dse.c 109 KB
Newer Older
1
/* RTL dead store elimination.
2
   Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10

   Contributed by Richard Sandiford <rsandifor@codesourcery.com>
   and Kenneth Zadeck <zadeck@naturalbridge.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12 13 14 15 16 17 18 19
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
20 21
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
22 23 24 25 26 27

#undef BASELINE

#include "config.h"
#include "system.h"
#include "coretypes.h"
28
#include "hash-table.h"
29 30 31
#include "tm.h"
#include "rtl.h"
#include "tree.h"
32
#include "stor-layout.h"
33
#include "tm_p.h"
34 35
#include "regs.h"
#include "hard-reg-set.h"
36
#include "regset.h"
37 38 39 40 41 42 43 44 45
#include "flags.h"
#include "df.h"
#include "cselib.h"
#include "tree-pass.h"
#include "alloc-pool.h"
#include "alias.h"
#include "insn-config.h"
#include "expr.h"
#include "recog.h"
46
#include "optabs.h"
47
#include "dbgcnt.h"
48
#include "target.h"
49
#include "params.h"
50 51 52 53 54
#include "pointer-set.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
55 56
#include "gimple.h"
#include "gimple-ssa.h"
57 58

/* This file contains three techniques for performing Dead Store
H.J. Lu committed
59
   Elimination (dse).
60 61 62 63 64

   * The first technique performs dse locally on any base address.  It
   is based on the cselib which is a local value numbering technique.
   This technique is local to a basic block but deals with a fairly
   general addresses.
H.J. Lu committed
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
   * The second technique performs dse globally but is restricted to
   base addresses that are either constant or are relative to the
   frame_pointer.

   * The third technique, (which is only done after register allocation)
   processes the spill spill slots.  This differs from the second
   technique because it takes advantage of the fact that spilling is
   completely free from the effects of aliasing.

   Logically, dse is a backwards dataflow problem.  A store can be
   deleted if it if cannot be reached in the backward direction by any
   use of the value being stored.  However, the local technique uses a
   forwards scan of the basic block because cselib requires that the
   block be processed in that order.

   The pass is logically broken into 7 steps:

   0) Initialization.

   1) The local algorithm, as well as scanning the insns for the two
   global algorithms.

   2) Analysis to see if the global algs are necessary.  In the case
   of stores base on a constant address, there must be at least two
   stores to that address, to make it possible to delete some of the
   stores.  In the case of stores off of the frame or spill related
   stores, only one store to an address is necessary because those
   stores die at the end of the function.

H.J. Lu committed
95
   3) Set up the global dataflow equations based on processing the
96 97 98 99 100 101 102
   info parsed in the first step.

   4) Solve the dataflow equations.

   5) Delete the insns that the global analysis has indicated are
   unnecessary.

Joseph Myers committed
103
   6) Delete insns that store the same value as preceding store
104 105 106
   where the earlier store couldn't be eliminated.

   7) Cleanup.
107 108 109 110 111

   This step uses cselib and canon_rtx to build the largest expression
   possible for each address.  This pass is a forwards pass through
   each basic block.  From the point of view of the global technique,
   the first pass could examine a block in either direction.  The
112
   forwards ordering is to accommodate cselib.
113

114
   We make a simplifying assumption: addresses fall into four broad
115 116 117 118 119 120 121 122
   categories:

   1) base has rtx_varies_p == false, offset is constant.
   2) base has rtx_varies_p == false, offset variable.
   3) base has rtx_varies_p == true, offset constant.
   4) base has rtx_varies_p == true, offset variable.

   The local passes are able to process all 4 kinds of addresses.  The
123
   global pass only handles 1).
124 125 126 127 128

   The global problem is formulated as follows:

     A store, S1, to address A, where A is not relative to the stack
     frame, can be eliminated if all paths from S1 to the end of the
129
     function contain another store to A before a read to A.
130 131

     If the address A is relative to the stack frame, a store S2 to A
132
     can be eliminated if there are no paths from S2 that reach the
133
     end of the function that read A before another store to A.  In
134
     this case S2 can be deleted if there are paths from S2 to the
135 136 137 138 139 140 141 142 143 144
     end of the function that have no reads or writes to A.  This
     second case allows stores to the stack frame to be deleted that
     would otherwise die when the function returns.  This cannot be
     done if stores_off_frame_dead_at_return is not true.  See the doc
     for that variable for when this variable is false.

     The global problem is formulated as a backwards set union
     dataflow problem where the stores are the gens and reads are the
     kills.  Set union problems are rare and require some special
     handling given our representation of bitmaps.  A straightforward
145
     implementation requires a lot of bitmaps filled with 1s.
146 147 148
     These are expensive and cumbersome in our bitmap formulation so
     care has been taken to avoid large vectors filled with 1s.  See
     the comments in bb_info and in the dataflow confluence functions
H.J. Lu committed
149
     for details.
150 151

   There are two places for further enhancements to this algorithm:
H.J. Lu committed
152

153 154 155 156 157 158 159
   1) The original dse which was embedded in a pass called flow also
   did local address forwarding.  For example in

   A <- r100
   ... <- A

   flow would replace the right hand side of the second insn with a
160
   reference to r100.  Most of the information is available to add this
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
   to this pass.  It has not done it because it is a lot of work in
   the case that either r100 is assigned to between the first and
   second insn and/or the second insn is a load of part of the value
   stored by the first insn.

   insn 5 in gcc.c-torture/compile/990203-1.c simple case.
   insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
   insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
   insn 44 in gcc.c-torture/execute/20010910-1.c simple case.

   2) The cleaning up of spill code is quite profitable.  It currently
   depends on reading tea leaves and chicken entrails left by reload.
   This pass depends on reload creating a singleton alias set for each
   spill slot and telling the next dse pass which of these alias sets
   are the singletons.  Rather than analyze the addresses of the
   spills, dse's spill processing just does analysis of the loads and
   stores that use those alias sets.  There are three cases where this
   falls short:

     a) Reload sometimes creates the slot for one mode of access, and
     then inserts loads and/or stores for a smaller mode.  In this
     case, the current code just punts on the slot.  The proper thing
     to do is to back out and use one bit vector position for each
     byte of the entity associated with the slot.  This depends on
     KNOWING that reload always generates the accesses for each of the
     bytes in some canonical (read that easy to understand several
     passes after reload happens) way.

     b) Reload sometimes decides that spill slot it allocated was not
     large enough for the mode and goes back and allocates more slots
     with the same mode and alias set.  The backout in this case is a
     little more graceful than (a).  In this case the slot is unmarked
     as being a spill slot and if final address comes out to be based
H.J. Lu committed
194
     off the frame pointer, the global algorithm handles this slot.
195 196 197 198

     c) For any pass that may prespill, there is currently no
     mechanism to tell the dse pass that the slot being used has the
     special properties that reload uses.  It may be that all that is
199
     required is to have those passes make the same calls that reload
200 201 202 203 204 205 206 207 208
     does, assuming that the alias sets can be manipulated in the same
     way.  */

/* There are limits to the size of constant offsets we model for the
   global problem.  There are certainly test cases, that exceed this
   limit, however, it is unlikely that there are important programs
   that really have constant offsets this size.  */
#define MAX_OFFSET (64 * 1024)

209 210 211 212 213 214 215 216 217 218 219 220 221
/* Obstack for the DSE dataflow bitmaps.  We don't want to put these
   on the default obstack because these bitmaps can grow quite large
   (~2GB for the small (!) test case of PR54146) and we'll hold on to
   all that memory until the end of the compiler run.
   As a bonus, delete_tree_live_info can destroy all the bitmaps by just
   releasing the whole obstack.  */
static bitmap_obstack dse_bitmap_obstack;

/* Obstack for other data.  As for above: Kinda nice to be able to
   throw it all away at the end in one big sweep.  */
static struct obstack dse_obstack;

/* Scratch bitmap for cselib's cselib_expand_value_rtx.  */
222
static bitmap scratch = NULL;
223

224 225 226
struct insn_info;

/* This structure holds information about a candidate store.  */
H.J. Lu committed
227
struct store_info
228 229 230 231 232
{

  /* False means this is a clobber.  */
  bool is_set;

233 234 235
  /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
  bool is_large;

236 237 238 239
  /* The id of the mem group of the base address.  If rtx_varies_p is
     true, this is -1.  Otherwise, it is the index into the group
     table.  */
  int group_id;
H.J. Lu committed
240

241 242 243 244 245 246
  /* This is the cselib value.  */
  cselib_val *cse_base;

  /* This canonized mem.  */
  rtx mem;

247
  /* Canonized MEM address for use by canon_true_dependence.  */
248 249 250
  rtx mem_addr;

  /* If this is non-zero, it is the alias set of a spill location.  */
251
  alias_set_type alias_set;
252 253 254

  /* The offset of the first and byte before the last byte associated
     with the operation.  */
255 256 257 258 259 260 261 262 263 264 265 266 267
  HOST_WIDE_INT begin, end;

  union
    {
      /* A bitmask as wide as the number of bytes in the word that
	 contains a 1 if the byte may be needed.  The store is unused if
	 all of the bits are 0.  This is used if IS_LARGE is false.  */
      unsigned HOST_WIDE_INT small_bitmask;

      struct
	{
	  /* A bitmap with one bit per byte.  Cleared bit means the position
	     is needed.  Used if IS_LARGE is false.  */
268
	  bitmap bmap;
269

270 271 272 273 274
	  /* Number of set bits (i.e. unneeded bytes) in BITMAP.  If it is
	     equal to END - BEGIN, the whole store is unused.  */
	  int count;
	} large;
    } positions_needed;
275 276 277 278 279 280 281

  /* The next store info for this insn.  */
  struct store_info *next;

  /* The right hand side of the store.  This is used if there is a
     subsequent reload of the mems address somewhere later in the
     basic block.  */
282 283 284 285 286 287 288 289 290 291
  rtx rhs;

  /* If rhs is or holds a constant, this contains that constant,
     otherwise NULL.  */
  rtx const_rhs;

  /* Set if this store stores the same constant value as REDUNDANT_REASON
     insn stored.  These aren't eliminated early, because doing that
     might prevent the earlier larger store to be eliminated.  */
  struct insn_info *redundant_reason;
292 293
};

294 295 296 297 298 299 300 301 302
/* Return a bitmask with the first N low bits set.  */

static unsigned HOST_WIDE_INT
lowpart_bitmask (int n)
{
  unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
  return mask >> (HOST_BITS_PER_WIDE_INT - n);
}

303 304 305 306 307 308
typedef struct store_info *store_info_t;
static alloc_pool cse_store_info_pool;
static alloc_pool rtx_store_info_pool;

/* This structure holds information about a load.  These are only
   built for rtx bases.  */
H.J. Lu committed
309
struct read_info
310 311 312 313 314
{
  /* The id of the mem group of the base address.  */
  int group_id;

  /* If this is non-zero, it is the alias set of a spill location.  */
315
  alias_set_type alias_set;
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

  /* The offset of the first and byte after the last byte associated
     with the operation.  If begin == end == 0, the read did not have
     a constant offset.  */
  int begin, end;

  /* The mem being read.  */
  rtx mem;

  /* The next read_info for this insn.  */
  struct read_info *next;
};
typedef struct read_info *read_info_t;
static alloc_pool read_info_pool;


/* One of these records is created for each insn.  */

H.J. Lu committed
334
struct insn_info
335 336 337 338 339 340 341 342 343 344 345 346 347
{
  /* Set true if the insn contains a store but the insn itself cannot
     be deleted.  This is set if the insn is a parallel and there is
     more than one non dead output or if the insn is in some way
     volatile.  */
  bool cannot_delete;

  /* This field is only used by the global algorithm.  It is set true
     if the insn contains any read of mem except for a (1).  This is
     also set if the insn is a call or has a clobber mem.  If the insn
     contains a wild read, the use_rec will be null.  */
  bool wild_read;

348 349 350 351 352
  /* This is true only for CALL instructions which could potentially read
     any non-frame memory location. This field is used by the global
     algorithm.  */
  bool non_frame_wild_read;

353 354
  /* This field is only used for the processing of const functions.
     These functions cannot read memory, but they can read the stack
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
     because that is where they may get their parms.  We need to be
     this conservative because, like the store motion pass, we don't
     consider CALL_INSN_FUNCTION_USAGE when processing call insns.
     Moreover, we need to distinguish two cases:
     1. Before reload (register elimination), the stores related to
	outgoing arguments are stack pointer based and thus deemed
	of non-constant base in this pass.  This requires special
	handling but also means that the frame pointer based stores
	need not be killed upon encountering a const function call.
     2. After reload, the stores related to outgoing arguments can be
	either stack pointer or hard frame pointer based.  This means
	that we have no other choice than also killing all the frame
	pointer based stores upon encountering a const function call.
     This field is set after reload for const function calls.  Having
     this set is less severe than a wild read, it just means that all
     the frame related stores are killed rather than all the stores.  */
  bool frame_read;

  /* This field is only used for the processing of const functions.
     It is set if the insn may contain a stack pointer based store.  */
375
  bool stack_pointer_based;
376 377 378 379 380 381 382 383 384 385 386 387 388

  /* This is true if any of the sets within the store contains a
     cselib base.  Such stores can only be deleted by the local
     algorithm.  */
  bool contains_cselib_groups;

  /* The insn. */
  rtx insn;

  /* The list of mem sets or mem clobbers that are contained in this
     insn.  If the insn is deletable, it contains only one mem set.
     But it could also contain clobbers.  Insns that contain more than
     one mem set are not deletable, but each of those mems are here in
389
     order to provide info to delete other insns.  */
390 391 392 393 394 395 396 397
  store_info_t store_rec;

