reshape_i4.c 9.18 KB
Newer Older
1
/* Implementation of the RESHAPE intrinsic
2
   Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6

7 8
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
9
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12

Libgfortran is distributed in the hope that it will be useful,
13 14
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25

26
#include "libgfortran.h"
27 28
#include <stdlib.h>
#include <assert.h>
29

30

31 32
#if defined (HAVE_GFC_INTEGER_4)

33 34
typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;

35

Janne Blomqvist committed
36 37 38 39 40
extern void reshape_4 (gfc_array_i4 * const restrict, 
	gfc_array_i4 * const restrict, 
	shape_type * const restrict,
	gfc_array_i4 * const restrict, 
	shape_type * const restrict);
41
export_proto(reshape_4);
42

43
void
Janne Blomqvist committed
44 45 46 47 48
reshape_4 (gfc_array_i4 * const restrict ret, 
	gfc_array_i4 * const restrict source, 
	shape_type * const restrict shape,
	gfc_array_i4 * const restrict pad, 
	shape_type * const restrict order)
49 50
{
  /* r.* indicates the return array.  */
51 52 53
  index_type rcount[GFC_MAX_DIMENSIONS];
  index_type rextent[GFC_MAX_DIMENSIONS];
  index_type rstride[GFC_MAX_DIMENSIONS];
54 55 56
  index_type rstride0;
  index_type rdim;
  index_type rsize;
57 58
  index_type rs;
  index_type rex;
59 60
  GFC_INTEGER_4 *rptr;
  /* s.* indicates the source array.  */
61 62 63
  index_type scount[GFC_MAX_DIMENSIONS];
  index_type sextent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
64 65 66 67 68
  index_type sstride0;
  index_type sdim;
  index_type ssize;
  const GFC_INTEGER_4 *sptr;
  /* p.* indicates the pad array.  */
69 70 71
  index_type pcount[GFC_MAX_DIMENSIONS];
  index_type pextent[GFC_MAX_DIMENSIONS];
  index_type pstride[GFC_MAX_DIMENSIONS];
72 73 74 75 76 77 78
  index_type pdim;
  index_type psize;
  const GFC_INTEGER_4 *pptr;

  const GFC_INTEGER_4 *src;
  int n;
  int dim;
79 80 81
  int sempty, pempty, shape_empty;
  index_type shape_data[GFC_MAX_DIMENSIONS];

82
  rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
83 84 85 86 87 88 89
  if (rdim != GFC_DESCRIPTOR_RANK(ret))
    runtime_error("rank of return array incorrect in RESHAPE intrinsic");

  shape_empty = 0;

  for (n = 0; n < rdim; n++)
    {
90
      shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
91
      if (shape_data[n] <= 0)
92 93 94 95
      {
        shape_data[n] = 0;
	shape_empty = 1;
      }
96
    }
97

98
  if (ret->base_addr == NULL)
99
    {
100 101
      index_type alloc_size;

102
      rs = 1;
103
      for (n = 0; n < rdim; n++)
104
	{
105
	  rex = shape_data[n];
106 107 108

	  GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);

109 110
	  rs *= rex;
	}
111
      ret->offset = 0;
112 113 114 115 116 117

      if (unlikely (rs < 1))
        alloc_size = 1;
      else
        alloc_size = rs * sizeof (GFC_INTEGER_4);

118
      ret->base_addr = xmalloc (alloc_size);
119 120
      ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
    }
121 122 123

  if (shape_empty)
    return;
124

125 126 127 128 129 130 131 132
  if (pad)
    {
      pdim = GFC_DESCRIPTOR_RANK (pad);
      psize = 1;
      pempty = 0;
      for (n = 0; n < pdim; n++)
        {
          pcount[n] = 0;
133 134
          pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
          pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
135 136 137 138 139 140 141 142 143 144 145
          if (pextent[n] <= 0)
	    {
	      pempty = 1;
	      pextent[n] = 0;
	    }

          if (psize == pstride[n])
            psize *= pextent[n];
          else
            psize = 0;
        }
146
      pptr = pad->base_addr;
147 148 149 150 151 152 153 154 155
    }
  else
    {
      pdim = 0;
      psize = 1;
      pempty = 1;
      pptr = NULL;
    }

156 157
  if (unlikely (compile_options.bounds_check))
    {
158 159 160 161 162 163
      index_type ret_extent, source_extent;

      rs = 1;
      for (n = 0; n < rdim; n++)
	{
	  rs *= shape_data[n];
164
	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
165 166 167 168 169 170 171
	  if (ret_extent != shape_data[n])
	    runtime_error("Incorrect extent in return value of RESHAPE"
			  " intrinsic in dimension %ld: is %ld,"
			  " should be %ld", (long int) n+1,
			  (long int) ret_extent, (long int) shape_data[n]);
	}

172 173 174 175 176
      source_extent = 1;
      sdim = GFC_DESCRIPTOR_RANK (source);
      for (n = 0; n < sdim; n++)
	{
	  index_type se;
177
	  se = GFC_DESCRIPTOR_EXTENT(source,n);
178 179
	  source_extent *= se > 0 ? se : 0;
	}
180

