIN (decl1);
      decl2 = TREE_CHAIN (decl2);
    }

  if (decl1 != decl2)
    return return_false();


  for (arg1 = DECL_ARGUMENTS (decl),
       arg2 = DECL_ARGUMENTS (m_compared_func->decl);
       arg1; arg1 = DECL_CHAIN (arg1), arg2 = DECL_CHAIN (arg2))
    if (!m_checker->compare_decl (arg1, arg2))
      return return_false ();

  /* Fill-up label dictionary.  */
  for (unsigned i = 0; i < bb_sorted.length (); ++i)
    {
      m_checker->parse_labels (bb_sorted[i]);
      m_checker->parse_labels (m_compared_func->bb_sorted[i]);
    }

  /* Checking all basic blocks.  */
  for (unsigned i = 0; i < bb_sorted.length (); ++i)
    if(!m_checker->compare_bb (bb_sorted[i], m_compared_func->bb_sorted[i]))
      return return_false();

  dump_message ("All BBs are equal\n");

Martin Liska committed
490 491
  auto_vec <int> bb_dict;

Martin Liska committed
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
  /* Basic block edges check.  */
  for (unsigned i = 0; i < bb_sorted.length (); ++i)
    {
      bb1 = bb_sorted[i]->bb;
      bb2 = m_compared_func->bb_sorted[i]->bb;

      ei2 = ei_start (bb2->preds);

      for (ei1 = ei_start (bb1->preds); ei_cond (ei1, &e1); ei_next (&ei1))
	{
	  ei_cond (ei2, &e2);

	  if (e1->flags != e2->flags)
	    return return_false_with_msg ("flags comparison returns false");

	  if (!bb_dict_test (bb_dict, e1->src->index, e2->src->index))
	    return return_false_with_msg ("edge comparison returns false");

	  if (!bb_dict_test (bb_dict, e1->dest->index, e2->dest->index))
	    return return_false_with_msg ("BB comparison returns false");

	  if (!m_checker->compare_edge (e1, e2))
	    return return_false_with_msg ("edge comparison returns false");

	  ei_next (&ei2);
	}
    }

  /* Basic block PHI nodes comparison.  */
  for (unsigned i = 0; i < bb_sorted.length (); i++)
    if (!compare_phi_node (bb_sorted[i]->bb, m_compared_func->bb_sorted[i]->bb))
      return return_false_with_msg ("PHI node comparison returns false");

  return result;
}

/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
   be applied.  */
bool
sem_function::merge (sem_item *alias_item)
{
  gcc_assert (alias_item->type == FUNC);

  sem_function *alias_func = static_cast<sem_function *> (alias_item);

  cgraph_node *original = get_node ();
  cgraph_node *local_original = original;
  cgraph_node *alias = alias_func->get_node ();
  bool original_address_matters;
  bool alias_address_matters;

  bool create_thunk = false;
  bool create_alias = false;
  bool redirect_callers = false;
  bool original_discardable = false;

  /* Do not attempt to mix functions from different user sections;
     we do not know what user intends with those.  */
  if (((DECL_SECTION_NAME (original->decl) && !original->implicit_section)
       || (DECL_SECTION_NAME (alias->decl) && !alias->implicit_section))
      && DECL_SECTION_NAME (original->decl) != DECL_SECTION_NAME (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Not unifying; original and alias are in different sections.\n\n");
      return false;
    }

  /* See if original is in a section that can be discarded if the main
     symbol is not used.  */
  if (DECL_EXTERNAL (original->decl))
    original_discardable = true;
  if (original->resolution == LDPR_PREEMPTED_REG
      || original->resolution == LDPR_PREEMPTED_IR)
    original_discardable = true;
  if (original->can_be_discarded_p ())
    original_discardable = true;

  /* See if original and/or alias address can be compared for equality.  */
  original_address_matters
    = (!DECL_VIRTUAL_P (original->decl)
       && (original->externally_visible
	   || original->address_taken_from_non_vtable_p ()));
  alias_address_matters
    = (!DECL_VIRTUAL_P (alias->decl)
       && (alias->externally_visible
	   || alias->address_taken_from_non_vtable_p ()));

  /* If alias and original can be compared for address equality, we need
     to create a thunk.  Also we can not create extra aliases into discardable
     section (or we risk link failures when section is discarded).  */
  if ((original_address_matters
       && alias_address_matters)
      || original_discardable)
    {
      create_thunk = !stdarg_p (TREE_TYPE (alias->decl));
      create_alias = false;
      /* When both alias and original are not overwritable, we can save
         the extra thunk wrapper for direct calls.  */
      redirect_callers
	= (!original_discardable
	   && alias->get_availability () > AVAIL_INTERPOSABLE
Ilya Enkovich committed
594 595
	   && original->get_availability () > AVAIL_INTERPOSABLE
	   && !alias->instrumented_version);
Martin Liska committed
596 597 598 599 600 601 602 603
    }
  else
    {
      create_alias = true;
      create_thunk = false;
      redirect_callers = false;
    }

604 605
  if (create_alias && (DECL_COMDAT_GROUP (alias->decl)
		       || !sem_item::target_supports_symbol_aliases_p ()))
Martin Liska committed
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    {
      create_alias = false;
      create_thunk = true;
    }

  /* We want thunk to always jump to the local function body
     unless the body is comdat and may be optimized out.  */
  if ((create_thunk || redirect_callers)
      && (!original_discardable
	  || (DECL_COMDAT_GROUP (original->decl)
	      && (DECL_COMDAT_GROUP (original->decl)
		  == DECL_COMDAT_GROUP (alias->decl)))))
    local_original
      = dyn_cast <cgraph_node *> (original->noninterposable_alias ());

621 622 623 624 625 626 627 628
    if (!local_original)
      {
	if (dump_file)
	  fprintf (dump_file, "Noninterposable alias cannot be created.\n\n");

	return false;
      }

629 630 631 632 633 634 635
  if (!decl_binds_to_current_def_p (alias->decl))
    {
      if (dump_file)
	fprintf (dump_file, "Declaration does not bind to currect definition.\n\n");
      return false;
    }

Martin Liska committed
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  if (redirect_callers)
    {
      /* If alias is non-overwritable then
         all direct calls are safe to be redirected to the original.  */
      bool redirected = false;
      while (alias->callers)
	{
	  cgraph_edge *e = alias->callers;
	  e->redirect_callee (local_original);
	  push_cfun (DECL_STRUCT_FUNCTION (e->caller->decl));

	  if (e->call_stmt)
	    e->redirect_call_stmt_to_callee ();

	  pop_cfun ();
	  redirected = true;
	}

      alias->icf_merged = true;

      /* The alias function is removed if symbol address
         does not matter.  */
      if (!alias_address_matters)
	alias->remove ();

      if (dump_file && redirected)
	fprintf (dump_file, "Callgraph local calls have been redirected.\n\n");
    }
  /* If the condtion above is not met, we are lucky and can turn the
     function into real alias.  */
  else if (create_alias)
    {
      alias->icf_merged = true;

      /* Remove the function's body.  */
      ipa_merge_profiles (original, alias);
      alias->release_body (true);
      alias->reset ();