  /* The linked list of mem uses in this insn.  Only the reads from
     rtx bases are listed here.  The reads to cselib bases are
     completely processed during the first scan and so are never
     created.  */
  read_info_t read_rec;

398 399 400 401 402 403 404
  /* The live fixed registers.  We assume only fixed registers can
     cause trouble by being clobbered from an expanded pattern;
     storing only the live fixed registers (rather than all registers)
     means less memory needs to be allocated / copied for the individual
     stores.  */
  regset fixed_regs_live;

405 406 407 408
  /* The prev insn in the basic block.  */
  struct insn_info * prev_insn;

  /* The linked list of insns that are in consideration for removal in
Joseph Myers committed
409
     the forwards pass through the basic block.  This pointer may be
410
     trash as it is not cleared when a wild read occurs.  The only
411
     time it is guaranteed to be correct is when the traversal starts
412 413 414 415 416 417 418 419
     at active_local_stores.  */
  struct insn_info * next_local_store;
};

typedef struct insn_info *insn_info_t;
static alloc_pool insn_info_pool;

/* The linked list of stores that are under consideration in this
H.J. Lu committed
420
   basic block.  */
421
static insn_info_t active_local_stores;
422
static int active_local_stores_len;
423

H.J. Lu committed
424
struct bb_info
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
{

  /* Pointer to the insn info for the last insn in the block.  These
     are linked so this is how all of the insns are reached.  During
     scanning this is the current insn being scanned.  */
  insn_info_t last_insn;

  /* The info for the global dataflow problem.  */


  /* This is set if the transfer function should and in the wild_read
     bitmap before applying the kill and gen sets.  That vector knocks
     out most of the bits in the bitmap and thus speeds up the
     operations.  */
  bool apply_wild_read;

441 442 443 444
  /* The following 4 bitvectors hold information about which positions
     of which stores are live or dead.  They are indexed by
     get_bitmap_index.  */

445 446
  /* The set of store positions that exist in this block before a wild read.  */
  bitmap gen;
H.J. Lu committed
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  /* The set of load positions that exist in this block above the
     same position of a store.  */
  bitmap kill;

  /* The set of stores that reach the top of the block without being
     killed by a read.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill set, this is too
     expensive.  So initially, the in set will only be created for the
     exit block and any block that contains a wild read.  */
  bitmap in;

  /* The set of stores that reach the bottom of the block from it's
     successors.

     Do not represent the in if it is all ones.  Note that this is
     what the bitvector should logically be initialized to for a set
     intersection problem.  However, like the kill and in set, this is
     too expensive.  So what is done is that the confluence operator
     just initializes the vector from one of the out sets of the
     successors of the block.  */
  bitmap out;
472 473 474 475

  /* The following bitvector is indexed by the reg number.  It
     contains the set of regs that are live at the current instruction
     being processed.  While it contains info for all of the
476 477
     registers, only the hard registers are actually examined.  It is used
     to assure that shift and/or add sequences that are inserted do not
Joseph Myers committed
478
     accidentally clobber live hard regs.  */
479
  bitmap regs_live;
480 481 482 483 484 485 486 487 488 489 490 491
};

typedef struct bb_info *bb_info_t;
static alloc_pool bb_info_pool;

/* Table to hold all bb_infos.  */
static bb_info_t *bb_table;

/* There is a group_info for each rtx base that is used to reference
   memory.  There are also not many of the rtx bases because they are
   very limited in scope.  */

H.J. Lu committed
492
struct group_info
493 494 495 496 497 498 499 500
{
  /* The actual base of the address.  */
  rtx rtx_base;

  /* The sequential id of the base.  This allows us to have a
     canonical ordering of these that is not based on addresses.  */
  int id;

501 502 503 504 505 506 507 508
  /* True if there are any positions that are to be processed
     globally.  */
  bool process_globally;

  /* True if the base of this group is either the frame_pointer or
     hard_frame_pointer.  */
  bool frame_related;

509 510 511
  /* A mem wrapped around the base pointer for the group in order to do
     read dependency.  It must be given BLKmode in order to encompass all
     the possible offsets from the base.  */
512
  rtx base_mem;
H.J. Lu committed
513

514 515
  /* Canonized version of base_mem's address.  */
  rtx canon_base_addr;
516 517

  /* These two sets of two bitmaps are used to keep track of how many
518
     stores are actually referencing that position from this base.  We
519
     only do this for rtx bases as this will be used to assign
520
     positions in the bitmaps for the global problem.  Bit N is set in
521 522 523 524 525 526 527 528 529 530 531 532 533 534
     store1 on the first store for offset N.  Bit N is set in store2
     for the second store to offset N.  This is all we need since we
     only care about offsets that have two or more stores for them.

     The "_n" suffix is for offsets less than 0 and the "_p" suffix is
     for 0 and greater offsets.

     There is one special case here, for stores into the stack frame,
     we will or store1 into store2 before deciding which stores look
     at globally.  This is because stores to the stack frame that have
     no other reads before the end of the function can also be
     deleted.  */
  bitmap store1_n, store1_p, store2_n, store2_p;

535 536 537 538 539
  /* These bitmaps keep track of offsets in this group escape this function.
     An offset escapes if it corresponds to a named variable whose
     addressable flag is set.  */
  bitmap escaped_n, escaped_p;

540
  /* The positions in this bitmap have the same assignments as the in,
541
     out, gen and kill bitmaps.  This bitmap is all zeros except for
542
     the positions that are occupied by stores for this group.  */
543 544 545
  bitmap group_kill;

  /* The offset_map is used to map the offsets from this base into
546
     positions in the global bitmaps.  It is only created after all of
547 548
     the all of stores have been scanned and we know which ones we
     care about.  */
H.J. Lu committed
549 550
  int *offset_map_n, *offset_map_p;
  int offset_map_size_n, offset_map_size_p;
551 552
};
typedef struct group_info *group_info_t;
553
typedef const struct group_info *const_group_info_t;
554 555 556 557 558 559
static alloc_pool rtx_group_info_pool;

/* Index into the rtx_group_vec.  */
static int rtx_group_next_id;


560
static vec<group_info_t> rtx_group_vec;
561 562 563 564


/* This structure holds the set of changes that are being deferred
   when removing read operation.  See replace_read.  */
H.J. Lu committed
565
struct deferred_change
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
{

  /* The mem that is being replaced.  */
  rtx *loc;

  /* The reg it is being replaced with.  */
  rtx reg;

  struct deferred_change *next;
};

typedef struct deferred_change *deferred_change_t;
static alloc_pool deferred_change_pool;

static deferred_change_t deferred_change_list = NULL;

/* The group that holds all of the clear_alias_sets.  */
static group_info_t clear_alias_group;

/* The modes of the clear_alias_sets.  */
static htab_t clear_alias_mode_table;

/* Hash table element to look up the mode for an alias set.  */
struct clear_alias_mode_holder
{
591
  alias_set_type alias_set;
592 593 594
  enum machine_mode mode;
};

595
/* This is true except if cfun->stdarg -- i.e. we cannot do
596
   this for vararg functions because they play games with the frame.  */
597 598 599
static bool stores_off_frame_dead_at_return;

/* Counter for stats.  */
H.J. Lu committed
600 601 602 603
static int globally_deleted;
static int locally_deleted;
static int spill_deleted;

604 605
static bitmap all_blocks;

606 607 608
/* Locations that are killed by calls in the global phase.  */
static bitmap kill_on_calls;

609 610 611 612
/* The number of bits used in the global bitmaps.  */
static unsigned int current_position;


613 614
static bool gate_dse1 (void);
static bool gate_dse2 (void);
615 616 617 618 619


/*----------------------------------------------------------------------------
   Zeroth step.

H.J. Lu committed
620
   Initialization.
621 622 623 624 625 626
----------------------------------------------------------------------------*/


/* Find the entry associated with ALIAS_SET.  */

static struct clear_alias_mode_holder *
627
clear_alias_set_lookup (alias_set_type alias_set)
628 629 630
{
  struct clear_alias_mode_holder tmp_holder;
  void **slot;
H.J. Lu committed
631

632 633 634
  tmp_holder.alias_set = alias_set;
  slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
  gcc_assert (*slot);
H.J. Lu committed
635

636
  return (struct clear_alias_mode_holder *) *slot;
637 638 639 640 641 642
}


/* Hashtable callbacks for maintaining the "bases" field of
   store_group_info, given that the addresses are function invariants.  */

643 644
struct invariant_group_base_hasher : typed_noop_remove <group_info>
{
645 646 647 648
  typedef group_info value_type;
  typedef group_info compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
649 650 651
};

inline bool
652 653
invariant_group_base_hasher::equal (const value_type *gi1,
				    const compare_type *gi2)
654 655 656 657
{
  return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
}

658
inline hashval_t
659
invariant_group_base_hasher::hash (const value_type *gi)
660 661 662 663 664
{
  int do_not_record;
  return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
}

665 666 667
/* Tables of group_info structures, hashed by base value.  */
static hash_table <invariant_group_base_hasher> rtx_group_table;

668 669 670 671 672 673

/* Get the GROUP for BASE.  Add a new group if it is not there.  */

static group_info_t
get_group_info (rtx base)
{
H.J. Lu committed
674 675
  struct group_info tmp_gi;
  group_info_t gi;
676
  group_info **slot;
677 678 679 680 681 682

  if (base)
    {
      /* Find the store_base_info structure for BASE, creating a new one
	 if necessary.  */
      tmp_gi.rtx_base = base;
683
      slot = rtx_group_table.find_slot (&tmp_gi, INSERT);
684 685 686 687 688 689
      gi = (group_info_t) *slot;
    }
  else
    {
      if (!clear_alias_group)
	{
690 691
	  clear_alias_group = gi =
	    (group_info_t) pool_alloc (rtx_group_info_pool);
692 693
	  memset (gi, 0, sizeof (struct group_info));
	  gi->id = rtx_group_next_id++;
694 695 696 697 698 699 700
	  gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
	  gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
701 702 703 704 705
	  gi->process_globally = false;
	  gi->offset_map_size_n = 0;
	  gi->offset_map_size_p = 0;
	  gi->offset_map_n = NULL;
	  gi->offset_map_p = NULL;
706
	  rtx_group_vec.safe_push (gi);
707 708 709 710 711 712
	}
      return clear_alias_group;
    }

  if (gi == NULL)
    {
713
      *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
714 715
      gi->rtx_base = base;
      gi->id = rtx_group_next_id++;
716
      gi->base_mem = gen_rtx_MEM (BLKmode, base);
717
      gi->canon_base_addr = canon_rtx (base);
718 719 720 721 722 723 724
      gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
      gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
725
      gi->process_globally = false;
H.J. Lu committed
726
      gi->frame_related =
727 728 729 730 731
	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
      gi->offset_map_size_n = 0;
      gi->offset_map_size_p = 0;
      gi->offset_map_n = NULL;
      gi->offset_map_p = NULL;
732
      rtx_group_vec.safe_push (gi);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    }

  return gi;
}


/* Initialization of data structures.  */

static void
dse_step0 (void)
{
  locally_deleted = 0;
  globally_deleted = 0;
  spill_deleted = 0;

748 749 750 751 752
  bitmap_obstack_initialize (&dse_bitmap_obstack);
  gcc_obstack_init (&dse_obstack);

  scratch = BITMAP_ALLOC (&reg_obstack);
  kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
753 754

  rtx_store_info_pool
H.J. Lu committed
755
    = create_alloc_pool ("rtx_store_info_pool",
756 757
			 sizeof (struct store_info), 100);
  read_info_pool
H.J. Lu committed
758
    = create_alloc_pool ("read_info_pool",
759 760
			 sizeof (struct read_info), 100);
  insn_info_pool
H.J. Lu committed
761
    = create_alloc_pool ("insn_info_pool",
762 763
			 sizeof (struct insn_info), 100);
  bb_info_pool
H.J. Lu committed
764
    = create_alloc_pool ("bb_info_pool",
765 766
			 sizeof (struct bb_info), 100);
  rtx_group_info_pool
H.J. Lu committed
767
    = create_alloc_pool ("rtx_group_info_pool",
768 769
			 sizeof (struct group_info), 100);
  deferred_change_pool
H.J. Lu committed
770
    = create_alloc_pool ("deferred_change_pool",
771 772
			 sizeof (struct deferred_change), 10);

773
  rtx_group_table.create (11);
774

775
  bb_table = XNEWVEC (bb_info_t, last_basic_block);
776 777
  rtx_group_next_id = 0;

778
  stores_off_frame_dead_at_return = !cfun->stdarg;
779 780

  init_alias_analysis ();
H.J. Lu committed
781

782
  clear_alias_group = NULL;
783 784 785 786 787 788 789 790
}



/*----------------------------------------------------------------------------
   First step.

