reshape_c4.c 9.19 KB
Newer Older
1
/* Implementation of the RESHAPE intrinsic
2
   Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6 7 8 9

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14 15 16

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25

26
#include "libgfortran.h"
27 28
#include <stdlib.h>
#include <assert.h>
29

30

31 32
#if defined (HAVE_GFC_COMPLEX_4)

33 34 35
typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;


Janne Blomqvist committed
36 37 38 39 40
extern void reshape_c4 (gfc_array_c4 * const restrict, 
	gfc_array_c4 * const restrict, 
	shape_type * const restrict,
	gfc_array_c4 * const restrict, 
	shape_type * const restrict);
41 42 43
export_proto(reshape_c4);

void
Janne Blomqvist committed
44 45 46 47 48
reshape_c4 (gfc_array_c4 * const restrict ret, 
	gfc_array_c4 * const restrict source, 
	shape_type * const restrict shape,
	gfc_array_c4 * const restrict pad, 
	shape_type * const restrict order)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
{
  /* r.* indicates the return array.  */
  index_type rcount[GFC_MAX_DIMENSIONS];
  index_type rextent[GFC_MAX_DIMENSIONS];
  index_type rstride[GFC_MAX_DIMENSIONS];
  index_type rstride0;
  index_type rdim;
  index_type rsize;
  index_type rs;
  index_type rex;
  GFC_COMPLEX_4 *rptr;
  /* s.* indicates the source array.  */
  index_type scount[GFC_MAX_DIMENSIONS];
  index_type sextent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  index_type sdim;
  index_type ssize;
  const GFC_COMPLEX_4 *sptr;
  /* p.* indicates the pad array.  */
  index_type pcount[GFC_MAX_DIMENSIONS];
  index_type pextent[GFC_MAX_DIMENSIONS];
  index_type pstride[GFC_MAX_DIMENSIONS];
  index_type pdim;
  index_type psize;
  const GFC_COMPLEX_4 *pptr;

  const GFC_COMPLEX_4 *src;
  int n;
  int dim;
79 80 81
  int sempty, pempty, shape_empty;
  index_type shape_data[GFC_MAX_DIMENSIONS];

82
  rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
83 84 85 86 87 88 89
  if (rdim != GFC_DESCRIPTOR_RANK(ret))
    runtime_error("rank of return array incorrect in RESHAPE intrinsic");

  shape_empty = 0;

  for (n = 0; n < rdim; n++)
    {
90
      shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
91 92 93 94 95 96
      if (shape_data[n] <= 0)
      {
        shape_data[n] = 0;
	shape_empty = 1;
      }
    }
97

98
  if (ret->base_addr == NULL)
99
    {
100 101
      index_type alloc_size;

102
      rs = 1;
103
      for (n = 0; n < rdim; n++)
104
	{
105
	  rex = shape_data[n];
106 107 108

	  GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);

109 110
	  rs *= rex;
	}
111
      ret->offset = 0;
112 113 114 115 116 117

      if (unlikely (rs < 1))
        alloc_size = 1;
      else
        alloc_size = rs * sizeof (GFC_COMPLEX_4);

118
      ret->base_addr = xmalloc (alloc_size);
119 120
      ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
    }
121 122 123

  if (shape_empty)
    return;
124

125 126 127 128 129 130 131 132
  if (pad)
    {
      pdim = GFC_DESCRIPTOR_RANK (pad);
      psize = 1;
      pempty = 0;
      for (n = 0; n < pdim; n++)
        {
          pcount[n] = 0;
133 134
          pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
          pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
135 136 137 138 139 140 141 142 143 144 145
          if (pextent[n] <= 0)
	    {
	      pempty = 1;
	      pextent[n] = 0;
	    }

          if (psize == pstride[n])
            psize *= pextent[n];
          else
            psize = 0;
        }
146
      pptr = pad->base_addr;
147 148 149 150 151 152 153 154 155
    }
  else
    {
      pdim = 0;
      psize = 1;
      pempty = 1;
      pptr = NULL;
    }

156 157
  if (unlikely (compile_options.bounds_check))
    {
158 159 160 161 162 163
      index_type ret_extent, source_extent;

      rs = 1;
      for (n = 0; n < rdim; n++)
	{
	  rs *= shape_data[n];
164
	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
165 166 167 168 169 170 171
	  if (ret_extent != shape_data[n])
	    runtime_error("Incorrect extent in return value of RESHAPE"
			  " intrinsic in dimension %ld: is %ld,"
			  " should be %ld", (long int) n+1,
			  (long int) ret_extent, (long int) shape_data[n]);
	}

172 173 174 175 176
      source_extent = 1;
      sdim = GFC_DESCRIPTOR_RANK (source);
      for (n = 0; n < sdim; n++)
	{
	  index_type se;
177
	  se = GFC_DESCRIPTOR_EXTENT(source,n);
178 179
	  source_extent *= se > 0 ? se : 0;
	}
180