      /* Create the alias.  */
      cgraph_node::create_alias (alias_func->decl, decl);
      alias->resolve_alias (original);

679
      /* Workaround for PR63566 that forces equal calling convention
680
       to be used.  */
681 682 683
      alias->local.local = false;
      original->local.local = false;

Martin Liska committed
684 685 686 687 688 689 690 691 692 693 694 695 696
      if (dump_file)
	fprintf (dump_file, "Callgraph alias has been created.\n\n");
    }
  else if (create_thunk)
    {
      if (DECL_COMDAT_GROUP (alias->decl))
	{
	  if (dump_file)
	    fprintf (dump_file, "Callgraph thunk cannot be created because of COMDAT\n");

	  return 0;
	}

697 698 699 700 701 702 703 704
      if (DECL_STATIC_CHAIN (alias->decl))
        {
         if (dump_file)
           fprintf (dump_file, "Thunk creation is risky for static-chain functions.\n\n");

         return 0;
        }

Martin Liska committed
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
      alias->icf_merged = true;
      ipa_merge_profiles (local_original, alias);
      alias->create_wrapper (local_original);

      if (dump_file)
	fprintf (dump_file, "Callgraph thunk has been created.\n\n");
    }
  else if (dump_file)
    fprintf (dump_file, "Callgraph merge operation cannot be performed.\n\n");

  return true;
}

/* Semantic item initialization function.  */

void
sem_function::init (void)
{
  if (in_lto_p)
724
    get_node ()->get_untransformed_body ();
Martin Liska committed
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

  tree fndecl = node->decl;
  function *func = DECL_STRUCT_FUNCTION (fndecl);

  gcc_assert (func);
  gcc_assert (SSANAMES (func));

  ssa_names_size = SSANAMES (func)->length ();
  node = node;

  decl = fndecl;
  region_tree = func->eh->region_tree;

  /* iterating all function arguments.  */
  arg_count = count_formal_params (fndecl);

  edge_count = n_edges_for_fn (func);
  cfg_checksum = coverage_compute_cfg_checksum (func);

  inchash::hash hstate;

  basic_block bb;
  FOR_EACH_BB_FN (bb, func)
  {
    unsigned nondbg_stmt_count = 0;

    edge e;
    for (edge_iterator ei = ei_start (bb->preds); ei_cond (ei, &e); ei_next (&ei))
      cfg_checksum = iterative_hash_host_wide_int (e->flags,
		     cfg_checksum);

    for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
	 gsi_next (&gsi))
      {
	gimple stmt = gsi_stmt (gsi);

	if (gimple_code (stmt) != GIMPLE_DEBUG)
	  {
	    hash_stmt (&hstate, stmt);
	    nondbg_stmt_count++;
	  }
      }

    gcode_hash = hstate.end ();
    bb_sizes.safe_push (nondbg_stmt_count);

    /* Inserting basic block to hash table.  */
    sem_bb *semantic_bb = new sem_bb (bb, nondbg_stmt_count,
				      EDGE_COUNT (bb->preds) + EDGE_COUNT (bb->succs));

    bb_sorted.safe_push (semantic_bb);
  }

  parse_tree_args ();
}

/* Improve accumulated hash for HSTATE based on a gimple statement STMT.  */

void
sem_function::hash_stmt (inchash::hash *hstate, gimple stmt)
{
  enum gimple_code code = gimple_code (stmt);

  hstate->add_int (code);

  if (code == GIMPLE_CALL)
    {
      /* Checking of argument.  */
      for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
	{
	  tree argument = gimple_call_arg (stmt, i);

	  switch (TREE_CODE (argument))
	    {
	    case INTEGER_CST:
	      if (tree_fits_shwi_p (argument))
		hstate->add_wide_int (tree_to_shwi (argument));
	      else if (tree_fits_uhwi_p (argument))
		hstate->add_wide_int (tree_to_uhwi (argument));
	      break;
	    case REAL_CST:
	      REAL_VALUE_TYPE c;
	      HOST_WIDE_INT n;

	      c = TREE_REAL_CST (argument);
	      n = real_to_integer (&c);

	      hstate->add_wide_int (n);
	      break;
	    case ADDR_EXPR:
	      {
		tree addr_operand = TREE_OPERAND (argument, 0);

		if (TREE_CODE (addr_operand) == STRING_CST)
		  hstate->add (TREE_STRING_POINTER (addr_operand),
			       TREE_STRING_LENGTH (addr_operand));
		break;
	      }
	    default:
	      break;
	    }
	}
    }
}


/* Return true if polymorphic comparison must be processed.  */

bool
sem_function::compare_polymorphic_p (void)
{
  return get_node ()->callees != NULL
	 || m_compared_func->get_node ()->callees != NULL;
}

/* For a given call graph NODE, the function constructs new
   semantic function item.  */

sem_function *
sem_function::parse (cgraph_node *node, bitmap_obstack *stack)
{
  tree fndecl = node->decl;
  function *func = DECL_STRUCT_FUNCTION (fndecl);

  /* TODO: add support for thunks and aliases.  */

  if (!func || !node->has_gimple_body_p ())
    return NULL;

  if (lookup_attribute_by_prefix ("omp ", DECL_ATTRIBUTES (node->decl)) != NULL)
    return NULL;

  sem_function *f = new sem_function (node, 0, stack);

  f->init ();

  return f;
}

/* Parses function arguments and result type.  */

void
sem_function::parse_tree_args (void)
{
  tree result;

  if (arg_types.exists ())
    arg_types.release ();

  arg_types.create (4);
  tree fnargs = DECL_ARGUMENTS (decl);

  for (tree parm = fnargs; parm; parm = DECL_CHAIN (parm))
    arg_types.safe_push (DECL_ARG_TYPE (parm));

  /* Function result type.  */
  result = DECL_RESULT (decl);
  result_type = result ? TREE_TYPE (result) : NULL;

  /* During WPA, we can get arguments by following method.  */
  if (!fnargs)
    {
      tree type = TYPE_ARG_TYPES (TREE_TYPE (decl));
      for (tree parm = type; parm; parm = TREE_CHAIN (parm))
	arg_types.safe_push (TYPE_CANONICAL (TREE_VALUE (parm)));

      result_type = TREE_TYPE (TREE_TYPE (decl));
    }
}

/* For given basic blocks BB1 and BB2 (from functions FUNC1 and FUNC),
   return true if phi nodes are semantically equivalent in these blocks .  */

bool
sem_function::compare_phi_node (basic_block bb1, basic_block bb2)
{
901 902
  gphi_iterator si1, si2;
  gphi *phi1, *phi2;
Martin Liska committed
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
  unsigned size1, size2, i;
  tree t1, t2;
  edge e1, e2;

  gcc_assert (bb1 != NULL);
  gcc_assert (bb2 != NULL);

  si2 = gsi_start_phis (bb2);
  for (si1 = gsi_start_phis (bb1); !gsi_end_p (si1);
       gsi_next (&si1))
    {
      gsi_next_nonvirtual_phi (&si1);
      gsi_next_nonvirtual_phi (&si2);

      if (gsi_end_p (si1) && gsi_end_p (si2))
	break;

      if (gsi_end_p (si1) || gsi_end_p (si2))
	return return_false();