   Scan all of the insns.  Any random ordering of the blocks is fine.
791
   Each block is scanned in forward order to accommodate cselib which
792 793 794 795 796
   is used to remove stores with non-constant bases.
----------------------------------------------------------------------------*/

/* Delete all of the store_info recs from INSN_INFO.  */

H.J. Lu committed
797
static void
798 799 800 801 802 803
free_store_info (insn_info_t insn_info)
{
  store_info_t store_info = insn_info->store_rec;
  while (store_info)
    {
      store_info_t next = store_info->next;
804
      if (store_info->is_large)
805
	BITMAP_FREE (store_info->positions_needed.large.bmap);
806 807 808 809 810 811 812 813 814 815 816 817
      if (store_info->cse_base)
	pool_free (cse_store_info_pool, store_info);
      else
	pool_free (rtx_store_info_pool, store_info);
      store_info = next;
    }

  insn_info->cannot_delete = true;
  insn_info->contains_cselib_groups = false;
  insn_info->store_rec = NULL;
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
typedef struct
{
  rtx first, current;
  regset fixed_regs_live;
  bool failure;
} note_add_store_info;

/* Callback for emit_inc_dec_insn_before via note_stores.
   Check if a register is clobbered which is live afterwards.  */

static void
note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
{
  rtx insn;
  note_add_store_info *info = (note_add_store_info *) data;
  int r, n;

  if (!REG_P (loc))
    return;

  /* If this register is referenced by the current or an earlier insn,
     that's OK.  E.g. this applies to the register that is being incremented
     with this addition.  */
  for (insn = info->first;
       insn != NEXT_INSN (info->current);
       insn = NEXT_INSN (insn))
    if (reg_referenced_p (loc, PATTERN (insn)))
      return;

  /* If we come here, we have a clobber of a register that's only OK
     if that register is not live.  If we don't have liveness information
     available, fail now.  */
  if (!info->fixed_regs_live)
    {
      info->failure =  true;
      return;
    }
  /* Now check if this is a live fixed register.  */
  r = REGNO (loc);
  n = hard_regno_nregs[r][GET_MODE (loc)];
  while (--n >=  0)
    if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
      info->failure =  true;
}

863 864
/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
   SRC + SRCOFF before insn ARG.  */
865 866

static int
867 868 869
emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
			  rtx op ATTRIBUTE_UNUSED,
			  rtx dest, rtx src, rtx srcoff, void *arg)
870
{
871 872 873
  insn_info_t insn_info = (insn_info_t) arg;
  rtx insn = insn_info->insn, new_insn, cur;
  note_add_store_info info;
H.J. Lu committed
874

875 876
  /* We can reuse all operands without copying, because we are about
     to delete the insn that contained it.  */
877
  if (srcoff)
878 879 880 881 882 883
    {
      start_sequence ();
      emit_insn (gen_add3_insn (dest, src, srcoff));
      new_insn = get_insns ();
      end_sequence ();
    }
884 885 886 887 888 889 890 891 892 893
  else
    new_insn = gen_move_insn (dest, src);
  info.first = new_insn;
  info.fixed_regs_live = insn_info->fixed_regs_live;
  info.failure = false;
  for (cur = new_insn; cur; cur = NEXT_INSN (cur))
    {
      info.current = cur;
      note_stores (PATTERN (cur), note_add_store, &info);
    }
894

895 896 897 898 899 900
  /* If a failure was flagged above, return 1 so that for_each_inc_dec will
     return it immediately, communicating the failure to its caller.  */
  if (info.failure)
    return 1;

  emit_insn_before (new_insn, insn);
901

902
  return -1;
903 904
}

905 906 907
/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
   is there, is split into a separate insn.
   Return true on success (or if there was nothing to do), false on failure.  */
908

909 910
static bool
check_for_inc_dec_1 (insn_info_t insn_info)
911
{
912
  rtx insn = insn_info->insn;
913 914
  rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
915 916
    return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
  return true;
917 918 919
}


920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/* Entry point for postreload.  If you work on reload_cse, or you need this
   anywhere else, consider if you can provide register liveness information
   and add a parameter to this function so that it can be passed down in
   insn_info.fixed_regs_live.  */
bool
check_for_inc_dec (rtx insn)
{
  struct insn_info insn_info;
  rtx note;

  insn_info.insn = insn;
  insn_info.fixed_regs_live = NULL;
  note = find_reg_note (insn, REG_INC, NULL_RTX);
  if (note)
    return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
  return true;
}

H.J. Lu committed
938
/* Delete the insn and free all of the fields inside INSN_INFO.  */
939 940 941 942 943 944 945 946 947

static void
delete_dead_store_insn (insn_info_t insn_info)
{
  read_info_t read_info;

  if (!dbg_cnt (dse))
    return;

948 949
  if (!check_for_inc_dec_1 (insn_info))
    return;
950
  if (dump_file && (dump_flags & TDF_DETAILS))
951
    {
H.J. Lu committed
952
      fprintf (dump_file, "Locally deleting insn %d ",
953 954
	       INSN_UID (insn_info->insn));
      if (insn_info->store_rec->alias_set)
H.J. Lu committed
955
	fprintf (dump_file, "alias set %d\n",
956
		 (int) insn_info->store_rec->alias_set);
957 958 959 960 961 962
      else
	fprintf (dump_file, "\n");
    }

  free_store_info (insn_info);
  read_info = insn_info->read_rec;
H.J. Lu committed
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
  while (read_info)
    {
      read_info_t next = read_info->next;
      pool_free (read_info_pool, read_info);
      read_info = next;
    }
  insn_info->read_rec = NULL;

  delete_insn (insn_info->insn);
  locally_deleted++;
  insn_info->insn = NULL;

  insn_info->wild_read = false;
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/* Return whether DECL, a local variable, can possibly escape the current
   function scope.  */

static bool
local_variable_can_escape (tree decl)
{
  if (TREE_ADDRESSABLE (decl))
    return true;

  /* If this is a partitioned variable, we need to consider all the variables
     in the partition.  This is necessary because a store into one of them can
     be replaced with a store into another and this may not change the outcome
     of the escape analysis.  */
  if (cfun->gimple_df->decls_to_pointers != NULL)
    {
      void *namep
	= pointer_map_contains (cfun->gimple_df->decls_to_pointers, decl);
      if (namep)
	return TREE_ADDRESSABLE (*(tree *)namep);
    }

  return false;
}

/* Return whether EXPR can possibly escape the current function scope.  */

1005 1006 1007 1008 1009 1010 1011 1012
static bool
can_escape (tree expr)
{
  tree base;
  if (!expr)
    return true;
  base = get_base_address (expr);
  if (DECL_P (base)
1013 1014 1015 1016 1017
      && !may_be_aliased (base)
      && !(TREE_CODE (base) == VAR_DECL
	   && !DECL_EXTERNAL (base)
	   && !TREE_STATIC (base)
	   && local_variable_can_escape (base)))
1018 1019 1020
    return false;
  return true;
}
1021 1022 1023 1024 1025

/* Set the store* bitmaps offset_map_size* fields in GROUP based on
   OFFSET and WIDTH.  */

static void
1026 1027
set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
                tree expr)
1028 1029
{
  HOST_WIDE_INT i;
1030
  bool expr_escapes = can_escape (expr);
1031
  if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1032 1033 1034 1035
    for (i=offset; i<offset+width; i++)
      {
	bitmap store1;
	bitmap store2;
1036
        bitmap escaped;
1037 1038 1039 1040 1041
	int ai;
	if (i < 0)
	  {
	    store1 = group->store1_n;
	    store2 = group->store2_n;
1042
	    escaped = group->escaped_n;
1043 1044 1045 1046 1047 1048
	    ai = -i;
	  }
	else
	  {
	    store1 = group->store1_p;
	    store2 = group->store2_p;
1049
	    escaped = group->escaped_p;
1050 1051
	    ai = i;
	  }
H.J. Lu committed
1052

1053
	if (!bitmap_set_bit (store1, ai))
1054
	  bitmap_set_bit (store2, ai);
H.J. Lu committed
1055
	else
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	  {
	    if (i < 0)
	      {
		if (group->offset_map_size_n < ai)
		  group->offset_map_size_n = ai;
	      }
	    else
	      {
		if (group->offset_map_size_p < ai)
		  group->offset_map_size_p = ai;
	      }
	  }
1068 1069
        if (expr_escapes)
          bitmap_set_bit (escaped, ai);
1070 1071 1072
      }
}

1073 1074 1075 1076 1077 1078
static void
reset_active_stores (void)
{
  active_local_stores = NULL;
  active_local_stores_len = 0;
}
1079

1080
/* Free all READ_REC of the LAST_INSN of BB_INFO.  */
1081 1082

static void
1083
free_read_records (bb_info_t bb_info)
1084 1085 1086 1087 1088 1089
{
  insn_info_t insn_info = bb_info->last_insn;
  read_info_t *ptr = &insn_info->read_rec;
  while (*ptr)
    {
      read_info_t next = (*ptr)->next;
1090
      if ((*ptr)->alias_set == 0)
1091 1092 1093
        {
          pool_free (read_info_pool, *ptr);
          *ptr = next;
1094
        }
H.J. Lu committed
1095
      else
1096
        ptr = &(*ptr)->next;
1097
    }
1098 1099 1100 1101 1102 1103 1104 1105
}

/* Set the BB_INFO so that the last insn is marked as a wild read.  */

static void
add_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
1106
  insn_info->wild_read = true;
1107 1108
  free_read_records (bb_info);
  reset_active_stores ();
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/* Set the BB_INFO so that the last insn is marked as a wild read of
   non-frame locations.  */

static void
add_non_frame_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info->non_frame_wild_read = true;
  free_read_records (bb_info);
  reset_active_stores ();
}
1122

1123 1124 1125
/* Return true if X is a constant or one of the registers that behave
   as a constant over the life of a function.  This is equivalent to
   !rtx_varies_p for memory addresses.  */
1126 1127 1128 1129

static bool
const_or_frame_p (rtx x)
{
1130 1131 1132 1133
  if (CONSTANT_P (x))
    return true;

  if (GET_CODE (x) == REG)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    {
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || x == pic_offset_table_rtx)
	return true;
      return false;
    }
1146 1147
  
  return false;
1148 1149
}

H.J. Lu committed
1150 1151
/* Take all reasonable action to put the address of MEM into the form
   that we can do analysis on.
1152 1153 1154 1155 1156 1157 1158 1159 1160

   The gold standard is to get the address into the form: address +
   OFFSET where address is something that rtx_varies_p considers a
   constant.  When we can get the address in this form, we can do
   global analysis on it.  Note that for constant bases, address is
   not actually returned, only the group_id.  The address can be
   obtained from that.

   If that fails, we try cselib to get a value we can at least use
H.J. Lu committed
1161 1162
   locally.  If that fails we return false.

1163 1164 1165 1166 1167 1168 1169
   The GROUP_ID is set to -1 for cselib bases and the index of the
   group for non_varying bases.

   FOR_READ is true if this is a mem read and false if not.  */

static bool
canon_address (rtx mem,
1170
	       alias_set_type *alias_set_out,
1171
	       int *group_id,
H.J. Lu committed
1172
	       HOST_WIDE_INT *offset,
1173 1174
	       cselib_val **base)
{
1175
  enum machine_mode address_mode = get_address_mode (mem);
1176 1177
  rtx mem_address = XEXP (mem, 0);
  rtx expanded_address, address;
1178 1179
  int expanded;

1180 1181
  *alias_set_out = 0;

1182
  cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1183

1184
  if (dump_file && (dump_flags & TDF_DETAILS))
1185 1186 1187 1188 1189 1190
    {
      fprintf (dump_file, "  mem: ");
      print_inline_rtx (dump_file, mem_address, 0);
      fprintf (dump_file, "\n");
    }

1191 1192 1193 1194 1195 1196 1197 1198
  /* First see if just canon_rtx (mem_address) is const or frame,
     if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
  address = NULL_RTX;
  for (expanded = 0; expanded < 2; expanded++)
    {
      if (expanded)
	{
	  /* Use cselib to replace all of the reg references with the full
H.J. Lu committed
1199
	     expression.  This will take care of the case where we have
1200

1201 1202
	     r_x = base + offset;
	     val = *r_x;
H.J. Lu committed
1203 1204

	     by making it into
1205

1206
	     val = *(base + offset);  */
1207

1208 1209
	  expanded_address = cselib_expand_value_rtx (mem_address,
						      scratch, 5);
1210

1211 1212 1213 1214 1215 1216 1217
	  /* If this fails, just go with the address from first
	     iteration.  */
	  if (!expanded_address)
	    break;
	}
      else
	expanded_address = mem_address;
1218

1219 1220
      /* Split the address into canonical BASE + OFFSET terms.  */
      address = canon_rtx (expanded_address);
1221

1222
      *offset = 0;
1223

1224
      if (dump_file && (dump_flags & TDF_DETAILS))
1225 1226 1227 1228 1229 1230 1231
	{
	  if (expanded)
	    {
	      fprintf (dump_file, "\n   after cselib_expand address: ");
	      print_inline_rtx (dump_file, expanded_address, 0);
	      fprintf (dump_file, "\n");
	    }
1232

1233 1234 1235 1236
	  fprintf (dump_file, "\n   after canon_rtx address: ");
	  print_inline_rtx (dump_file, address, 0);
	  fprintf (dump_file, "\n");
	}
1237

1238 1239
      if (GET_CODE (address) == CONST)
	address = XEXP (address, 0);
1240

1241 1242 1243 1244 1245 1246
      if (GET_CODE (address) == PLUS
	  && CONST_INT_P (XEXP (address, 1)))
	{
	  *offset = INTVAL (XEXP (address, 1));
	  address = XEXP (address, 0);
	}
1247

1248 1249
      if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
	  && const_or_frame_p (address))
1250
	{
1251 1252
	  group_info_t group = get_group_info (address);

1253
	  if (dump_file && (dump_flags & TDF_DETAILS))
1254 1255 1256 1257 1258
	    fprintf (dump_file, "  gid=%d offset=%d \n",
		     group->id, (int)*offset);
	  *base = NULL;
	  *group_id = group->id;
	  return true;
1259
	}
1260 1261
    }

1262
  *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1263 1264 1265 1266
  *group_id = -1;

  if (*base == NULL)
    {
1267
      if (dump_file && (dump_flags & TDF_DETAILS))
1268 1269
	fprintf (dump_file, " no cselib val - should be a wild read.\n");
      return false;
1270
    }
1271
  if (dump_file && (dump_flags & TDF_DETAILS))
1272 1273
    fprintf (dump_file, "  varying cselib base=%u:%u offset = %d\n",
	     (*base)->uid, (*base)->hash, (int)*offset);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
  return true;
}