181
      if (rs > source_extent && (!pad || pempty))
182 183 184 185
	runtime_error("Incorrect size in SOURCE argument to RESHAPE"
		      " intrinsic: is %ld, should be %ld",
		      (long int) source_extent, (long int) rs);

186 187 188 189 190 191 192 193 194 195
      if (order)
	{
	  int seen[GFC_MAX_DIMENSIONS];
	  index_type v;

	  for (n = 0; n < rdim; n++)
	    seen[n] = 0;

	  for (n = 0; n < rdim; n++)
	    {
196
	      v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
197 198 199 200 201 202 203 204 205 206 207 208 209 210

	      if (v < 0 || v >= rdim)
		runtime_error("Value %ld out of range in ORDER argument"
			      " to RESHAPE intrinsic", (long int) v + 1);

	      if (seen[v] != 0)
		runtime_error("Duplicate value %ld in ORDER argument to"
			      " RESHAPE intrinsic", (long int) v + 1);
		
	      seen[v] = 1;
	    }
	}
    }

211 212 213 214
  rsize = 1;
  for (n = 0; n < rdim; n++)
    {
      if (order)
215
        dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
216 217 218 219
      else
        dim = n;

      rcount[n] = 0;
220 221
      rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
      rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
222
      if (rextent[n] < 0)
223
        rextent[n] = 0;
224

225
      if (rextent[n] != shape_data[dim])
226 227 228 229 230 231
        runtime_error ("shape and target do not conform");

      if (rsize == rstride[n])
        rsize *= rextent[n];
      else
        rsize = 0;
232
      if (rextent[n] <= 0)
233 234 235 236 237
        return;
    }

  sdim = GFC_DESCRIPTOR_RANK (source);
  ssize = 1;
238
  sempty = 0;
239 240 241
  for (n = 0; n < sdim; n++)
    {
      scount[n] = 0;
242 243
      sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
      sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
244
      if (sextent[n] <= 0)
245 246 247 248
	{
	  sempty = 1;
	  sextent[n] = 0;
	}
249 250 251 252 253 254 255 256 257

      if (ssize == sstride[n])
        ssize *= sextent[n];
      else
        ssize = 0;
    }

  if (rsize != 0 && ssize != 0 && psize != 0)
    {
258 259 260
      rsize *= sizeof (GFC_INTEGER_4);
      ssize *= sizeof (GFC_INTEGER_4);
      psize *= sizeof (GFC_INTEGER_4);
261 262
      reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
		      ssize, pad ? (char *)pad->base_addr : NULL, psize);
263 264
      return;
    }
265 266
  rptr = ret->base_addr;
  src = sptr = source->base_addr;
267 268 269
  rstride0 = rstride[0];
  sstride0 = sstride[0];

270 271 272 273 274
  if (sempty && pempty)
    abort ();

  if (sempty)
    {
275
      /* Pretend we are using the pad array the first time around, too.  */
276
      src = pptr;
277
      sptr = pptr;
278 279 280 281 282 283
      sdim = pdim;
      for (dim = 0; dim < pdim; dim++)
	{
	  scount[dim] = pcount[dim];
	  sextent[dim] = pextent[dim];
	  sstride[dim] = pstride[dim];
284
	  sstride0 = pstride[0];
285 286 287
	}
    }

288 289 290 291 292 293 294 295 296
  while (rptr)
    {
      /* Select between the source and pad arrays.  */
      *rptr = *src;
      /* Advance to the next element.  */
      rptr += rstride0;
      src += sstride0;
      rcount[0]++;
      scount[0]++;
297

298 299 300 301 302 303 304 305
      /* Advance to the next destination element.  */
      n = 0;
      while (rcount[n] == rextent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          rcount[n] = 0;
          /* We could precalculate these products, but this is a less
306
             frequently used path so probably not worth it.  */
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
          rptr -= rstride[n] * rextent[n];
          n++;
          if (n == rdim)
            {
              /* Break out of the loop.  */
              rptr = NULL;
              break;
            }
          else
            {
              rcount[n]++;
              rptr += rstride[n];
            }
        }
      /* Advance to the next source element.  */
      n = 0;
      while (scount[n] == sextent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          scount[n] = 0;
          /* We could precalculate these products, but this is a less
329
             frequently used path so probably not worth it.  */
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
          src -= sstride[n] * sextent[n];
          n++;
          if (n == sdim)
            {
              if (sptr && pad)
                {
                  /* Switch to the pad array.  */
                  sptr = NULL;
                  sdim = pdim;
                  for (dim = 0; dim < pdim; dim++)
                    {
                      scount[dim] = pcount[dim];
                      sextent[dim] = pextent[dim];
                      sstride[dim] = pstride[dim];
                      sstride0 = sstride[0];
                    }
                }
              /* We now start again from the beginning of the pad array.  */
              src = pptr;
              break;
            }
          else
            {
              scount[n]++;
              src += sstride[n];
            }
        }
    }
}
359 360

#endif