923 924
      phi1 = si1.phi ();
      phi2 = si2.phi ();
Martin Liska committed
925

926 927 928 929 930 931
      tree phi_result1 = gimple_phi_result (phi1);
      tree phi_result2 = gimple_phi_result (phi2);

      if (!m_checker->compare_operand (phi_result1, phi_result2))
	return return_false_with_msg ("PHI results are different");

Martin Liska committed
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
      size1 = gimple_phi_num_args (phi1);
      size2 = gimple_phi_num_args (phi2);

      if (size1 != size2)
	return return_false ();

      for (i = 0; i < size1; ++i)
	{
	  t1 = gimple_phi_arg (phi1, i)->def;
	  t2 = gimple_phi_arg (phi2, i)->def;

	  if (!m_checker->compare_operand (t1, t2))
	    return return_false ();

	  e1 = gimple_phi_arg_edge (phi1, i);
	  e2 = gimple_phi_arg_edge (phi2, i);

	  if (!m_checker->compare_edge (e1, e2))
	    return return_false ();
	}

      gsi_next (&si2);
    }

  return true;
}

/* Returns true if tree T can be compared as a handled component.  */

bool
sem_function::icf_handled_component_p (tree t)
{
  tree_code tc = TREE_CODE (t);

  return ((handled_component_p (t))
	  || tc == ADDR_EXPR || tc == MEM_REF || tc == REALPART_EXPR
	  || tc == IMAGPART_EXPR || tc == OBJ_TYPE_REF);
}

/* Basic blocks dictionary BB_DICT returns true if SOURCE index BB
   corresponds to TARGET.  */

bool
Martin Liska committed
975
sem_function::bb_dict_test (auto_vec<int> bb_dict, int source, int target)
Martin Liska committed
976
{
Martin Liska committed
977 978 979 980 981 982 983
  source++;
  target++;

  if (bb_dict.length () <= (unsigned)source)
    bb_dict.safe_grow_cleared (source + 1);

  if (bb_dict[source] == 0)
Martin Liska committed
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    {
      bb_dict[source] = target;
      return true;
    }
  else
    return bb_dict[source] == target;
}

/* Iterates all tree types in T1 and T2 and returns true if all types
   are compatible. If COMPARE_POLYMORPHIC is set to true,
   more strict comparison is executed.  */

bool
sem_function::compare_type_list (tree t1, tree t2, bool compare_polymorphic)
{
  tree tv1, tv2;
  tree_code tc1, tc2;

  if (!t1 && !t2)
    return true;

  while (t1 != NULL && t2 != NULL)
    {
      tv1 = TREE_VALUE (t1);
      tv2 = TREE_VALUE (t2);

      tc1 = TREE_CODE (tv1);
      tc2 = TREE_CODE (tv2);

      if (tc1 == NOP_EXPR && tc2 == NOP_EXPR)
	{}
      else if (tc1 == NOP_EXPR || tc2 == NOP_EXPR)
	return false;
      else if (!func_checker::compatible_types_p (tv1, tv2, compare_polymorphic))
	return false;

      t1 = TREE_CHAIN (t1);
      t2 = TREE_CHAIN (t2);
    }

  return !(t1 || t2);
}


/* Semantic variable constructor that uses STACK as bitmap memory stack.  */

sem_variable::sem_variable (bitmap_obstack *stack): sem_item (VAR, stack)
{
}

/*  Constructor based on varpool node _NODE with computed hash _HASH.
    Bitmap STACK is used for memory allocation.  */

sem_variable::sem_variable (varpool_node *node, hashval_t _hash,
			    bitmap_obstack *stack): sem_item(VAR,
				  node, _hash, stack)
{
  gcc_checking_assert (node);
  gcc_checking_assert (get_node ());
}

/* Returns true if the item equals to ITEM given as argument.  */

bool
sem_variable::equals (sem_item *item,
		      hash_map <symtab_node *, sem_item *> & ARG_UNUSED (ignored_nodes))
{
  gcc_assert (item->type == VAR);

  sem_variable *v = static_cast<sem_variable *>(item);

  if (!ctor || !v->ctor)
    return return_false_with_msg ("ctor is missing for semantic variable");

  return sem_variable::equals (ctor, v->ctor);
}

/* Compares trees T1 and T2 for semantic equality.  */

bool
sem_variable::equals (tree t1, tree t2)
{
  tree_code tc1 = TREE_CODE (t1);
  tree_code tc2 = TREE_CODE (t2);

  if (tc1 != tc2)
    return false;

  switch (tc1)
    {
    case CONSTRUCTOR:
      {
	unsigned len1 = vec_safe_length (CONSTRUCTOR_ELTS (t1));
	unsigned len2 = vec_safe_length (CONSTRUCTOR_ELTS (t2));

	if (len1 != len2)
	  return false;

	for (unsigned i = 0; i < len1; i++)
	  if (!sem_variable::equals (CONSTRUCTOR_ELT (t1, i)->value,
				     CONSTRUCTOR_ELT (t2, i)->value)
	      || CONSTRUCTOR_ELT (t1, i)->index != CONSTRUCTOR_ELT (t2, i)->index)
	    return false;

	return true;
      }
    case MEM_REF:
      {
	tree x1 = TREE_OPERAND (t1, 0);
	tree x2 = TREE_OPERAND (t2, 0);
	tree y1 = TREE_OPERAND (t1, 1);
	tree y2 = TREE_OPERAND (t2, 1);

	if (!func_checker::compatible_types_p (TREE_TYPE (x1), TREE_TYPE (x2),
					       true))
	  return return_false ();

	/* Type of the offset on MEM_REF does not matter.  */
	return sem_variable::equals (x1, x2)
	       && wi::to_offset  (y1) == wi::to_offset  (y2);
      }
    case NOP_EXPR:
    case ADDR_EXPR:
      {
	tree op1 = TREE_OPERAND (t1, 0);
	tree op2 = TREE_OPERAND (t2, 0);
	return sem_variable::equals (op1, op2);
      }
    case FUNCTION_DECL:
    case VAR_DECL:
    case FIELD_DECL:
    case LABEL_DECL:
      return t1 == t2;
    case INTEGER_CST:
      return func_checker::compatible_types_p (TREE_TYPE (t1), TREE_TYPE (t2),
	     true)
	     && wi::to_offset (t1) == wi::to_offset (t2);
    case STRING_CST:
    case REAL_CST:
    case COMPLEX_CST:
      return operand_equal_p (t1, t2, OEP_ONLY_CONST);
    case COMPONENT_REF:
    case ARRAY_REF:
    case POINTER_PLUS_EXPR:
      {
	tree x1 = TREE_OPERAND (t1, 0);
	tree x2 = TREE_OPERAND (t2, 0);
	tree y1 = TREE_OPERAND (t1, 1);
	tree y2 = TREE_OPERAND (t2, 1);

	return sem_variable::equals (x1, x2) && sem_variable::equals (y1, y2);
      }
    case ERROR_MARK:
      return return_false_with_msg ("ERROR_MARK");
    default:
      return return_false_with_msg ("Unknown TREE code reached");
    }
}