/* Clear the rhs field from the active_local_stores array.  */

static void
clear_rhs_from_active_local_stores (void)
{
  insn_info_t ptr = active_local_stores;

  while (ptr)
    {
      store_info_t store_info = ptr->store_rec;
      /* Skip the clobbers.  */
      while (!store_info->is_set)
	store_info = store_info->next;

      store_info->rhs = NULL;
1293
      store_info->const_rhs = NULL;
1294 1295 1296 1297 1298 1299

      ptr = ptr->next_local_store;
    }
}


1300 1301 1302 1303 1304 1305 1306
/* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */

static inline void
set_position_unneeded (store_info_t s_info, int pos)
{
  if (__builtin_expect (s_info->is_large, false))
    {
1307 1308
      if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
	s_info->positions_needed.large.count++;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    }
  else
    s_info->positions_needed.small_bitmask
      &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
}

/* Mark the whole store S_INFO as unneeded.  */

static inline void
set_all_positions_unneeded (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int pos, end = s_info->end - s_info->begin;
      for (pos = 0; pos < end; pos++)
1324
	bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
      s_info->positions_needed.large.count = end;
    }
  else
    s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
}

/* Return TRUE if any bytes from S_INFO store are needed.  */

static inline bool
any_positions_needed_p (store_info_t s_info)
{
  if (__builtin_expect (s_info->is_large, false))
    return (s_info->positions_needed.large.count
	    < s_info->end - s_info->begin);
  else
    return (s_info->positions_needed.small_bitmask
	    != (unsigned HOST_WIDE_INT) 0);
}

/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
   store are needed.  */

static inline bool
all_positions_needed_p (store_info_t s_info, int start, int width)
{
  if (__builtin_expect (s_info->is_large, false))
    {
      int end = start + width;
      while (start < end)
1354
	if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	  return false;
      return true;
    }
  else
    {
      unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
      return (s_info->positions_needed.small_bitmask & mask) == mask;
    }
}


static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
			   HOST_WIDE_INT, basic_block, bool);


1370 1371 1372 1373 1374 1375 1376
/* BODY is an instruction pattern that belongs to INSN.  Return 1 if
   there is a candidate store, after adding it to the appropriate
   local store group if so.  */

static int
record_store (rtx body, bb_info_t bb_info)
{
1377
  rtx mem, rhs, const_rhs, mem_addr;
1378 1379
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
1380
  alias_set_type spill_alias_set;
1381 1382 1383 1384
  insn_info_t insn_info = bb_info->last_insn;
  store_info_t store_info = NULL;
  int group_id;
  cselib_val *base = NULL;
1385
  insn_info_t ptr, last, redundant_reason;
1386 1387 1388 1389 1390
  bool store_is_unused;

  if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
    return 0;

1391 1392
  mem = SET_DEST (body);

1393 1394 1395 1396
  /* If this is not used, then this cannot be used to keep the insn
     from being deleted.  On the other hand, it does provide something
     that can be used to prove that another store is dead.  */
  store_is_unused
1397
    = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

  /* Check whether that value is a suitable memory location.  */
  if (!MEM_P (mem))
    {
      /* If the set or clobber is unused, then it does not effect our
	 ability to get rid of the entire insn.  */
      if (!store_is_unused)
	insn_info->cannot_delete = true;
      return 0;
    }

  /* At this point we know mem is a mem. */
  if (GET_MODE (mem) == BLKmode)
    {
      if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
	{
1414
	  if (dump_file && (dump_flags & TDF_DETAILS))
1415 1416 1417
	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
	  add_wild_read (bb_info);
	  insn_info->cannot_delete = true;
1418
	  return 0;
1419
	}
1420 1421
      /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
	 as memset (addr, 0, 36);  */
1422 1423 1424
      else if (!MEM_SIZE_KNOWN_P (mem)
	       || MEM_SIZE (mem) <= 0
	       || MEM_SIZE (mem) > MAX_OFFSET
1425 1426
	       || GET_CODE (body) != SET
	       || !CONST_INT_P (SET_SRC (body)))
1427
	{
1428 1429 1430 1431 1432 1433 1434 1435
	  if (!store_is_unused)
	    {
	      /* If the set or clobber is unused, then it does not effect our
		 ability to get rid of the entire insn.  */
	      insn_info->cannot_delete = true;
	      clear_rhs_from_active_local_stores ();
	    }
	  return 0;
1436 1437 1438 1439 1440
	}
    }

  /* We can still process a volatile mem, we just cannot delete it.  */
  if (MEM_VOLATILE_P (mem))
1441
    insn_info->cannot_delete = true;
1442 1443 1444 1445 1446 1447 1448

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
      clear_rhs_from_active_local_stores ();
      return 0;
    }

1449
  if (GET_MODE (mem) == BLKmode)
1450
    width = MEM_SIZE (mem);
1451
  else
1452
    width = GET_MODE_SIZE (GET_MODE (mem));
1453 1454 1455 1456 1457

  if (spill_alias_set)
    {
      bitmap store1 = clear_alias_group->store1_p;
      bitmap store2 = clear_alias_group->store2_p;
1458 1459

      gcc_assert (GET_MODE (mem) != BLKmode);
H.J. Lu committed
1460

1461
      if (!bitmap_set_bit (store1, spill_alias_set))
1462
	bitmap_set_bit (store2, spill_alias_set);
H.J. Lu committed
1463

1464 1465
      if (clear_alias_group->offset_map_size_p < spill_alias_set)
	clear_alias_group->offset_map_size_p = spill_alias_set;
H.J. Lu committed
1466

1467
      store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1468

1469
      if (dump_file && (dump_flags & TDF_DETAILS))
1470
	fprintf (dump_file, " processing spill store %d(%s)\n",
1471
		 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1472 1473 1474 1475 1476
    }
  else if (group_id >= 0)
    {
      /* In the restrictive case where the base is a constant or the
	 frame pointer we can do global analysis.  */
H.J. Lu committed
1477 1478

      group_info_t group
1479
	= rtx_group_vec[group_id];
1480
      tree expr = MEM_EXPR (mem);
H.J. Lu committed
1481

1482
      store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1483
      set_usage_bits (group, offset, width, expr);
1484

1485
      if (dump_file && (dump_flags & TDF_DETAILS))
1486 1487 1488 1489 1490
	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
		 group_id, (int)offset, (int)(offset+width));
    }
  else
    {
1491
      if (may_be_sp_based_p (XEXP (mem, 0)))
1492
	insn_info->stack_pointer_based = true;
1493
      insn_info->contains_cselib_groups = true;
1494

1495
      store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1496 1497
      group_id = -1;

1498
      if (dump_file && (dump_flags & TDF_DETAILS))
1499 1500 1501 1502
	fprintf (dump_file, " processing cselib store [%d..%d)\n",
		 (int)offset, (int)(offset+width));
    }

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
  const_rhs = rhs = NULL_RTX;
  if (GET_CODE (body) == SET
      /* No place to keep the value after ra.  */
      && !reload_completed
      && (REG_P (SET_SRC (body))
	  || GET_CODE (SET_SRC (body)) == SUBREG
	  || CONSTANT_P (SET_SRC (body)))
      && !MEM_VOLATILE_P (mem)
      /* Sometimes the store and reload is used for truncation and
	 rounding.  */
      && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
    {
      rhs = SET_SRC (body);
      if (CONSTANT_P (rhs))
	const_rhs = rhs;
      else if (body == PATTERN (insn_info->insn))
	{
	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
	  if (tem && CONSTANT_P (XEXP (tem, 0)))
	    const_rhs = XEXP (tem, 0);
	}
      if (const_rhs == NULL_RTX && REG_P (rhs))
	{
	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);

	  if (tem && CONSTANT_P (tem))
	    const_rhs = tem;
	}
    }

1533 1534 1535 1536
  /* Check to see if this stores causes some other stores to be
     dead.  */
  ptr = active_local_stores;
  last = NULL;
1537
  redundant_reason = NULL;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
  mem = canon_rtx (mem);
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
1549
	    = rtx_group_vec[group_id];
1550 1551 1552
	  mem_addr = group->canon_base_addr;
	}
      if (offset)
1553
	mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1554
    }
1555 1556 1557 1558 1559

  while (ptr)
    {
      insn_info_t next = ptr->next_local_store;
      store_info_t s_info = ptr->store_rec;
1560
      bool del = true;
1561 1562

      /* Skip the clobbers. We delete the active insn if this insn
1563
	 shadows the set.  To have been put on the active list, it
1564 1565 1566 1567 1568
	 has exactly on set. */
      while (!s_info->is_set)
	s_info = s_info->next;

      if (s_info->alias_set != spill_alias_set)
1569
	del = false;
1570 1571
      else if (s_info->alias_set)
	{
H.J. Lu committed
1572
	  struct clear_alias_mode_holder *entry
1573 1574 1575 1576 1577 1578 1579 1580 1581
	    = clear_alias_set_lookup (s_info->alias_set);
	  /* Generally, spills cannot be processed if and of the
	     references to the slot have a different mode.  But if
	     we are in the same block and mode is exactly the same
	     between this store and one before in the same block,
	     we can still delete it.  */
	  if ((GET_MODE (mem) == GET_MODE (s_info->mem))
	      && (GET_MODE (mem) == entry->mode))
	    {
1582
	      del = true;
1583
	      set_all_positions_unneeded (s_info);
1584
	    }
1585
	  if (dump_file && (dump_flags & TDF_DETAILS))
1586
	    fprintf (dump_file, "    trying spill store in insn=%d alias_set=%d\n",
1587
		     INSN_UID (ptr->insn), (int) s_info->alias_set);
1588
	}
H.J. Lu committed
1589
      else if ((s_info->group_id == group_id)
1590 1591 1592
	       && (s_info->cse_base == base))
	{
	  HOST_WIDE_INT i;
1593
	  if (dump_file && (dump_flags & TDF_DETAILS))
1594
	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
H.J. Lu committed
1595
		     INSN_UID (ptr->insn), s_info->group_id,
1596
		     (int)s_info->begin, (int)s_info->end);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	  /* Even if PTR won't be eliminated as unneeded, if both
	     PTR and this insn store the same constant value, we might
	     eliminate this insn instead.  */
	  if (s_info->const_rhs
	      && const_rhs
	      && offset >= s_info->begin
	      && offset + width <= s_info->end
	      && all_positions_needed_p (s_info, offset - s_info->begin,
					 width))
	    {
	      if (GET_MODE (mem) == BLKmode)
		{
		  if (GET_MODE (s_info->mem) == BLKmode
		      && s_info->const_rhs == const_rhs)
		    redundant_reason = ptr;
		}
	      else if (s_info->const_rhs == const0_rtx
		       && const_rhs == const0_rtx)
		redundant_reason = ptr;
	      else
		{
		  rtx val;
		  start_sequence ();
		  val = get_stored_val (s_info, GET_MODE (mem),
					offset, offset + width,
					BLOCK_FOR_INSN (insn_info->insn),
					true);
		  if (get_insns () != NULL)
		    val = NULL_RTX;
		  end_sequence ();
		  if (val && rtx_equal_p (val, const_rhs))
		    redundant_reason = ptr;
		}
	    }

	  for (i = MAX (offset, s_info->begin);
	       i < offset + width && i < s_info->end;
	       i++)
	    set_position_unneeded (s_info, i - s_info->begin);
1637 1638 1639 1640 1641 1642
	}
      else if (s_info->rhs)
	/* Need to see if it is possible for this store to overwrite
	   the value of store_info.  If it is, set the rhs to NULL to
	   keep it from being used to remove a load.  */
	{
H.J. Lu committed
1643
	  if (canon_true_dependence (s_info->mem,
1644 1645
				     GET_MODE (s_info->mem),
				     s_info->mem_addr,
1646
				     mem, mem_addr))
1647 1648 1649 1650
	    {
	      s_info->rhs = NULL;
	      s_info->const_rhs = NULL;
	    }
1651
	}
1652

1653 1654
      /* An insn can be deleted if every position of every one of
	 its s_infos is zero.  */
1655
      if (any_positions_needed_p (s_info))
1656
	del = false;
1657

1658
      if (del)
1659 1660
	{
	  insn_info_t insn_to_delete = ptr;
H.J. Lu committed
1661

1662
	  active_local_stores_len--;
1663 1664 1665 1666
	  if (last)
	    last->next_local_store = ptr->next_local_store;
	  else
	    active_local_stores = ptr->next_local_store;
H.J. Lu committed
1667

1668 1669
	  if (!insn_to_delete->cannot_delete)
	    delete_dead_store_insn (insn_to_delete);
1670 1671 1672
	}
      else
	last = ptr;
H.J. Lu committed
1673

1674 1675
      ptr = next;
    }
H.J. Lu committed
1676

1677 1678 1679
  /* Finish filling in the store_info.  */
  store_info->next = insn_info->store_rec;
  insn_info->store_rec = store_info;
1680
  store_info->mem = mem;
1681
  store_info->alias_set = spill_alias_set;
1682
  store_info->mem_addr = mem_addr;
1683
  store_info->cse_base = base;
1684 1685 1686 1687
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      store_info->is_large = true;
      store_info->positions_needed.large.count = 0;
1688
      store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1689 1690 1691 1692 1693 1694
    }
  else
    {
      store_info->is_large = false;
      store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
    }
1695 1696 1697 1698
  store_info->group_id = group_id;
  store_info->begin = offset;
  store_info->end = offset + width;
  store_info->is_set = GET_CODE (body) == SET;
1699 1700 1701
  store_info->rhs = rhs;
  store_info->const_rhs = const_rhs;
  store_info->redundant_reason = redundant_reason;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