181
      if (rs > source_extent && (!pad || pempty))
182 183 184 185
	runtime_error("Incorrect size in SOURCE argument to RESHAPE"
		      " intrinsic: is %ld, should be %ld",
		      (long int) source_extent, (long int) rs);

186 187 188 189 190 191 192 193 194 195
      if (order)
	{
	  int seen[GFC_MAX_DIMENSIONS];
	  index_type v;

	  for (n = 0; n < rdim; n++)
	    seen[n] = 0;

	  for (n = 0; n < rdim; n++)
	    {
196
	      v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
197 198 199 200 201 202 203 204 205 206 207 208 209 210

	      if (v < 0 || v >= rdim)
		runtime_error("Value %ld out of range in ORDER argument"
			      " to RESHAPE intrinsic", (long int) v + 1);

	      if (seen[v] != 0)
		runtime_error("Duplicate value %ld in ORDER argument to"
			      " RESHAPE intrinsic", (long int) v + 1);
		
	      seen[v] = 1;
	    }
	}
    }

211 212 213 214
  rsize = 1;
  for (n = 0; n < rdim; n++)
    {
      if (order)
215
        dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
216 217 218 219
      else
        dim = n;

      rcount[n] = 0;
220 221
      rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
      rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
222
      if (rextent[n] < 0)
223
        rextent[n] = 0;
224

225
      if (rextent[n] != shape_data[dim])
226 227 228 229 230 231 232 233 234 235 236 237
        runtime_error ("shape and target do not conform");

      if (rsize == rstride[n])
        rsize *= rextent[n];
      else
        rsize = 0;
      if (rextent[n] <= 0)
        return;
    }

  sdim = GFC_DESCRIPTOR_RANK (source);
  ssize = 1;
238
  sempty = 0;
239 240 241
  for (n = 0; n < sdim; n++)
    {
      scount[n] = 0;
242 243
      sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
      sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
244
      if (sextent[n] <= 0)
245 246 247 248
	{
	  sempty = 1;
	  sextent[n] = 0;
	}
249 250 251 252 253 254 255 256 257

      if (ssize == sstride[n])
        ssize *= sextent[n];
      else
        ssize = 0;
    }

  if (rsize != 0 && ssize != 0 && psize != 0)
    {
258 259 260
      rsize *= sizeof (GFC_COMPLEX_4);
      ssize *= sizeof (GFC_COMPLEX_4);
      psize *= sizeof (GFC_COMPLEX_4);
261 262
      reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
		      ssize, pad ? (char *)pad->base_addr : NULL, psize);
263 264
      return;
    }
265 266
  rptr = ret->base_addr;
  src = sptr = source->base_addr;
267 268 269
  rstride0 = rstride[0];
  sstride0 = sstride[0];

270 271 272 273 274
  if (sempty && pempty)
    abort ();

  if (sempty)
    {
275
      /* Pretend we are using the pad array the first time around, too.  */
276
      src = pptr;
277
      sptr = pptr;
278 279 280 281 282 283
      sdim = pdim;
      for (dim = 0; dim < pdim; dim++)
	{
	  scount[dim] = pcount[dim];
	  sextent[dim] = pextent[dim];
	  sstride[dim] = pstride[dim];
284
	  sstride0 = pstride[0];
285 286 287
	}
    }

288 289 290 291 292 293 294 295 296
  while (rptr)
    {
      /* Select between the source and pad arrays.  */
      *rptr = *src;
      /* Advance to the next element.  */
      rptr += rstride0;
      src += sstride0;
      rcount[0]++;
      scount[0]++;
297

298 299 300 301 302 303 304 305
      /* Advance to the next destination element.  */
      n = 0;
      while (rcount[n] == rextent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          rcount[n] = 0;
          /* We could precalculate these products, but this is a less
306
             frequently used path so probably not worth it.  */
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
          rptr -= rstride[n] * rextent[n];
          n++;
          if (n == rdim)
            {
              /* Break out of the loop.  */
              rptr = NULL;
              break;
            }
          else
            {
              rcount[n]++;
              rptr += rstride[n];
            }
        }
      /* Advance to the next source element.  */
      n = 0;
      while (scount[n] == sextent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          scount[n] = 0;
          /* We could precalculate these products, but this is a less
329
             frequently used path so probably not worth it.  */
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
          src -= sstride[n] * sextent[n];
          n++;
          if (n == sdim)
            {
              if (sptr && pad)
                {
                  /* Switch to the pad array.  */
                  sptr = NULL;
                  sdim = pdim;
                  for (dim = 0; dim < pdim; dim++)
                    {
                      scount[dim] = pcount[dim];
                      sextent[dim] = pextent[dim];
                      sstride[dim] = pstride[dim];
                      sstride0 = sstride[0];
                    }
                }
              /* We now start again from the beginning of the pad array.  */
              src = pptr;
              break;
            }
          else
            {
              scount[n]++;
              src += sstride[n];
            }
        }
    }
}
359 360

#endif