/* Parser function that visits a varpool NODE.  */

sem_variable *
sem_variable::parse (varpool_node *node, bitmap_obstack *stack)
{
  tree decl = node->decl;

  bool readonly = TYPE_P (decl) ? TYPE_READONLY (decl) : TREE_READONLY (decl);
1151 1152 1153 1154 1155 1156
  if (!readonly)
    return NULL;

  bool can_handle = DECL_VIRTUAL_P (decl)
		    || flag_merge_constants >= 2
		    || (!TREE_ADDRESSABLE (decl) && !node->externally_visible);
Martin Liska committed
1157

1158
  if (!can_handle || DECL_EXTERNAL (decl))
Martin Liska committed
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    return NULL;

  tree ctor = ctor_for_folding (decl);
  if (!ctor)
    return NULL;

  sem_variable *v = new sem_variable (node, 0, stack);

  v->init ();

  return v;
}

/* References independent hash function.  */

hashval_t
sem_variable::get_hash (void)
{
  if (hash)
    return hash;

  inchash::hash hstate;

  hstate.add_int (456346417);
  hstate.add_int (TREE_CODE (ctor));

  if (TREE_CODE (ctor) == CONSTRUCTOR)
    {
      unsigned length = vec_safe_length (CONSTRUCTOR_ELTS (ctor));
      hstate.add_int (length);
    }

  hash = hstate.end ();

  return hash;
}

/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
   be applied.  */

bool
sem_variable::merge (sem_item *alias_item)
{
  gcc_assert (alias_item->type == VAR);

1204 1205 1206 1207 1208 1209 1210
  if (!sem_item::target_supports_symbol_aliases_p ())
    {
      if (dump_file)
	fprintf (dump_file, "Symbol aliases are not supported by target\n\n");
      return false;
    }

Martin Liska committed
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  sem_variable *alias_var = static_cast<sem_variable *> (alias_item);

  varpool_node *original = get_node ();
  varpool_node *alias = alias_var->get_node ();
  bool original_discardable = false;

  /* See if original is in a section that can be discarded if the main
     symbol is not used.  */
  if (DECL_EXTERNAL (original->decl))
    original_discardable = true;
  if (original->resolution == LDPR_PREEMPTED_REG
      || original->resolution == LDPR_PREEMPTED_IR)
    original_discardable = true;
  if (original->can_be_discarded_p ())
    original_discardable = true;

  gcc_assert (!TREE_ASM_WRITTEN (alias->decl));

  if (original_discardable || DECL_EXTERNAL (alias_var->decl) ||
      !compare_sections (alias_var))
    {
      if (dump_file)
	fprintf (dump_file, "Varpool alias cannot be created\n\n");

      return false;
    }
  else
    {
      // alias cycle creation check
      varpool_node *n = original;

      while (n->alias)
	{
	  n = n->get_alias_target ();
	  if (n == alias)
	    {
	      if (dump_file)
		fprintf (dump_file, "Varpool alias cannot be created (alias cycle).\n\n");

	      return false;
	    }
	}

      alias->analyzed = false;

      DECL_INITIAL (alias->decl) = NULL;
Ilya Enkovich committed
1257
      alias->need_bounds_init = false;
Martin Liska committed
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
      alias->remove_all_references ();

      varpool_node::create_alias (alias_var->decl, decl);
      alias->resolve_alias (original);

      if (dump_file)
	fprintf (dump_file, "Varpool alias has been created.\n\n");

      return true;
    }
}

bool
sem_variable::compare_sections (sem_variable *alias)
{
  const char *source = node->get_section ();
  const char *target = alias->node->get_section();

  if (source == NULL && target == NULL)
    return true;
  else if(!source || !target)
    return false;
  else
    return strcmp (source, target) == 0;
}

/* Dump symbol to FILE.  */

void
sem_variable::dump_to_file (FILE *file)
{
  gcc_assert (file);

  print_node (file, "", decl, 0);
  fprintf (file, "\n\n");
}

/* Iterates though a constructor and identifies tree references
   we are interested in semantic function equality.  */

void
sem_variable::parse_tree_refs (tree t)
{
  switch (TREE_CODE (t))
    {
    case CONSTRUCTOR:
      {
	unsigned length = vec_safe_length (CONSTRUCTOR_ELTS (t));

	for (unsigned i = 0; i < length; i++)
	  parse_tree_refs(CONSTRUCTOR_ELT (t, i)->value);

	break;
      }
    case NOP_EXPR:
    case ADDR_EXPR:
      {
	tree op = TREE_OPERAND (t, 0);
	parse_tree_refs (op);
	break;
      }
    case FUNCTION_DECL:
      {
	tree_refs.safe_push (t);
	break;
      }
    default:
      break;
    }
}

unsigned int sem_item_optimizer::class_id = 0;

sem_item_optimizer::sem_item_optimizer (): worklist (0), m_classes (0),
  m_classes_count (0), m_cgraph_node_hooks (NULL), m_varpool_node_hooks (NULL)
{
  m_items.create (0);
  bitmap_obstack_initialize (&m_bmstack);
}

sem_item_optimizer::~sem_item_optimizer ()
{
  for (unsigned int i = 0; i < m_items.length (); i++)
    delete m_items[i];

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      for (unsigned int i = 0; i < (*it)->classes.length (); i++)
	delete (*it)->classes[i];

      (*it)->classes.release ();
1350
      free (*it);
Martin Liska committed
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    }

  m_items.release ();

  bitmap_obstack_release (&m_bmstack);
}

/* Write IPA ICF summary for symbols.  */

void
sem_item_optimizer::write_summary (void)
{
  unsigned int count = 0;

  output_block *ob = create_output_block (LTO_section_ipa_icf);
  lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
  ob->symbol = NULL;

  /* Calculate number of symbols to be serialized.  */
  for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
       !lsei_end_p (lsei);
       lsei_next_in_partition (&lsei))
    {
      symtab_node *node = lsei_node (lsei);

      if (m_symtab_node_map.get (node))
	count++;
    }

  streamer_write_uhwi (ob, count);

  /* Process all of the symbols.  */
  for (lto_symtab_encoder_iterator lsei = lsei_start_in_partition (encoder);
       !lsei_end_p (lsei);
       lsei_next_in_partition (&lsei))
    {
      symtab_node *node = lsei_node (lsei);

      sem_item **item = m_symtab_node_map.get (node);

      if (item && *item)
	{
	  int node_ref = lto_symtab_encoder_encode (encoder, node);
	  streamer_write_uhwi_stream (ob->main_stream, node_ref);

	  streamer_write_uhwi (ob, (*item)->get_hash ());
	}
    }

  streamer_write_char_stream (ob->main_stream, 0);
  produce_asm (ob, NULL);
  destroy_output_block (ob);
}