  /* If this is a clobber, we return 0.  We will only be able to
     delete this insn if there is only one store USED store, but we
     can use the clobber to delete other stores earlier.  */
  return store_info->is_set ? 1 : 0;
}


static void
dump_insn_info (const char * start, insn_info_t insn_info)
{
H.J. Lu committed
1713
  fprintf (dump_file, "%s insn=%d %s\n", start,
1714 1715 1716 1717 1718
	   INSN_UID (insn_info->insn),
	   insn_info->store_rec ? "has store" : "naked");
}


1719 1720 1721 1722 1723 1724 1725 1726 1727
/* If the modes are different and the value's source and target do not
   line up, we need to extract the value from lower part of the rhs of
   the store, shift it, and then put it into a form that can be shoved
   into the read_insn.  This function generates a right SHIFT of a
   value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
   shift sequence is returned or NULL if we failed to find a
   shift.  */

static rtx
1728
find_shift_sequence (int access_size,
1729
		     store_info_t store_info,
1730 1731
		     enum machine_mode read_mode,
		     int shift, bool speed, bool require_cst)
1732 1733
{
  enum machine_mode store_mode = GET_MODE (store_info->mem);
1734 1735
  enum machine_mode new_mode;
  rtx read_reg = NULL;
1736 1737 1738 1739 1740 1741 1742 1743

  /* Some machines like the x86 have shift insns for each size of
     operand.  Other machines like the ppc or the ia-64 may only have
     shift insns that shift values within 32 or 64 bit registers.
     This loop tries to find the smallest shift insn that will right
     justify the value we want to read but is available in one insn on
     the machine.  */

1744 1745 1746 1747
  for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
					  MODE_INT);
       GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
       new_mode = GET_MODE_WIDER_MODE (new_mode))
1748
    {
1749
      rtx target, new_reg, shift_seq, insn, new_lhs;
1750
      int cost;
1751

1752 1753 1754
      /* If a constant was stored into memory, try to simplify it here,
	 otherwise the cost of the shift might preclude this optimization
	 e.g. at -Os, even when no actual shift will be needed.  */
1755
      if (store_info->const_rhs)
1756 1757
	{
	  unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1758 1759
	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
				     store_mode, byte);
1760 1761 1762 1763 1764 1765 1766 1767 1768
	  if (ret && CONSTANT_P (ret))
	    {
	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
						     ret, GEN_INT (shift));
	      if (ret && CONSTANT_P (ret))
		{
		  byte = subreg_lowpart_offset (read_mode, new_mode);
		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
		  if (ret && CONSTANT_P (ret)
1769
		      && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1770 1771 1772 1773 1774
		    return ret;
		}
	    }
	}

1775 1776 1777
      if (require_cst)
	return NULL_RTX;

1778 1779 1780
      /* Try a wider mode if truncating the store mode to NEW_MODE
	 requires a real instruction.  */
      if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1781
	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1782 1783
	continue;

1784 1785 1786 1787 1788 1789
      /* Also try a wider mode if the necessary punning is either not
	 desirable or not possible.  */
      if (!CONSTANT_P (store_info->rhs)
	  && !MODES_TIEABLE_P (new_mode, store_mode))
	continue;

1790
      new_reg = gen_reg_rtx (new_mode);
1791 1792 1793 1794 1795 1796 1797 1798 1799

      start_sequence ();

      /* In theory we could also check for an ashr.  Ian Taylor knows
	 of one dsp where the cost of these two was not the same.  But
	 this really is a rare case anyway.  */
      target = expand_binop (new_mode, lshr_optab, new_reg,
			     GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);

1800 1801
      shift_seq = get_insns ();
      end_sequence ();
1802

1803 1804 1805 1806 1807 1808
      if (target != new_reg || shift_seq == NULL)
	continue;

      cost = 0;
      for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
	if (INSN_P (insn))
1809
	  cost += insn_rtx_cost (PATTERN (insn), speed);
1810 1811 1812 1813 1814

      /* The computation up to here is essentially independent
	 of the arguments and could be precomputed.  It may
	 not be worth doing so.  We could precompute if
	 worthwhile or at least cache the results.  The result
1815 1816
	 technically depends on both SHIFT and ACCESS_SIZE,
	 but in practice the answer will depend only on ACCESS_SIZE.  */
1817 1818 1819 1820

      if (cost > COSTS_N_INSNS (1))
	continue;

1821 1822 1823 1824 1825
      new_lhs = extract_low_bits (new_mode, store_mode,
				  copy_rtx (store_info->rhs));
      if (new_lhs == NULL_RTX)
	continue;

1826 1827 1828 1829
      /* We found an acceptable shift.  Generate a move to
	 take the value from the store and put it into the
	 shift pseudo, then shift it, then generate another
	 move to put in into the target of the read.  */
1830
      emit_move_insn (new_reg, new_lhs);
1831
      emit_insn (shift_seq);
1832
      read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1833
      break;
1834 1835
    }

1836
  return read_reg;
1837 1838 1839
}


1840 1841 1842 1843 1844 1845 1846 1847 1848
/* Call back for note_stores to find the hard regs set or clobbered by
   insn.  Data is a bitmap of the hardregs set so far.  */

static void
look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  bitmap regs_set = (bitmap) data;

  if (REG_P (x)
1849
      && HARD_REGISTER_P (x))
1850
    {
1851 1852 1853
      unsigned int regno = REGNO (x);
      bitmap_set_range (regs_set, regno,
			hard_regno_nregs[regno][GET_MODE (x)]);
1854 1855 1856
    }
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/* Helper function for replace_read and record_store.
   Attempt to return a value stored in STORE_INFO, from READ_BEGIN
   to one before READ_END bytes read in READ_MODE.  Return NULL
   if not successful.  If REQUIRE_CST is true, return always constant.  */

static rtx
get_stored_val (store_info_t store_info, enum machine_mode read_mode,
		HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
		basic_block bb, bool require_cst)
{
  enum machine_mode store_mode = GET_MODE (store_info->mem);
  int shift;
  int access_size; /* In bytes.  */
  rtx read_reg;

  /* To get here the read is within the boundaries of the write so
     shift will never be negative.  Start out with the shift being in
     bytes.  */
  if (store_mode == BLKmode)
    shift = 0;
  else if (BYTES_BIG_ENDIAN)
    shift = store_info->end - read_end;
  else
    shift = read_begin - store_info->begin;

  access_size = shift + GET_MODE_SIZE (read_mode);

  /* From now on it is bits.  */
  shift *= BITS_PER_UNIT;

  if (shift)
    read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
    				    optimize_bb_for_speed_p (bb),
				    require_cst);
  else if (store_mode == BLKmode)
    {
      /* The store is a memset (addr, const_val, const_size).  */
      gcc_assert (CONST_INT_P (store_info->rhs));
      store_mode = int_mode_for_mode (read_mode);
      if (store_mode == BLKmode)
	read_reg = NULL_RTX;
      else if (store_info->rhs == const0_rtx)
	read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
      else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
	read_reg = NULL_RTX;
      else
	{
	  unsigned HOST_WIDE_INT c
	    = INTVAL (store_info->rhs)
	      & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
	  int shift = BITS_PER_UNIT;
	  while (shift < HOST_BITS_PER_WIDE_INT)
	    {
	      c |= (c << shift);
	      shift <<= 1;
	    }
1914
	  read_reg = gen_int_mode (c, store_mode);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	  read_reg = extract_low_bits (read_mode, store_mode, read_reg);
	}
    }
  else if (store_info->const_rhs
	   && (require_cst
	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->const_rhs));
  else
    read_reg = extract_low_bits (read_mode, store_mode,
				 copy_rtx (store_info->rhs));
  if (require_cst && read_reg && !CONSTANT_P (read_reg))
    read_reg = NULL_RTX;
  return read_reg;
}
1930

1931 1932 1933 1934 1935
/* Take a sequence of:
     A <- r1
     ...
     ... <- A

H.J. Lu committed
1936
   and change it into
1937 1938 1939 1940 1941
   r2 <- r1
   A <- r1
   ...
   ... <- r2

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
   or

   r3 <- extract (r1)
   r3 <- r3 >> shift
   r2 <- extract (r3)
   ... <- r2

   or

   r2 <- extract (r1)
   ... <- r2

   Depending on the alignment and the mode of the store and
   subsequent load.


   The STORE_INFO and STORE_INSN are for the store and READ_INFO
1959 1960 1961 1962
   and READ_INSN are for the read.  Return true if the replacement
   went ok.  */

static bool
H.J. Lu committed
1963
replace_read (store_info_t store_info, insn_info_t store_insn,
1964 1965
	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
	      bitmap regs_live)
1966
{
1967 1968
  enum machine_mode store_mode = GET_MODE (store_info->mem);
  enum machine_mode read_mode = GET_MODE (read_info->mem);
1969
  rtx insns, this_insn, read_reg;
1970
  basic_block bb;
1971

1972 1973 1974
  if (!dbg_cnt (dse))
    return false;

1975 1976 1977 1978 1979
  /* Create a sequence of instructions to set up the read register.
     This sequence goes immediately before the store and its result
     is read by the load.

     We need to keep this in perspective.  We are replacing a read
1980 1981 1982 1983
     with a sequence of insns, but the read will almost certainly be
     in cache, so it is not going to be an expensive one.  Thus, we
     are not willing to do a multi insn shift or worse a subroutine
     call to get rid of the read.  */
1984
  if (dump_file && (dump_flags & TDF_DETAILS))
1985 1986 1987 1988 1989
    fprintf (dump_file, "trying to replace %smode load in insn %d"
	     " from %smode store in insn %d\n",
	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
  start_sequence ();
1990 1991 1992 1993
  bb = BLOCK_FOR_INSN (read_insn->insn);
  read_reg = get_stored_val (store_info,
			     read_mode, read_info->begin, read_info->end,
			     bb, false);
1994
  if (read_reg == NULL_RTX)
1995
    {
1996
      end_sequence ();
1997
      if (dump_file && (dump_flags & TDF_DETAILS))
1998 1999
	fprintf (dump_file, " -- could not extract bits of stored value\n");
      return false;
2000
    }
2001 2002 2003 2004 2005
  /* Force the value into a new register so that it won't be clobbered
     between the store and the load.  */
  read_reg = copy_to_mode_reg (read_mode, read_reg);
  insns = get_insns ();
  end_sequence ();
2006

2007 2008 2009 2010 2011 2012 2013
  if (insns != NULL_RTX)
    {
      /* Now we have to scan the set of new instructions to see if the
	 sequence contains and sets of hardregs that happened to be
	 live at this point.  For instance, this can happen if one of
	 the insns sets the CC and the CC happened to be live at that
	 point.  This does occasionally happen, see PR 37922.  */
2014
      bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2015 2016 2017

      for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
H.J. Lu committed
2018

2019 2020 2021
      bitmap_and_into (regs_set, regs_live);
      if (!bitmap_empty_p (regs_set))
	{
2022
	  if (dump_file && (dump_flags & TDF_DETAILS))
2023
	    {
H.J. Lu committed
2024
	      fprintf (dump_file,
2025 2026 2027
		       "abandoning replacement because sequence clobbers live hardregs:");
	      df_print_regset (dump_file, regs_set);
	    }
H.J. Lu committed
2028

2029 2030 2031 2032 2033 2034
	  BITMAP_FREE (regs_set);
	  return false;
	}
      BITMAP_FREE (regs_set);
    }

2035
  if (validate_change (read_insn->insn, loc, read_reg, 0))
2036
    {
2037 2038
      deferred_change_t deferred_change =
	(deferred_change_t) pool_alloc (deferred_change_pool);
H.J. Lu committed
2039

2040 2041 2042
      /* Insert this right before the store insn where it will be safe
	 from later insns that might change it before the read.  */
      emit_insn_before (insns, store_insn->insn);
H.J. Lu committed
2043

2044 2045
      /* And now for the kludge part: cselib croaks if you just
	 return at this point.  There are two reasons for this:
H.J. Lu committed
2046

2047 2048
	 1) Cselib has an idea of how many pseudos there are and
	 that does not include the new ones we just added.
H.J. Lu committed
2049

2050 2051 2052
	 2) Cselib does not know about the move insn we added
	 above the store_info, and there is no way to tell it
	 about it, because it has "moved on".
H.J. Lu committed
2053

2054 2055 2056
	 Problem (1) is fixable with a certain amount of engineering.
	 Problem (2) is requires starting the bb from scratch.  This
	 could be expensive.
H.J. Lu committed
2057

2058 2059 2060 2061 2062 2063 2064 2065
	 So we are just going to have to lie.  The move/extraction
	 insns are not really an issue, cselib did not see them.  But
	 the use of the new pseudo read_insn is a real problem because
	 cselib has not scanned this insn.  The way that we solve this
	 problem is that we are just going to put the mem back for now
	 and when we are finished with the block, we undo this.  We
	 keep a table of mems to get rid of.  At the end of the basic
	 block we can put them back.  */
H.J. Lu committed
2066

2067 2068 2069 2070 2071
      *loc = read_info->mem;
      deferred_change->next = deferred_change_list;
      deferred_change_list = deferred_change;
      deferred_change->loc = loc;
      deferred_change->reg = read_reg;
H.J. Lu committed
2072

