sinq.c 2.16 KB
Newer Older
1
/* sinq.c -- __float128 version of s_sin.c.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
 * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

16
/* sinq(x)
17 18 19
 * Return sine function of x.
 *
 * kernel function:
20 21 22
 *	__quadmath_kernel_sinq	... sine function on [-pi/4,pi/4]
 *	__quadmath_kernel_cosq	... cose function on [-pi/4,pi/4]
 *	__quadmath_rem_pio2q	... argument reduction routine
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *	in [-pi/4 , +pi/4], and let n = k mod 4.
 *	We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *	    0	       S	   C		 T
 *	    1	       C	  -S		-1/T
 *	    2	      -S	  -C		 T
 *	    3	      -C	   S		-1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded
 */

#include "quadmath-imp.h"

__float128
sinq (__float128 x)
{
	__float128 y[2],z=0.0Q;
	int64_t n, ix;

    /* High word of x. */
	GET_FLT128_MSW64(ix,x);

    /* |x| ~< pi/4 */
	ix &= 0x7fffffffffffffffLL;
	if(ix <= 0x3ffe921fb54442d1LL)
61
	  return __quadmath_kernel_sinq(x,z,0);
62 63 64 65 66 67 68 69 70 71 72

    /* sin(Inf or NaN) is NaN */
	else if (ix>=0x7fff000000000000LL) {
	    if (ix == 0x7fff000000000000LL) {
		GET_FLT128_LSW64(n,x);
	    }
	    return x-x;
	}

    /* argument reduction needed */
	else {
73
	    n = __quadmath_rem_pio2q(x,y);
74
	    switch(n&3) {
75 76 77
		case 0: return  __quadmath_kernel_sinq(y[0],y[1],1);
		case 1: return  __quadmath_kernel_cosq(y[0],y[1]);
		case 2: return -__quadmath_kernel_sinq(y[0],y[1],1);
78
		default:
79
			return -__quadmath_kernel_cosq(y[0],y[1]);
80 81 82
	    }
	}
}