/* Reads a section from LTO stream file FILE_DATA. Input block for DATA
   contains LEN bytes.  */

void
sem_item_optimizer::read_section (lto_file_decl_data *file_data,
				  const char *data, size_t len)
{
  const lto_function_header *header =
    (const lto_function_header *) data;
  const int cfg_offset = sizeof (lto_function_header);
  const int main_offset = cfg_offset + header->cfg_size;
  const int string_offset = main_offset + header->main_size;
  data_in *data_in;
  unsigned int i;
  unsigned int count;

  lto_input_block ib_main ((const char *) data + main_offset, 0,
			   header->main_size);

  data_in =
    lto_data_in_create (file_data, (const char *) data + string_offset,
			header->string_size, vNULL);

  count = streamer_read_uhwi (&ib_main);

  for (i = 0; i < count; i++)
    {
      unsigned int index;
      symtab_node *node;
      lto_symtab_encoder_t encoder;

      index = streamer_read_uhwi (&ib_main);
      encoder = file_data->symtab_node_encoder;
      node = lto_symtab_encoder_deref (encoder, index);

      hashval_t hash = streamer_read_uhwi (&ib_main);

      gcc_assert (node->definition);

      if (dump_file)
	fprintf (dump_file, "Symbol added:%s (tree: %p, uid:%u)\n", node->asm_name (),
		 (void *) node->decl, node->order);

      if (is_a<cgraph_node *> (node))
	{
	  cgraph_node *cnode = dyn_cast <cgraph_node *> (node);

	  m_items.safe_push (new sem_function (cnode, hash, &m_bmstack));
	}
      else
	{
	  varpool_node *vnode = dyn_cast <varpool_node *> (node);

	  m_items.safe_push (new sem_variable (vnode, hash, &m_bmstack));
	}
    }

  lto_free_section_data (file_data, LTO_section_ipa_icf, NULL, data,
			 len);
  lto_data_in_delete (data_in);
}

/* Read IPA IPA ICF summary for symbols.  */

void
sem_item_optimizer::read_summary (void)
{
  lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
  lto_file_decl_data *file_data;
  unsigned int j = 0;

  while ((file_data = file_data_vec[j++]))
    {
      size_t len;
      const char *data = lto_get_section_data (file_data,
			 LTO_section_ipa_icf, NULL, &len);

      if (data)
	read_section (file_data, data, len);
    }
}

/* Register callgraph and varpool hooks.  */

void
sem_item_optimizer::register_hooks (void)
{
  m_cgraph_node_hooks = symtab->add_cgraph_removal_hook
			(&sem_item_optimizer::cgraph_removal_hook, this);

  m_varpool_node_hooks = symtab->add_varpool_removal_hook
			 (&sem_item_optimizer::varpool_removal_hook, this);
}

/* Unregister callgraph and varpool hooks.  */

void
sem_item_optimizer::unregister_hooks (void)
{
  if (m_cgraph_node_hooks)
    symtab->remove_cgraph_removal_hook (m_cgraph_node_hooks);

  if (m_varpool_node_hooks)
    symtab->remove_varpool_removal_hook (m_varpool_node_hooks);
}

/* Adds a CLS to hashtable associated by hash value.  */

void
sem_item_optimizer::add_class (congruence_class *cls)
{
  gcc_assert (cls->members.length ());

  congruence_class_group *group = get_group_by_hash (
				    cls->members[0]->get_hash (),
				    cls->members[0]->type);
  group->classes.safe_push (cls);
}

/* Gets a congruence class group based on given HASH value and TYPE.  */

congruence_class_group *
sem_item_optimizer::get_group_by_hash (hashval_t hash, sem_item_type type)
{
  congruence_class_group *item = XNEW (congruence_class_group);
  item->hash = hash;
  item->type = type;

  congruence_class_group **slot = m_classes.find_slot (item, INSERT);

  if (*slot)
    free (item);
  else
    {
      item->classes.create (1);
      *slot = item;
    }

  return *slot;
}

/* Callgraph removal hook called for a NODE with a custom DATA.  */

void
sem_item_optimizer::cgraph_removal_hook (cgraph_node *node, void *data)
{
  sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
  optimizer->remove_symtab_node (node);
}

/* Varpool removal hook called for a NODE with a custom DATA.  */

void
sem_item_optimizer::varpool_removal_hook (varpool_node *node, void *data)
{
  sem_item_optimizer *optimizer = (sem_item_optimizer *) data;
  optimizer->remove_symtab_node (node);
}

/* Remove symtab NODE triggered by symtab removal hooks.  */

void
sem_item_optimizer::remove_symtab_node (symtab_node *node)
{
  gcc_assert (!m_classes.elements());

  m_removed_items_set.add (node);
}

void
sem_item_optimizer::remove_item (sem_item *item)
{
  if (m_symtab_node_map.get (item->node))
    m_symtab_node_map.remove (item->node);
  delete item;
}

/* Removes all callgraph and varpool nodes that are marked by symtab
   as deleted.  */

void
sem_item_optimizer::filter_removed_items (void)
{
  auto_vec <sem_item *> filtered;

  for (unsigned int i = 0; i < m_items.length(); i++)
    {
      sem_item *item = m_items[i];

      if (!flag_ipa_icf_functions && item->type == FUNC)
	{
	  remove_item (item);
	  continue;
	}

      if (!flag_ipa_icf_variables && item->type == VAR)
	{
	  remove_item (item);
	  continue;
	}

      bool no_body_function = false;

      if (item->type == FUNC)
	{
	  cgraph_node *cnode = static_cast <sem_function *>(item)->get_node ();

	  no_body_function = in_lto_p && (cnode->alias || cnode->body_removed);
	}

      if(!m_removed_items_set.contains (m_items[i]->node)
	  && !no_body_function)
	{
	  if (item->type == VAR || (!DECL_CXX_CONSTRUCTOR_P (item->decl)
				    && !DECL_CXX_DESTRUCTOR_P (item->decl)))
	    {
	      filtered.safe_push (m_items[i]);
	      continue;
	    }
	}

      remove_item (item);
    }

  /* Clean-up of released semantic items.  */

  m_items.release ();
  for (unsigned int i = 0; i < filtered.length(); i++)
    m_items.safe_push (filtered[i]);
}

/* Optimizer entry point.  */

void
sem_item_optimizer::execute (void)
{
  filter_removed_items ();
  build_hash_based_classes ();

  if (dump_file)
    fprintf (dump_file, "Dump after hash based groups\n");
  dump_cong_classes ();

  for (unsigned int i = 0; i < m_items.length(); i++)
    m_items[i]->init_wpa ();

  build_graph ();

  subdivide_classes_by_equality (true);

  if (dump_file)
    fprintf (dump_file, "Dump after WPA based types groups\n");

  dump_cong_classes ();

  process_cong_reduction ();
  verify_classes ();

  if (dump_file)
    fprintf (dump_file, "Dump after callgraph-based congruence reduction\n");

  dump_cong_classes ();

  parse_nonsingleton_classes ();
  subdivide_classes_by_equality ();

  if (dump_file)
    fprintf (dump_file, "Dump after full equality comparison of groups\n");

  dump_cong_classes ();

  unsigned int prev_class_count = m_classes_count;

  process_cong_reduction ();
  dump_cong_classes ();
  verify_classes ();
  merge_classes (prev_class_count);

  if (dump_file && (dump_flags & TDF_DETAILS))
    symtab_node::dump_table (dump_file);
}