2073 2074 2075 2076
      /* Get rid of the read_info, from the point of view of the
	 rest of dse, play like this read never happened.  */
      read_insn->read_rec = read_info->next;
      pool_free (read_info_pool, read_info);
2077
      if (dump_file && (dump_flags & TDF_DETAILS))
2078 2079 2080 2081 2082
	{
	  fprintf (dump_file, " -- replaced the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, "\n");
	}
2083
      return true;
2084
    }
H.J. Lu committed
2085
  else
2086
    {
2087
      if (dump_file && (dump_flags & TDF_DETAILS))
2088 2089 2090 2091 2092
	{
	  fprintf (dump_file, " -- replacing the loaded MEM with ");
	  print_simple_rtl (dump_file, read_reg);
	  fprintf (dump_file, " led to an invalid instruction\n");
	}
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
      return false;
    }
}

/* A for_each_rtx callback in which DATA is the bb_info.  Check to see
   if LOC is a mem and if it is look at the address and kill any
   appropriate stores that may be active.  */

static int
check_mem_read_rtx (rtx *loc, void *data)
{
2104
  rtx mem = *loc, mem_addr;
2105 2106 2107 2108
  bb_info_t bb_info;
  insn_info_t insn_info;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT width = 0;
2109
  alias_set_type spill_alias_set = 0;
H.J. Lu committed
2110
  cselib_val *base = NULL;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
  int group_id;
  read_info_t read_info;

  if (!mem || !MEM_P (mem))
    return 0;

  bb_info = (bb_info_t) data;
  insn_info = bb_info->last_insn;

  if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
      || (MEM_VOLATILE_P (mem)))
    {
2123
      if (dump_file && (dump_flags & TDF_DETAILS))
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
      return 0;
    }

  /* If it is reading readonly mem, then there can be no conflict with
     another write. */
  if (MEM_READONLY_P (mem))
    return 0;

  if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
    {
2137
      if (dump_file && (dump_flags & TDF_DETAILS))
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	fprintf (dump_file, " adding wild read, canon_address failure.\n");
      add_wild_read (bb_info);
      return 0;
    }

  if (GET_MODE (mem) == BLKmode)
    width = -1;
  else
    width = GET_MODE_SIZE (GET_MODE (mem));

2148
  read_info = (read_info_t) pool_alloc (read_info_pool);
2149 2150 2151 2152 2153 2154 2155
  read_info->group_id = group_id;
  read_info->mem = mem;
  read_info->alias_set = spill_alias_set;
  read_info->begin = offset;
  read_info->end = offset + width;
  read_info->next = insn_info->read_rec;
  insn_info->read_rec = read_info;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
  /* For alias_set != 0 canon_true_dependence should be never called.  */
  if (spill_alias_set)
    mem_addr = NULL_RTX;
  else
    {
      if (group_id < 0)
	mem_addr = base->val_rtx;
      else
	{
	  group_info_t group
2166
	    = rtx_group_vec[group_id];
2167 2168 2169
	  mem_addr = group->canon_base_addr;
	}
      if (offset)
2170
	mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2171
    }
2172

2173
  /* We ignore the clobbers in store_info.  The is mildly aggressive,
2174 2175 2176 2177 2178 2179 2180
     but there really should not be a clobber followed by a read.  */

  if (spill_alias_set)
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;

2181
      if (dump_file && (dump_flags & TDF_DETAILS))
2182
	fprintf (dump_file, " processing spill load %d\n",
2183
		 (int) spill_alias_set);
2184 2185 2186 2187 2188 2189 2190 2191

      while (i_ptr)
	{
	  store_info_t store_info = i_ptr->store_rec;

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2192

2193 2194
	  if (store_info->alias_set == spill_alias_set)
	    {
2195
	      if (dump_file && (dump_flags & TDF_DETAILS))
2196 2197
		dump_insn_info ("removing from active", i_ptr);

2198
	      active_local_stores_len--;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  else if (group_id >= 0)
    {
      /* This is the restricted case where the base is a constant or
	 the frame pointer and offset is a constant.  */
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
H.J. Lu committed
2215

2216
      if (dump_file && (dump_flags & TDF_DETAILS))
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	{
	  if (width == -1)
	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
		     group_id);
	  else
	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
		     group_id, (int)offset, (int)(offset+width));
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2230

2231 2232 2233
	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;
H.J. Lu committed
2234

2235 2236 2237 2238
	  /* There are three cases here.  */
	  if (store_info->group_id < 0)
	    /* We have a cselib store followed by a read from a
	       const base. */
H.J. Lu committed
2239 2240
	    remove
	      = canon_true_dependence (store_info->mem,
2241 2242
				       GET_MODE (store_info->mem),
				       store_info->mem_addr,
2243
				       mem, mem_addr);
H.J. Lu committed
2244

2245 2246 2247 2248 2249
	  else if (group_id == store_info->group_id)
	    {
	      /* This is a block mode load.  We may get lucky and
		 canon_true_dependence may save the day.  */
	      if (width == -1)
H.J. Lu committed
2250 2251
		remove
		  = canon_true_dependence (store_info->mem,
2252 2253
					   GET_MODE (store_info->mem),
					   store_info->mem_addr,
2254
					   mem, mem_addr);
H.J. Lu committed
2255

2256 2257
	      /* If this read is just reading back something that we just
		 stored, rewrite the read.  */
H.J. Lu committed
2258
	      else
2259 2260
		{
		  if (store_info->rhs
2261 2262 2263 2264 2265 2266 2267 2268 2269
		      && offset >= store_info->begin
		      && offset + width <= store_info->end
		      && all_positions_needed_p (store_info,
						 offset - store_info->begin,
						 width)
		      && replace_read (store_info, i_ptr, read_info,
				       insn_info, loc, bb_info->regs_live))
		    return 0;

2270 2271
		  /* The bases are the same, just see if the offsets
		     overlap.  */
H.J. Lu committed
2272
		  if ((offset < store_info->end)
2273 2274 2275 2276
		      && (offset + width > store_info->begin))
		    remove = true;
		}
	    }
H.J. Lu committed
2277 2278

	  /* else
2279 2280 2281
	     The else case that is missing here is that the
	     bases are constant but different.  There is nothing
	     to do here because there is no overlap.  */
H.J. Lu committed
2282

2283 2284
	  if (remove)
	    {
2285
	      if (dump_file && (dump_flags & TDF_DETAILS))
2286 2287
		dump_insn_info ("removing from active", i_ptr);

2288
	      active_local_stores_len--;
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
H.J. Lu committed
2299
  else
2300 2301 2302
    {
      insn_info_t i_ptr = active_local_stores;
      insn_info_t last = NULL;
2303
      if (dump_file && (dump_flags & TDF_DETAILS))
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	{
	  fprintf (dump_file, " processing cselib load mem:");
	  print_inline_rtx (dump_file, mem, 0);
	  fprintf (dump_file, "\n");
	}

      while (i_ptr)
	{
	  bool remove = false;
	  store_info_t store_info = i_ptr->store_rec;
H.J. Lu committed
2314

2315
	  if (dump_file && (dump_flags & TDF_DETAILS))
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	    fprintf (dump_file, " processing cselib load against insn %d\n",
		     INSN_UID (i_ptr->insn));

	  /* Skip the clobbers.  */
	  while (!store_info->is_set)
	    store_info = store_info->next;

	  /* If this read is just reading back something that we just
	     stored, rewrite the read.  */
	  if (store_info->rhs
	      && store_info->group_id == -1
	      && store_info->cse_base == base
2328
	      && width != -1
2329 2330 2331 2332 2333 2334 2335
	      && offset >= store_info->begin
	      && offset + width <= store_info->end
	      && all_positions_needed_p (store_info,
					 offset - store_info->begin, width)
	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
			       bb_info->regs_live))
	    return 0;
2336 2337

	  if (!store_info->alias_set)
H.J. Lu committed
2338
	    remove = canon_true_dependence (store_info->mem,
2339 2340
					    GET_MODE (store_info->mem),
					    store_info->mem_addr,
2341
					    mem, mem_addr);
H.J. Lu committed
2342

2343 2344
	  if (remove)
	    {
2345
	      if (dump_file && (dump_flags & TDF_DETAILS))
2346
		dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2347

2348
	      active_local_stores_len--;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	      if (last)
		last->next_local_store = i_ptr->next_local_store;
	      else
		active_local_stores = i_ptr->next_local_store;
	    }
	  else
	    last = i_ptr;
	  i_ptr = i_ptr->next_local_store;
	}
    }
  return 0;
}

H.J. Lu committed
2362
/* A for_each_rtx callback in which DATA points the INSN_INFO for
2363 2364 2365 2366 2367 2368 2369 2370 2371
   as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
   true for any part of *LOC.  */

static void
check_mem_read_use (rtx *loc, void *data)
{
  for_each_rtx (loc, check_mem_read_rtx, data);
}

2372 2373 2374 2375 2376 2377 2378

/* Get arguments passed to CALL_INSN.  Return TRUE if successful.
   So far it only handles arguments passed in registers.  */

static bool
get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
{
2379 2380
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
2381 2382 2383
  tree arg;
  int idx;

2384 2385
  INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
  args_so_far = pack_cumulative_args (&args_so_far_v);
2386 2387 2388 2389 2390 2391 2392

  arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
  for (idx = 0;
       arg != void_list_node && idx < nargs;
       arg = TREE_CHAIN (arg), idx++)
    {
      enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2393
      rtx reg, link, tmp;
2394
      reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
      if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
	  || GET_MODE_CLASS (mode) != MODE_INT)
	return false;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
	   link;
	   link = XEXP (link, 1))
	if (GET_CODE (XEXP (link, 0)) == USE)
	  {
	    args[idx] = XEXP (XEXP (link, 0), 0);
	    if (REG_P (args[idx])
		&& REGNO (args[idx]) == REGNO (reg)
		&& (GET_MODE (args[idx]) == mode
		    || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    <= UNITS_PER_WORD)
			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
			    > GET_MODE_SIZE (mode)))))
	      break;
	  }
      if (!link)
	return false;

      tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
      if (GET_MODE (args[idx]) != mode)
	{
	  if (!tmp || !CONST_INT_P (tmp))
	    return false;
2423
	  tmp = gen_int_mode (INTVAL (tmp), mode);
2424 2425 2426 2427
	}
      if (tmp)
	args[idx] = tmp;

2428
      targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2429 2430 2431 2432 2433 2434
    }
  if (arg != void_list_node || idx != nargs)
    return false;
  return true;
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
/* Return a bitmap of the fixed registers contained in IN.  */

static bitmap
copy_fixed_regs (const_bitmap in)
{
  bitmap ret;

  ret = ALLOC_REG_SET (NULL);
  bitmap_and (ret, in, fixed_reg_set_regset);
  return ret;
}
2446

2447 2448 2449 2450 2451 2452 2453 2454
/* Apply record_store to all candidate stores in INSN.  Mark INSN
   if some part of it is not a candidate store and assigns to a
   non-register target.  */

static void
scan_insn (bb_info_t bb_info, rtx insn)
{
  rtx body;
2455
  insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2456 2457 2458
  int mems_found = 0;
  memset (insn_info, 0, sizeof (struct insn_info));

2459
  if (dump_file && (dump_flags & TDF_DETAILS))
2460 2461 2462 2463 2464 2465
    fprintf (dump_file, "\n**scanning insn=%d\n",
	     INSN_UID (insn));

  insn_info->prev_insn = bb_info->last_insn;
  insn_info->insn = insn;
  bb_info->last_insn = insn_info;
H.J. Lu committed
2466

2467 2468 2469 2470 2471
  if (DEBUG_INSN_P (insn))
    {
      insn_info->cannot_delete = true;
      return;
    }
2472

2473
  /* Cselib clears the table for this case, so we have to essentially
2474 2475
     do the same.  */
  if (NONJUMP_INSN_P (insn)
2476
      && volatile_insn_p (PATTERN (insn)))
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
    {
      add_wild_read (bb_info);
      insn_info->cannot_delete = true;
      return;
    }

  /* Look at all of the uses in the insn.  */
  note_uses (&PATTERN (insn), check_mem_read_use, bb_info);

  if (CALL_P (insn))
    {
2488 2489 2490
      bool const_call;
      tree memset_call = NULL_TREE;

2491
      insn_info->cannot_delete = true;
2492

2493
      /* Const functions cannot do anything bad i.e. read memory,
2494
	 however, they can read their parameters which may have
2495 2496 2497 2498 2499
	 been pushed onto the stack.
	 memset and bzero don't read memory either.  */
      const_call = RTL_CONST_CALL_P (insn);
      if (!const_call)
	{
2500 2501
	  rtx call = get_call_rtx_from (insn);
	  if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	    {
	      rtx symbol = XEXP (XEXP (call, 0), 0);
	      if (SYMBOL_REF_DECL (symbol)
		  && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
		{
		  if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
		       == BUILT_IN_NORMAL
		       && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
			   == BUILT_IN_MEMSET))
		      || SYMBOL_REF_DECL (symbol) == block_clear_fn)
		    memset_call = SYMBOL_REF_DECL (symbol);
		}
	    }
	}
      if (const_call || memset_call)
2517 2518 2519 2520
	{
	  insn_info_t i_ptr = active_local_stores;
	  insn_info_t last = NULL;

2521
	  if (dump_file && (dump_flags & TDF_DETAILS))
2522 2523
	    fprintf (dump_file, "%s call %d\n",
		     const_call ? "const" : "memset", INSN_UID (insn));
2524

2525 2526 2527 2528 2529 2530
	  /* See the head comment of the frame_read field.  */
	  if (reload_completed)
	    insn_info->frame_read = true;

	  /* Loop over the active stores and remove those which are
	     killed by the const function call.  */
2531 2532
	  while (i_ptr)
	    {
2533 2534 2535
	      bool remove_store = false;

