pack_i4.c 7.4 KB
Newer Older
1
/* Specific implementation of the PACK intrinsic
2
   Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6 7 8 9

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14 15 16

Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>


#if defined (HAVE_GFC_INTEGER_4)

/* PACK is specified as follows:

   13.14.80 PACK (ARRAY, MASK, [VECTOR])

   Description: Pack an array into an array of rank one under the
   control of a mask.

   Class: Transformational function.

   Arguments:
      ARRAY   may be of any type. It shall not be scalar.
      MASK    shall be of type LOGICAL. It shall be conformable with ARRAY.
      VECTOR  (optional) shall be of the same type and type parameters
              as ARRAY. VECTOR shall have at least as many elements as
              there are true elements in MASK. If MASK is a scalar
              with the value true, VECTOR shall have at least as many
              elements as there are in ARRAY.

   Result Characteristics: The result is an array of rank one with the
   same type and type parameters as ARRAY. If VECTOR is present, the
   result size is that of VECTOR; otherwise, the result size is the
   number /t/ of true elements in MASK unless MASK is scalar with the
   value true, in which case the result size is the size of ARRAY.

   Result Value: Element /i/ of the result is the element of ARRAY
   that corresponds to the /i/th true element of MASK, taking elements
   in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
   present and has size /n/ > /t/, element /i/ of the result has the
   value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.

   Examples: The nonzero elements of an array M with the value
   | 0 0 0 |
   | 9 0 0 | may be "gathered" by the function PACK. The result of
   | 0 0 7 |
   PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
   VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].

There are two variants of the PACK intrinsic: one, where MASK is
array valued, and the other one where MASK is scalar.  */

void
pack_i4 (gfc_array_i4 *ret, const gfc_array_i4 *array,
	       const gfc_array_l1 *mask, const gfc_array_i4 *vector)
{
  /* r.* indicates the return array.  */
  index_type rstride0;
80
  GFC_INTEGER_4 * restrict rptr;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  const GFC_INTEGER_4 *sptr;
  /* m.* indicates the mask array.  */
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride0;
  const GFC_LOGICAL_1 *mptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  int zero_sized;
  index_type n;
  index_type dim;
  index_type nelem;
  index_type total;
  int mask_kind;

  dim = GFC_DESCRIPTOR_RANK (array);

101
  mptr = mask->base_addr;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

  /* Use the same loop for all logical types, by using GFC_LOGICAL_1
     and using shifting to address size and endian issues.  */

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    {
      /*  Do not convert a NULL pointer as we use test for NULL below.  */
      if (mptr)
	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
    }
  else
    runtime_error ("Funny sized logical array");

  zero_sized = 0;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
125
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
126 127
      if (extent[n] <= 0)
       zero_sized = 1;
128 129
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
130 131 132 133 134 135
    }
  if (sstride[0] == 0)
    sstride[0] = 1;
  if (mstride[0] == 0)
    mstride[0] = mask_kind;

136 137 138
  if (zero_sized)
    sptr = NULL;
  else
139
    sptr = array->base_addr;
140

141
  if (ret->base_addr == NULL || unlikely (compile_options.bounds_check))
142 143 144 145 146 147 148 149
    {
      /* Count the elements, either for allocating memory or
	 for bounds checking.  */

      if (vector != NULL)
	{
	  /* The return array will have as many
	     elements as there are in VECTOR.  */
150
	  total = GFC_DESCRIPTOR_EXTENT(vector,0);
151 152 153 154 155
	  if (total < 0)
	    {
	      total = 0;
	      vector = NULL;
	    }
156 157
	}
      else
158 159 160 161
        {
      	  /* We have to count the true elements in MASK.  */
	  total = count_0 (mask);
        }
162

163
      if (ret->base_addr == NULL)
164 165
	{
	  /* Setup the array descriptor.  */
166
	  GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1);
167 168

	  ret->offset = 0;
169

170 171
	  /* xmalloc allocates a single byte for zero size.  */
	  ret->base_addr = xmalloc (sizeof (GFC_INTEGER_4) * total);
172

173
	  if (total == 0)
174
	    return;
175 176 177 178 179 180
	}
      else 
	{
	  /* We come here because of range checking.  */
	  index_type ret_extent;

181
	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0);
182 183 184 185 186 187 188
	  if (total != ret_extent)
	    runtime_error ("Incorrect extent in return value of PACK intrinsic;"
			   " is %ld, should be %ld", (long int) total,
			   (long int) ret_extent);
	}
    }

189
  rstride0 = GFC_DESCRIPTOR_STRIDE(ret,0);
190 191 192 193
  if (rstride0 == 0)
    rstride0 = 1;
  sstride0 = sstride[0];
  mstride0 = mstride[0];
194
  rptr = ret->base_addr;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

  while (sptr && mptr)
    {
      /* Test this element.  */
      if (*mptr)
        {
          /* Add it.  */
	  *rptr = *sptr;
          rptr += rstride0;
        }
      /* Advance to the next element.  */
      sptr += sstride0;
      mptr += mstride0;
      count[0]++;
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          sptr -= sstride[n] * extent[n];
          mptr -= mstride[n] * extent[n];
          n++;
          if (n >= dim)
            {
              /* Break out of the loop.  */
              sptr = NULL;
              break;
            }
          else
            {
              count[n]++;
              sptr += sstride[n];
              mptr += mstride[n];
            }
        }
    }

  /* Add any remaining elements from VECTOR.  */
  if (vector)
    {
238
      n = GFC_DESCRIPTOR_EXTENT(vector,0);
239
      nelem = ((rptr - ret->base_addr) / rstride0);
240 241
      if (n > nelem)
        {
242
          sstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
243 244 245
          if (sstride0 == 0)
            sstride0 = 1;

246
          sptr = vector->base_addr + sstride0 * nelem;
247 248 249 250 251 252 253 254 255 256 257 258
          n -= nelem;
          while (n--)
            {
	      *rptr = *sptr;
              rptr += rstride0;
              sptr += sstride0;
            }
        }
    }
}

#endif
259