/* Function responsible for visiting all potential functions and
   read-only variables that can be merged.  */

void
sem_item_optimizer::parse_funcs_and_vars (void)
{
  cgraph_node *cnode;

  if (flag_ipa_icf_functions)
    FOR_EACH_DEFINED_FUNCTION (cnode)
    {
      sem_function *f = sem_function::parse (cnode, &m_bmstack);
      if (f)
	{
	  m_items.safe_push (f);
	  m_symtab_node_map.put (cnode, f);

	  if (dump_file)
	    fprintf (dump_file, "Parsed function:%s\n", f->asm_name ());

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    f->dump_to_file (dump_file);
	}
      else if (dump_file)
	fprintf (dump_file, "Not parsed function:%s\n", cnode->asm_name ());
    }

  varpool_node *vnode;

  if (flag_ipa_icf_variables)
    FOR_EACH_DEFINED_VARIABLE (vnode)
    {
      sem_variable *v = sem_variable::parse (vnode, &m_bmstack);

      if (v)
	{
	  m_items.safe_push (v);
	  m_symtab_node_map.put (vnode, v);
	}
    }
}

/* Makes pairing between a congruence class CLS and semantic ITEM.  */

void
sem_item_optimizer::add_item_to_class (congruence_class *cls, sem_item *item)
{
  item->index_in_class = cls->members.length ();
  cls->members.safe_push (item);
  item->cls = cls;
}

/* Congruence classes are built by hash value.  */

void
sem_item_optimizer::build_hash_based_classes (void)
{
  for (unsigned i = 0; i < m_items.length (); i++)
    {
      sem_item *item = m_items[i];

      congruence_class_group *group = get_group_by_hash (item->get_hash (),
				      item->type);

      if (!group->classes.length ())
	{
	  m_classes_count++;
	  group->classes.safe_push (new congruence_class (class_id++));
	}

      add_item_to_class (group->classes[0], item);
    }
}

/* Build references according to call graph.  */

void
sem_item_optimizer::build_graph (void)
{
  for (unsigned i = 0; i < m_items.length (); i++)
    {
      sem_item *item = m_items[i];
      m_symtab_node_map.put (item->node, item);
    }

  for (unsigned i = 0; i < m_items.length (); i++)
    {
      sem_item *item = m_items[i];

      if (item->type == FUNC)
	{
	  cgraph_node *cnode = dyn_cast <cgraph_node *> (item->node);

	  cgraph_edge *e = cnode->callees;
	  while (e)
	    {
	      sem_item **slot = m_symtab_node_map.get (e->callee);
	      if (slot)
		item->add_reference (*slot);

	      e = e->next_callee;
	    }
	}

      ipa_ref *ref = NULL;
      for (unsigned i = 0; item->node->iterate_reference (i, ref); i++)
	{
	  sem_item **slot = m_symtab_node_map.get (ref->referred);
	  if (slot)
	    item->add_reference (*slot);
	}
    }
}

/* Semantic items in classes having more than one element and initialized.
   In case of WPA, we load function body.  */

void
sem_item_optimizer::parse_nonsingleton_classes (void)
{
  unsigned int init_called_count = 0;

  for (unsigned i = 0; i < m_items.length (); i++)
    if (m_items[i]->cls->members.length () > 1)
      {
	m_items[i]->init ();
	init_called_count++;
      }

  if (dump_file)
    fprintf (dump_file, "Init called for %u items (%.2f%%).\n", init_called_count,
1818
	     m_items.length () ? 100.0f * init_called_count / m_items.length (): 0.0f);
Martin Liska committed
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
}

/* Equality function for semantic items is used to subdivide existing
   classes. If IN_WPA, fast equality function is invoked.  */

void
sem_item_optimizer::subdivide_classes_by_equality (bool in_wpa)
{
  for (hash_table <congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      unsigned int class_count = (*it)->classes.length ();

      for (unsigned i = 0; i < class_count; i++)
	{
	  congruence_class *c = (*it)->classes [i];

	  if (c->members.length() > 1)
	    {
	      auto_vec <sem_item *> new_vector;

	      sem_item *first = c->members[0];
	      new_vector.safe_push (first);

	      unsigned class_split_first = (*it)->classes.length ();

	      for (unsigned j = 1; j < c->members.length (); j++)
		{
		  sem_item *item = c->members[j];

		  bool equals = in_wpa ? first->equals_wpa (item,
				m_symtab_node_map) : first->equals (item, m_symtab_node_map);

		  if (equals)
		    new_vector.safe_push (item);
		  else
		    {
		      bool integrated = false;

		      for (unsigned k = class_split_first; k < (*it)->classes.length (); k++)
			{
			  sem_item *x = (*it)->classes[k]->members[0];
			  bool equals = in_wpa ? x->equals_wpa (item,
								m_symtab_node_map) : x->equals (item, m_symtab_node_map);

			  if (equals)
			    {
			      integrated = true;
			      add_item_to_class ((*it)->classes[k], item);

			      break;
			    }
			}

		      if (!integrated)
			{
			  congruence_class *c = new congruence_class (class_id++);
			  m_classes_count++;
			  add_item_to_class (c, item);

			  (*it)->classes.safe_push (c);
			}
		    }
		}

	      // we replace newly created new_vector for the class we've just splitted
	      c->members.release ();
	      c->members.create (new_vector.length ());

	      for (unsigned int j = 0; j < new_vector.length (); j++)
		add_item_to_class (c, new_vector[j]);
	    }
	}
    }

  verify_classes ();
}

/* Verify congruence classes if checking is enabled.  */

void
sem_item_optimizer::verify_classes (void)
{
#if ENABLE_CHECKING
  for (hash_table <congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    {
      for (unsigned int i = 0; i < (*it)->classes.length (); i++)
	{
	  congruence_class *cls = (*it)->classes[i];

	  gcc_checking_assert (cls);
	  gcc_checking_assert (cls->members.length () > 0);

	  for (unsigned int j = 0; j < cls->members.length (); j++)
	    {
	      sem_item *item = cls->members[j];

	      gcc_checking_assert (item);
	      gcc_checking_assert (item->cls == cls);

	      for (unsigned k = 0; k < item->usages.length (); k++)
		{
		  sem_usage_pair *usage = item->usages[k];
		  gcc_checking_assert (usage->item->index_in_class <
				       usage->item->cls->members.length ());
		}
	    }
	}
    }
#endif
}

/* Disposes split map traverse function. CLS_PTR is pointer to congruence
   class, BSLOT is bitmap slot we want to release. DATA is mandatory,
   but unused argument.  */

bool
sem_item_optimizer::release_split_map (congruence_class * const &,
				       bitmap const &b, traverse_split_pair *)
{
  bitmap bmp = b;

  BITMAP_FREE (bmp);

  return true;
}

/* Process split operation for a class given as pointer CLS_PTR,
   where bitmap B splits congruence class members. DATA is used
   as argument of split pair.  */

bool
sem_item_optimizer::traverse_congruence_split (congruence_class * const &cls,
    bitmap const &b, traverse_split_pair *pair)
{
  sem_item_optimizer *optimizer = pair->optimizer;
  const congruence_class *splitter_cls = pair->cls;

  /* If counted bits are greater than zero and less than the number of members
     a group will be splitted.  */
  unsigned popcount = bitmap_count_bits (b);

  if (popcount > 0 && popcount < cls->members.length ())
    {
      congruence_class* newclasses[2] = { new congruence_class (class_id++), new congruence_class (class_id++) };

      for (unsigned int i = 0; i < cls->members.length (); i++)
	{
	  int target = bitmap_bit_p (b, i);
	  congruence_class *tc = newclasses[target];

	  add_item_to_class (tc, cls->members[i]);
	}

#ifdef ENABLE_CHECKING
      for (unsigned int i = 0; i < 2; i++)
	gcc_checking_assert (newclasses[i]->members.length ());
#endif

      if (splitter_cls == cls)
	optimizer->splitter_class_removed = true;

      /* Remove old class from worklist if presented.  */
      bool in_worklist = cls->in_worklist;

      if (in_worklist)
	cls->in_worklist = false;

      congruence_class_group g;
      g.hash = cls->members[0]->get_hash ();
      g.type = cls->members[0]->type;

      congruence_class_group *slot = optimizer->m_classes.find(&g);

      for (unsigned int i = 0; i < slot->classes.length (); i++)
	if (slot->classes[i] == cls)
	  {
	    slot->classes.ordered_remove (i);
	    break;
	  }

      /* New class will be inserted and integrated to work list.  */
      for (unsigned int i = 0; i < 2; i++)
	optimizer->add_class (newclasses[i]);

      /* Two classes replace one, so that increment just by one.  */
      optimizer->m_classes_count++;

      /* If OLD class was presented in the worklist, we remove the class
         and replace it will both newly created classes.  */
      if (in_worklist)
	for (unsigned int i = 0; i < 2; i++)
	  optimizer->worklist_push (newclasses[i]);
      else /* Just smaller class is inserted.  */
	{
	  unsigned int smaller_index = newclasses[0]->members.length () <
				       newclasses[1]->members.length () ?
				       0 : 1;
	  optimizer->worklist_push (newclasses[smaller_index]);
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  congruence class splitted:\n");
	  cls->dump (dump_file, 4);

	  fprintf (dump_file, "  newly created groups:\n");
	  for (unsigned int i = 0; i < 2; i++)
	    newclasses[i]->dump (dump_file, 4);
	}

      /* Release class if not presented in work list.  */
      if (!in_worklist)
	delete cls;
    }


  return true;
}

/* Tests if a class CLS used as INDEXth splits any congruence classes.
   Bitmap stack BMSTACK is used for bitmap allocation.  */

void
sem_item_optimizer::do_congruence_step_for_index (congruence_class *cls,
    unsigned int index)
{
  hash_map <congruence_class *, bitmap> split_map;

  for (unsigned int i = 0; i < cls->members.length (); i++)
    {
      sem_item *item = cls->members[i];

      /* Iterate all usages that have INDEX as usage of the item.  */
      for (unsigned int j = 0; j < item->usages.length (); j++)
	{
	  sem_usage_pair *usage = item->usages[j];

	  if (usage->index != index)
	    continue;

	  bitmap *slot = split_map.get (usage->item->cls);
	  bitmap b;

	  if(!slot)
	    {
	      b = BITMAP_ALLOC (&m_bmstack);
	      split_map.put (usage->item->cls, b);
	    }
	  else
	    b = *slot;

#if ENABLE_CHECKING
	  gcc_checking_assert (usage->item->cls);
	  gcc_checking_assert (usage->item->index_in_class <
			       usage->item->cls->members.length ());
#endif

	  bitmap_set_bit (b, usage->item->index_in_class);
	}
    }

  traverse_split_pair pair;
  pair.optimizer = this;
  pair.cls = cls;

  splitter_class_removed = false;
  split_map.traverse
  <traverse_split_pair *, sem_item_optimizer::traverse_congruence_split> (&pair);

  /* Bitmap clean-up.  */
  split_map.traverse
  <traverse_split_pair *, sem_item_optimizer::release_split_map> (NULL);
}

/* Every usage of a congruence class CLS is a candidate that can split the
   collection of classes. Bitmap stack BMSTACK is used for bitmap
   allocation.  */

void
sem_item_optimizer::do_congruence_step (congruence_class *cls)
{
  bitmap_iterator bi;
  unsigned int i;

  bitmap usage = BITMAP_ALLOC (&m_bmstack);

  for (unsigned int i = 0; i < cls->members.length (); i++)
    bitmap_ior_into (usage, cls->members[i]->usage_index_bitmap);

  EXECUTE_IF_SET_IN_BITMAP (usage, 0, i, bi)
  {
    if (dump_file && (dump_flags & TDF_DETAILS))
      fprintf (dump_file, "  processing congruece step for class: %u, index: %u\n",
	       cls->id, i);

    do_congruence_step_for_index (cls, i);

    if (splitter_class_removed)
      break;
  }

  BITMAP_FREE (usage);
}

/* Adds a newly created congruence class CLS to worklist.  */

void
sem_item_optimizer::worklist_push (congruence_class *cls)
{
  /* Return if the class CLS is already presented in work list.  */
  if (cls->in_worklist)
    return;

  cls->in_worklist = true;
  worklist.push_back (cls);
}

/* Pops a class from worklist. */

congruence_class *
sem_item_optimizer::worklist_pop (void)
{
  congruence_class *cls;

  while (!worklist.empty ())
    {
      cls = worklist.front ();
      worklist.pop_front ();
      if (cls->in_worklist)
	{
	  cls->in_worklist = false;

	  return cls;
	}
      else
	{
	  /* Work list item was already intended to be removed.
	     The only reason for doing it is to split a class.
	     Thus, the class CLS is deleted.  */
	  delete cls;
	}
    }

  return NULL;
}

/* Iterative congruence reduction function.  */

void
sem_item_optimizer::process_cong_reduction (void)
{
  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    for (unsigned i = 0; i < (*it)->classes.length (); i++)
      if ((*it)->classes[i]->is_class_used ())
	worklist_push ((*it)->classes[i]);

  if (dump_file)
    fprintf (dump_file, "Worklist has been filled with: %lu\n",
2180
	     (unsigned long) worklist.size ());
Martin Liska committed
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Congruence class reduction\n");

  congruence_class *cls;
  while ((cls = worklist_pop ()) != NULL)
    do_congruence_step (cls);
}

/* Debug function prints all informations about congruence classes.  */

void
sem_item_optimizer::dump_cong_classes (void)
{
  if (!dump_file)
    return;

  fprintf (dump_file,
	   "Congruence classes: %u (unique hash values: %lu), with total: %u items\n",
2200
	   m_classes_count, (unsigned long) m_classes.elements(), m_items.length ());
Martin Liska committed
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

  /* Histogram calculation.  */
  unsigned int max_index = 0;
  unsigned int* histogram = XCNEWVEC (unsigned int, m_items.length () + 1);

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)

    for (unsigned i = 0; i < (*it)->classes.length (); i++)
      {
	unsigned int c = (*it)->classes[i]->members.length ();
	histogram[c]++;

	if (c > max_index)
	  max_index = c;
      }

  fprintf (dump_file,
	   "Class size histogram [num of members]: number of classe number of classess\n");

  for (unsigned int i = 0; i <= max_index; i++)
    if (histogram[i])
      fprintf (dump_file, "[%u]: %u classes\n", i, histogram[i]);

  fprintf (dump_file, "\n\n");


  if (dump_flags & TDF_DETAILS)
    for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
	 it != m_classes.end (); ++it)
      {
	fprintf (dump_file, "  group: with %u classes:\n", (*it)->classes.length ());

	for (unsigned i = 0; i < (*it)->classes.length (); i++)
	  {
	    (*it)->classes[i]->dump (dump_file, 4);

	    if(i < (*it)->classes.length () - 1)
	      fprintf (dump_file, " ");
	  }
      }

  free (histogram);
}

/* After reduction is done, we can declare all items in a group
   to be equal. PREV_CLASS_COUNT is start number of classes
   before reduction.  */

void
sem_item_optimizer::merge_classes (unsigned int prev_class_count)
{
  unsigned int item_count = m_items.length ();
  unsigned int class_count = m_classes_count;
  unsigned int equal_items = item_count - class_count;

  unsigned int non_singular_classes_count = 0;
  unsigned int non_singular_classes_sum = 0;

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    for (unsigned int i = 0; i < (*it)->classes.length (); i++)
      {
	congruence_class *c = (*it)->classes[i];
	if (c->members.length () > 1)
	  {
	    non_singular_classes_count++;
	    non_singular_classes_sum += c->members.length ();
	  }
      }

  if (dump_file)
    {
      fprintf (dump_file, "\nItem count: %u\n", item_count);
      fprintf (dump_file, "Congruent classes before: %u, after: %u\n",
	       prev_class_count, class_count);
      fprintf (dump_file, "Average class size before: %.2f, after: %.2f\n",
2278 2279
	       prev_class_count ? 1.0f * item_count / prev_class_count : 0.0f,
	       class_count ? 1.0f * item_count / class_count : 0.0f);
Martin Liska committed
2280
      fprintf (dump_file, "Average non-singular class size: %.2f, count: %u\n",
2281 2282
	       non_singular_classes_count ? 1.0f * non_singular_classes_sum /
	       non_singular_classes_count : 0.0f,
Martin Liska committed
2283 2284 2285
	       non_singular_classes_count);
      fprintf (dump_file, "Equal symbols: %u\n", equal_items);
      fprintf (dump_file, "Fraction of visited symbols: %.2f%%\n\n",
2286
	       item_count ? 100.0f * equal_items / item_count : 0.0f);
Martin Liska committed
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
    }

  for (hash_table<congruence_class_group_hash>::iterator it = m_classes.begin ();
       it != m_classes.end (); ++it)
    for (unsigned int i = 0; i < (*it)->classes.length (); i++)
      {
	congruence_class *c = (*it)->classes[i];

	if (c->members.length () == 1)
	  continue;

	gcc_assert (c->members.length ());

	sem_item *source = c->members[0];

	for (unsigned int j = 1; j < c->members.length (); j++)
	  {
	    sem_item *alias = c->members[j];
	    source->equals (alias, m_symtab_node_map);

	    if (dump_file)
	      {
		fprintf (dump_file, "Semantic equality hit:%s->%s\n",
			 source->name (), alias->name ());
		fprintf (dump_file, "Assembler symbol names:%s->%s\n",
			 source->asm_name (), alias->asm_name ());
	      }

	    if (dump_file && (dump_flags & TDF_DETAILS))
	      {
		source->dump_to_file (dump_file);
		alias->dump_to_file (dump_file);
	      }

	    source->merge (alias);
	  }
      }
}

/* Dump function prints all class members to a FILE with an INDENT.  */

void
congruence_class::dump (FILE *file, unsigned int indent) const
{
  FPRINTF_SPACES (file, indent, "class with id: %u, hash: %u, items: %u\n",
		  id, members[0]->get_hash (), members.length ());

  FPUTS_SPACES (file, indent + 2, "");
  for (unsigned i = 0; i < members.length (); i++)
    fprintf (file, "%s(%p/%u) ", members[i]->asm_name (), (void *) members[i]->decl,
	     members[i]->node->order);

  fprintf (file, "\n");
}

/* Returns true if there's a member that is used from another group.  */

bool
congruence_class::is_class_used (void)
{
  for (unsigned int i = 0; i < members.length (); i++)
    if (members[i]->usages.length ())
      return true;

  return false;
}

/* Initialization and computation of symtab node hash, there data
   are propagated later on.  */

static sem_item_optimizer *optimizer = NULL;

/* Generate pass summary for IPA ICF pass.  */

static void
ipa_icf_generate_summary (void)
{
  if (!optimizer)
    optimizer = new sem_item_optimizer ();

  optimizer->parse_funcs_and_vars ();
}

/* Write pass summary for IPA ICF pass.  */

static void
ipa_icf_write_summary (void)
{
  gcc_assert (optimizer);

  optimizer->write_summary ();
}

/* Read pass summary for IPA ICF pass.  */

static void
ipa_icf_read_summary (void)
{
  if (!optimizer)
    optimizer = new sem_item_optimizer ();

  optimizer->read_summary ();
  optimizer->register_hooks ();
}

/* Semantic equality exection function.  */

static unsigned int
ipa_icf_driver (void)
{
  gcc_assert (optimizer);

  optimizer->execute ();
  optimizer->unregister_hooks ();

  delete optimizer;
2403
  optimizer = NULL;
Martin Liska committed
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

  return 0;
}

const pass_data pass_data_ipa_icf =
{
  IPA_PASS,		    /* type */
  "icf",		    /* name */
  OPTGROUP_IPA,             /* optinfo_flags */
  TV_IPA_ICF,		    /* tv_id */
  0,                        /* properties_required */
  0,                        /* properties_provided */
  0,                        /* properties_destroyed */
  0,                        /* todo_flags_start */
  0,                        /* todo_flags_finish */
};

class pass_ipa_icf : public ipa_opt_pass_d
{
public:
  pass_ipa_icf (gcc::context *ctxt)
    : ipa_opt_pass_d (pass_data_ipa_icf, ctxt,
		      ipa_icf_generate_summary, /* generate_summary */
		      ipa_icf_write_summary, /* write_summary */
		      ipa_icf_read_summary, /* read_summary */
		      NULL, /*
		      write_optimization_summary */
		      NULL, /*
		      read_optimization_summary */
		      NULL, /* stmt_fixup */
		      0, /* function_transform_todo_flags_start */
		      NULL, /* function_transform */
		      NULL) /* variable_transform */
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
  {
    return flag_ipa_icf_variables || flag_ipa_icf_functions;
  }

  virtual unsigned int execute (function *)
  {
    return ipa_icf_driver();
  }
}; // class pass_ipa_icf

} // ipa_icf namespace

ipa_opt_pass_d *
make_pass_ipa_icf (gcc::context *ctxt)
{
  return new ipa_icf::pass_ipa_icf (ctxt);
}