	      /* The stack pointer based stores are always killed.  */
2536
	      if (i_ptr->stack_pointer_based)
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	        remove_store = true;

	      /* If the frame is read, the frame related stores are killed.  */
	      else if (insn_info->frame_read)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;

		  if (store_info->group_id >= 0
2549
		      && rtx_group_vec[store_info->group_id]->frame_related)
2550 2551 2552 2553
		    remove_store = true;
		}

	      if (remove_store)
2554
		{
2555
		  if (dump_file && (dump_flags & TDF_DETAILS))
2556
		    dump_insn_info ("removing from active", i_ptr);
H.J. Lu committed
2557

2558
		  active_local_stores_len--;
2559 2560 2561 2562 2563 2564 2565
		  if (last)
		    last->next_local_store = i_ptr->next_local_store;
		  else
		    active_local_stores = i_ptr->next_local_store;
		}
	      else
		last = i_ptr;
2566

2567 2568
	      i_ptr = i_ptr->next_local_store;
	    }
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

	  if (memset_call)
	    {
	      rtx args[3];
	      if (get_call_args (insn, memset_call, args, 3)
		  && CONST_INT_P (args[1])
		  && CONST_INT_P (args[2])
		  && INTVAL (args[2]) > 0)
		{
		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2579
		  set_mem_size (mem, INTVAL (args[2]));
2580 2581
		  body = gen_rtx_SET (VOIDmode, mem, args[1]);
		  mems_found += record_store (body, bb_info);
2582
		  if (dump_file && (dump_flags & TDF_DETAILS))
2583 2584 2585
		    fprintf (dump_file, "handling memset as BLKmode store\n");
		  if (mems_found == 1)
		    {
2586 2587 2588 2589 2590 2591
		      if (active_local_stores_len++
			  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
			{
			  active_local_stores_len = 1;
			  active_local_stores = NULL;
			}
2592 2593
		      insn_info->fixed_regs_live
			= copy_fixed_regs (bb_info->regs_live);
2594 2595 2596 2597 2598
		      insn_info->next_local_store = active_local_stores;
		      active_local_stores = insn_info;
		    }
		}
	    }
2599 2600
	}

2601
      else
2602 2603 2604
	/* Every other call, including pure functions, may read any memory
           that is not relative to the frame.  */
        add_non_frame_wild_read (bb_info);
2605

2606 2607 2608 2609 2610 2611
      return;
    }

  /* Assuming that there are sets in these insns, we cannot delete
     them.  */
  if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2612
      || volatile_refs_p (PATTERN (insn))
2613
      || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2614 2615 2616
      || (RTX_FRAME_RELATED_P (insn))
      || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
    insn_info->cannot_delete = true;
H.J. Lu committed
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
  body = PATTERN (insn);
  if (GET_CODE (body) == PARALLEL)
    {
      int i;
      for (i = 0; i < XVECLEN (body, 0); i++)
	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
    }
  else
    mems_found += record_store (body, bb_info);

2628
  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2629
    fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2630 2631
	     mems_found, insn_info->cannot_delete ? "true" : "false");

2632 2633 2634 2635 2636
  /* If we found some sets of mems, add it into the active_local_stores so
     that it can be locally deleted if found dead or used for
     replace_read and redundant constant store elimination.  Otherwise mark
     it as cannot delete.  This simplifies the processing later.  */
  if (mems_found == 1)
2637
    {
2638 2639 2640 2641 2642 2643
      if (active_local_stores_len++
	  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
	{
	  active_local_stores_len = 1;
	  active_local_stores = NULL;
	}
2644
      insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
      insn_info->next_local_store = active_local_stores;
      active_local_stores = insn_info;
    }
  else
    insn_info->cannot_delete = true;
}


/* Remove BASE from the set of active_local_stores.  This is a
   callback from cselib that is used to get rid of the stores in
   active_local_stores.  */

static void
remove_useless_values (cselib_val *base)
{
  insn_info_t insn_info = active_local_stores;
  insn_info_t last = NULL;

  while (insn_info)
    {
      store_info_t store_info = insn_info->store_rec;
2666
      bool del = false;
2667 2668 2669 2670 2671

      /* If ANY of the store_infos match the cselib group that is
	 being deleted, then the insn can not be deleted.  */
      while (store_info)
	{
H.J. Lu committed
2672
	  if ((store_info->group_id == -1)
2673 2674
	      && (store_info->cse_base == base))
	    {
2675
	      del = true;
2676 2677 2678 2679 2680
	      break;
	    }
	  store_info = store_info->next;
	}

2681
      if (del)
2682
	{
2683
	  active_local_stores_len--;
2684 2685 2686 2687 2688 2689 2690 2691
	  if (last)
	    last->next_local_store = insn_info->next_local_store;
	  else
	    active_local_stores = insn_info->next_local_store;
	  free_store_info (insn_info);
	}
      else
	last = insn_info;
H.J. Lu committed
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
      insn_info = insn_info->next_local_store;
    }
}


/* Do all of step 1.  */

static void
dse_step1 (void)
{
  basic_block bb;
2704
  bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
H.J. Lu committed
2705

2706
  cselib_init (0);
2707 2708 2709 2710 2711 2712 2713
  all_blocks = BITMAP_ALLOC (NULL);
  bitmap_set_bit (all_blocks, ENTRY_BLOCK);
  bitmap_set_bit (all_blocks, EXIT_BLOCK);

  FOR_ALL_BB (bb)
    {
      insn_info_t ptr;
2714
      bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2715 2716 2717

      memset (bb_info, 0, sizeof (struct bb_info));
      bitmap_set_bit (all_blocks, bb->index);
2718 2719 2720 2721
      bb_info->regs_live = regs_live;

      bitmap_copy (regs_live, DF_LR_IN (bb));
      df_simulate_initialize_forwards (bb, regs_live);
2722 2723 2724 2725 2726 2727 2728 2729 2730

      bb_table[bb->index] = bb_info;
      cselib_discard_hook = remove_useless_values;

      if (bb->index >= NUM_FIXED_BLOCKS)
	{
	  rtx insn;

	  cse_store_info_pool
H.J. Lu committed
2731
	    = create_alloc_pool ("cse_store_info_pool",
2732 2733
				 sizeof (struct store_info), 100);
	  active_local_stores = NULL;
2734
	  active_local_stores_len = 0;
2735
	  cselib_clear_table ();
H.J. Lu committed
2736

2737 2738 2739 2740 2741 2742
	  /* Scan the insns.  */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		scan_insn (bb_info, insn);
	      cselib_process_insn (insn);
2743 2744
	      if (INSN_P (insn))
		df_simulate_one_insn_forwards (bb, insn, regs_live);
2745
	    }
H.J. Lu committed
2746

2747 2748 2749 2750 2751 2752
	  /* This is something of a hack, because the global algorithm
	     is supposed to take care of the case where stores go dead
	     at the end of the function.  However, the global
	     algorithm must take a more conservative view of block
	     mode reads than the local alg does.  So to get the case
	     where you have a store to the frame followed by a non
2753
	     overlapping block more read, we look at the active local
2754 2755 2756 2757 2758
	     stores at the end of the function and delete all of the
	     frame and spill based ones.  */
	  if (stores_off_frame_dead_at_return
	      && (EDGE_COUNT (bb->succs) == 0
		  || (single_succ_p (bb)
2759
		      && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2760
		      && ! crtl->calls_eh_return)))
2761 2762 2763 2764 2765 2766 2767 2768 2769
	    {
	      insn_info_t i_ptr = active_local_stores;
	      while (i_ptr)
		{
		  store_info_t store_info = i_ptr->store_rec;

		  /* Skip the clobbers.  */
		  while (!store_info->is_set)
		    store_info = store_info->next;
2770
		  if (store_info->alias_set && !i_ptr->cannot_delete)
2771
		    delete_dead_store_insn (i_ptr);
H.J. Lu committed
2772
		  else
2773 2774
		    if (store_info->group_id >= 0)
		      {
H.J. Lu committed
2775
			group_info_t group
2776
			  = rtx_group_vec[store_info->group_id];
2777
			if (group->frame_related && !i_ptr->cannot_delete)
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
			  delete_dead_store_insn (i_ptr);
		      }

		  i_ptr = i_ptr->next_local_store;
		}
	    }

	  /* Get rid of the loads that were discovered in
	     replace_read.  Cselib is finished with this block.  */
	  while (deferred_change_list)
	    {
	      deferred_change_t next = deferred_change_list->next;

	      /* There is no reason to validate this change.  That was
		 done earlier.  */
	      *deferred_change_list->loc = deferred_change_list->reg;
	      pool_free (deferred_change_pool, deferred_change_list);
	      deferred_change_list = next;
	    }

	  /* Get rid of all of the cselib based store_infos in this
	     block and mark the containing insns as not being
	     deletable.  */
	  ptr = bb_info->last_insn;
	  while (ptr)
	    {
	      if (ptr->contains_cselib_groups)
2805 2806 2807 2808 2809 2810 2811 2812 2813
		{
		  store_info_t s_info = ptr->store_rec;
		  while (s_info && !s_info->is_set)
		    s_info = s_info->next;
		  if (s_info
		      && s_info->redundant_reason
		      && s_info->redundant_reason->insn
		      && !ptr->cannot_delete)
		    {
2814
		      if (dump_file && (dump_flags & TDF_DETAILS))
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
			fprintf (dump_file, "Locally deleting insn %d "
					    "because insn %d stores the "
					    "same value and couldn't be "
					    "eliminated\n",
				 INSN_UID (ptr->insn),
				 INSN_UID (s_info->redundant_reason->insn));
		      delete_dead_store_insn (ptr);
		    }
		  free_store_info (ptr);
		}
	      else
		{
		  store_info_t s_info;

		  /* Free at least positions_needed bitmaps.  */
		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
		    if (s_info->is_large)
		      {
2833
			BITMAP_FREE (s_info->positions_needed.large.bmap);
2834 2835 2836
			s_info->is_large = false;
		      }
		}
2837 2838 2839 2840 2841
	      ptr = ptr->prev_insn;
	    }

	  free_alloc_pool (cse_store_info_pool);
	}
2842
      bb_info->regs_live = NULL;
2843 2844
    }

2845
  BITMAP_FREE (regs_live);
2846
  cselib_finish ();
2847
  rtx_group_table.empty ();
2848 2849 2850 2851 2852 2853 2854 2855
}


/*----------------------------------------------------------------------------
   Second step.

   Assign each byte position in the stores that we are going to
   analyze globally to a position in the bitmaps.  Returns true if
2856
   there are any bit positions assigned.
2857 2858 2859 2860 2861 2862 2863 2864
----------------------------------------------------------------------------*/

static void
dse_step2_init (void)
{
  unsigned int i;
  group_info_t group;

2865
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2866 2867 2868 2869 2870 2871 2872 2873 2874
    {
      /* For all non stack related bases, we only consider a store to
	 be deletable if there are two or more stores for that
	 position.  This is because it takes one store to make the
	 other store redundant.  However, for the stores that are
	 stack related, we consider them if there is only one store
	 for the position.  We do this because the stack related
	 stores can be deleted if their is no read between them and
	 the end of the function.
H.J. Lu committed
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884
	 To make this work in the current framework, we take the stack
	 related bases add all of the bits from store1 into store2.
	 This has the effect of making the eligible even if there is
	 only one store.   */

      if (stores_off_frame_dead_at_return && group->frame_related)
	{
	  bitmap_ior_into (group->store2_n, group->store1_n);
	  bitmap_ior_into (group->store2_p, group->store1_p);
2885
	  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2886
	    fprintf (dump_file, "group %d is frame related ", i);
2887 2888 2889
	}

      group->offset_map_size_n++;
2890 2891
      group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_n);
2892
      group->offset_map_size_p++;
2893 2894
      group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
				       group->offset_map_size_p);
2895
      group->process_globally = false;
2896
      if (dump_file && (dump_flags & TDF_DETAILS))
2897
	{
H.J. Lu committed
2898
	  fprintf (dump_file, "group %d(%d+%d): ", i,
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		   (int)bitmap_count_bits (group->store2_n),
		   (int)bitmap_count_bits (group->store2_p));
	  bitmap_print (dump_file, group->store2_n, "n ", " ");
	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
	}
    }
}


/* Init the offset tables for the normal case.  */

static bool
dse_step2_nospill (void)
{
  unsigned int i;
  group_info_t group;
  /* Position 0 is unused because 0 is used in the maps to mean
     unused.  */
  current_position = 1;
2918
  FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2919 2920 2921 2922 2923 2924 2925
    {
      bitmap_iterator bi;
      unsigned int j;

      if (group == clear_alias_group)
	continue;

2926 2927
      memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
      memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2928 2929 2930 2931 2932
      bitmap_clear (group->group_kill);

      EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
	{
	  bitmap_set_bit (group->group_kill, current_position);
2933 2934
          if (bitmap_bit_p (group->escaped_n, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2935 2936 2937 2938 2939
	  group->offset_map_n[j] = current_position++;
	  group->process_globally = true;
	}
      EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
	{
H.J. Lu committed
2940
	  bitmap_set_bit (group->group_kill, current_position);
2941 2942
          if (bitmap_bit_p (group->escaped_p, j))
	    bitmap_set_bit (kill_on_calls, current_position);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	  group->offset_map_p[j] = current_position++;
	  group->process_globally = true;
	}
    }
  return current_position != 1;
}



/*----------------------------------------------------------------------------
  Third step.
H.J. Lu committed
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
  Build the bit vectors for the transfer functions.
----------------------------------------------------------------------------*/


/* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
   there, return 0.  */

static int
get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
{
  if (offset < 0)
    {
      HOST_WIDE_INT offset_p = -offset;
      if (offset_p >= group_info->offset_map_size_n)
	return 0;
      return group_info->offset_map_n[offset_p];
    }
  else
    {
      if (offset >= group_info->offset_map_size_p)
	return 0;
      return group_info->offset_map_p[offset];
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
2984
static void
2985 2986 2987 2988 2989
scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      HOST_WIDE_INT i;
H.J. Lu committed
2990
      group_info_t group_info
2991
	= rtx_group_vec[store_info->group_id];
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
      if (group_info->process_globally)
	for (i = store_info->begin; i < store_info->end; i++)
	  {
	    int index = get_bitmap_index (group_info, i);
	    if (index != 0)
	      {
		bitmap_set_bit (gen, index);
		if (kill)
		  bitmap_clear_bit (kill, index);
	      }
	  }
      store_info = store_info->next;
    }
}


/* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL. */

H.J. Lu committed
3011
static void
3012 3013 3014 3015 3016 3017
scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
{
  while (store_info)
    {
      if (store_info->alias_set)
	{
H.J. Lu committed
3018
	  int index = get_bitmap_index (clear_alias_group,
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
					store_info->alias_set);
	  if (index != 0)
	    {
	      bitmap_set_bit (gen, index);
	      if (kill)
		bitmap_clear_bit (kill, index);
	    }
	}
      store_info = store_info->next;
    }
}


/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
{
  read_info_t read_info = insn_info->read_rec;
  int i;
  group_info_t group;

3042 3043 3044
  /* If this insn reads the frame, kill all the frame related stores.  */
  if (insn_info->frame_read)
    {
3045
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3046 3047 3048 3049
	if (group->process_globally && group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
H.J. Lu committed
3050
	    bitmap_and_compl_into (gen, group->group_kill);
3051 3052
	  }
    }
3053 3054 3055 3056 3057 3058 3059
  if (insn_info->non_frame_wild_read)
    {
      /* Kill all non-frame related stores.  Kill all stores of variables that
         escape.  */
      if (kill)
        bitmap_ior_into (kill, kill_on_calls);
      bitmap_and_compl_into (gen, kill_on_calls);
3060
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3061 3062 3063 3064 3065 3066 3067
	if (group->process_globally && !group->frame_related)
	  {
	    if (kill)
	      bitmap_ior_into (kill, group->group_kill);
	    bitmap_and_compl_into (gen, group->group_kill);
	  }
    }
3068 3069
  while (read_info)
    {
3070
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	{
	  if (group->process_globally)
	    {
	      if (i == read_info->group_id)
		{
		  if (read_info->begin > read_info->end)
		    {
		      /* Begin > end for block mode reads.  */
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		  else
		    {
		      /* The groups are the same, just process the
			 offsets.  */
		      HOST_WIDE_INT j;
		      for (j = read_info->begin; j < read_info->end; j++)
			{
			  int index = get_bitmap_index (group, j);
			  if (index != 0)
			    {
			      if (kill)
				bitmap_set_bit (kill, index);
			      bitmap_clear_bit (gen, index);
			    }
			}
		    }
		}
	      else
		{
		  /* The groups are different, if the alias sets
		     conflict, clear the entire group.  We only need
		     to apply this test if the read_info is a cselib
		     read.  Anything with a constant base cannot alias
		     something else with a different constant
		     base.  */
		  if ((read_info->group_id < 0)
H.J. Lu committed
3109
		      && canon_true_dependence (group->base_mem,
3110
						GET_MODE (group->base_mem),
3111
						group->canon_base_addr,
3112
						read_info->mem, NULL_RTX))
3113 3114 3115 3116 3117 3118 3119 3120
		    {
		      if (kill)
			bitmap_ior_into (kill, group->group_kill);
		      bitmap_and_compl_into (gen, group->group_kill);
		    }
		}
	    }
	}
H.J. Lu committed
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
      read_info = read_info->next;
    }
}

/* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
   may be NULL.  */

static void
scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
{
  while (read_info)
    {
      if (read_info->alias_set)
	{
H.J. Lu committed
3136
	  int index = get_bitmap_index (clear_alias_group,
3137 3138 3139 3140 3141 3142 3143 3144
					read_info->alias_set);
	  if (index != 0)
	    {
	      if (kill)
		bitmap_set_bit (kill, index);
	      bitmap_clear_bit (gen, index);
	    }
	}
H.J. Lu committed
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
      read_info = read_info->next;
    }
}


/* Return the insn in BB_INFO before the first wild read or if there
   are no wild reads in the block, return the last insn.  */

static insn_info_t
find_insn_before_first_wild_read (bb_info_t bb_info)
{
  insn_info_t insn_info = bb_info->last_insn;
  insn_info_t last_wild_read = NULL;

  while (insn_info)
    {
      if (insn_info->wild_read)
	{
	  last_wild_read = insn_info->prev_insn;
	  /* Block starts with wild read.  */
	  if (!last_wild_read)
	    return NULL;
	}

      insn_info = insn_info->prev_insn;
    }

  if (last_wild_read)
    return last_wild_read;
  else
    return bb_info->last_insn;
}


/* Scan the insns in BB_INFO starting at PTR and going to the top of
   the block in order to build the gen and kill sets for the block.
   We start at ptr which may be the last insn in the block or may be
   the first insn with a wild read.  In the latter case we are able to
   skip the rest of the block because it just does not matter:
   anything that happens is hidden by the wild read.  */

static void
dse_step3_scan (bool for_spills, basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];
  insn_info_t insn_info;

  if (for_spills)
    /* There are no wild reads in the spill case.  */
    insn_info = bb_info->last_insn;
  else
    insn_info = find_insn_before_first_wild_read (bb_info);
H.J. Lu committed
3198

3199 3200 3201 3202 3203 3204 3205
  /* In the spill case or in the no_spill case if there is no wild
     read in the block, we will need a kill set.  */
  if (insn_info == bb_info->last_insn)
    {
      if (bb_info->kill)
	bitmap_clear (bb_info->kill);
      else
3206
	bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3207
    }
H.J. Lu committed
3208
  else
3209 3210 3211 3212 3213 3214 3215 3216 3217
    if (bb_info->kill)
      BITMAP_FREE (bb_info->kill);

  while (insn_info)
    {
      /* There may have been code deleted by the dce pass run before
	 this phase.  */
      if (insn_info->insn && INSN_P (insn_info->insn))
	{
H.J. Lu committed
3218
	  /* Process the read(s) last.  */
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	  if (for_spills)
	    {
	      scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
	    }
	  else
	    {
	      scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
	      scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
	    }
H.J. Lu committed
3229
	}
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

      insn_info = insn_info->prev_insn;
    }
}


/* Set the gen set of the exit block, and also any block with no
   successors that does not have a wild read.  */

static void
dse_step3_exit_block_scan (bb_info_t bb_info)
{
  /* The gen set is all 0's for the exit block except for the
     frame_pointer_group.  */
H.J. Lu committed
3244

3245 3246 3247 3248
  if (stores_off_frame_dead_at_return)
    {
      unsigned int i;
      group_info_t group;
H.J. Lu committed
3249

3250
      FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	{
	  if (group->process_globally && group->frame_related)
	    bitmap_ior_into (bb_info->gen, group->group_kill);
	}
    }
}


/* Find all of the blocks that are not backwards reachable from the
   exit block or any block with no successors (BB).  These are the
   infinite loops or infinite self loops.  These blocks will still
   have their bits set in UNREACHABLE_BLOCKS.  */

static void
mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
{
  edge e;
  edge_iterator ei;

3270
  if (bitmap_bit_p (unreachable_blocks, bb->index))
3271
    {
3272
      bitmap_clear_bit (unreachable_blocks, bb->index);
3273
      FOR_EACH_EDGE (e, ei, bb->preds)
H.J. Lu committed
3274
	{
3275
	  mark_reachable_blocks (unreachable_blocks, e->src);
H.J. Lu committed
3276
	}
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
    }
}

/* Build the transfer functions for the function.  */

static void
dse_step3 (bool for_spills)
{
  basic_block bb;
  sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
  sbitmap_iterator sbi;
  bitmap all_ones = NULL;
  unsigned int i;
H.J. Lu committed
3290

3291
  bitmap_ones (unreachable_blocks);
3292 3293 3294 3295 3296 3297 3298

  FOR_ALL_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      if (bb_info->gen)
	bitmap_clear (bb_info->gen);
      else
3299
	bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

      if (bb->index == ENTRY_BLOCK)
	;
      else if (bb->index == EXIT_BLOCK)
	dse_step3_exit_block_scan (bb_info);
      else
	dse_step3_scan (for_spills, bb);
      if (EDGE_COUNT (bb->succs) == 0)
	mark_reachable_blocks (unreachable_blocks, bb);

      /* If this is the second time dataflow is run, delete the old
	 sets.  */
      if (bb_info->in)
	BITMAP_FREE (bb_info->in);
      if (bb_info->out)
	BITMAP_FREE (bb_info->out);
    }

  /* For any block in an infinite loop, we must initialize the out set
     to all ones.  This could be expensive, but almost never occurs in
     practice. However, it is common in regression tests.  */
3321
  EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3322 3323 3324 3325 3326 3327 3328 3329 3330
    {
      if (bitmap_bit_p (all_blocks, i))
	{
	  bb_info_t bb_info = bb_table[i];
	  if (!all_ones)
	    {
	      unsigned int j;
	      group_info_t group;

3331
	      all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3332
	      FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3333 3334 3335 3336
		bitmap_ior_into (all_ones, group->group_kill);
	    }
	  if (!bb_info->out)
	    {
3337
	      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	      bitmap_copy (bb_info->out, all_ones);
	    }
	}
    }

  if (all_ones)
    BITMAP_FREE (all_ones);
  sbitmap_free (unreachable_blocks);
}



/*----------------------------------------------------------------------------
   Fourth step.

   Solve the bitvector equations.
----------------------------------------------------------------------------*/


/* Confluence function for blocks with no successors.  Create an out
   set from the gen set of the exit block.  This block logically has
   the exit block as a successor.  */



static void
dse_confluence_0 (basic_block bb)
{
  bb_info_t bb_info = bb_table[bb->index];

  if (bb->index == EXIT_BLOCK)
    return;

  if (!bb_info->out)
    {
3373
      bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3374 3375 3376 3377 3378 3379 3380 3381
      bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
    }
}

/* Propagate the information from the in set of the dest of E to the
   out set of the src of E.  If the various in or out sets are not
   there, that means they are all ones.  */

3382
static bool
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
dse_confluence_n (edge e)
{
  bb_info_t src_info = bb_table[e->src->index];
  bb_info_t dest_info = bb_table[e->dest->index];

  if (dest_info->in)
    {
      if (src_info->out)
	bitmap_and_into (src_info->out, dest_info->in);
      else
	{
3394
	  src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3395 3396 3397
	  bitmap_copy (src_info->out, dest_info->in);
	}
    }
3398
  return true;
3399 3400 3401 3402
}


/* Propagate the info from the out to the in set of BB_INDEX's basic
H.J. Lu committed
3403
   block.  There are three cases:
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428

   1) The block has no kill set.  In this case the kill set is all
   ones.  It does not matter what the out set of the block is, none of
   the info can reach the top.  The only thing that reaches the top is
   the gen set and we just copy the set.

   2) There is a kill set but no out set and bb has successors.  In
   this case we just return. Eventually an out set will be created and
   it is better to wait than to create a set of ones.

   3) There is both a kill and out set.  We apply the obvious transfer
   function.
*/

static bool
dse_transfer_function (int bb_index)
{
  bb_info_t bb_info = bb_table[bb_index];

  if (bb_info->kill)
    {
      if (bb_info->out)
	{
	  /* Case 3 above.  */
	  if (bb_info->in)
H.J. Lu committed
3429
	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3430 3431 3432
					 bb_info->out, bb_info->kill);
	  else
	    {
3433
	      bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
H.J. Lu committed
3434
	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
				    bb_info->out, bb_info->kill);
	      return true;
	    }
	}
      else
	/* Case 2 above.  */
	return false;
    }
  else
    {
      /* Case 1 above.  If there is already an in set, nothing
	 happens.  */
      if (bb_info->in)
	return false;
      else
	{
3451
	  bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	  bitmap_copy (bb_info->in, bb_info->gen);
	  return true;
	}
    }
}

/* Solve the dataflow equations.  */

static void
dse_step4 (void)
{
H.J. Lu committed
3463 3464 3465
  df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
		      dse_confluence_n, dse_transfer_function,
	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3466
		      df_get_n_blocks (DF_BACKWARD));
3467
  if (dump_file && (dump_flags & TDF_DETAILS))
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    {
      basic_block bb;

      fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
      FOR_ALL_BB (bb)
	{
	  bb_info_t bb_info = bb_table[bb->index];

	  df_print_bb_index (bb, dump_file);
	  if (bb_info->in)
	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
	  else
	    fprintf (dump_file, "  in:   *MISSING*\n");
	  if (bb_info->gen)
	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
	  else
	    fprintf (dump_file, "  gen:  *MISSING*\n");
	  if (bb_info->kill)
	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
	  else
	    fprintf (dump_file, "  kill: *MISSING*\n");
	  if (bb_info->out)
	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
	  else
	    fprintf (dump_file, "  out:  *MISSING*\n\n");
	}
    }
}



/*----------------------------------------------------------------------------
   Fifth step.

3502
   Delete the stores that can only be deleted using the global information.
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
----------------------------------------------------------------------------*/


static void
dse_step5_nospill (void)
{
  basic_block bb;
  FOR_EACH_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;
      bitmap v = bb_info->out;

      while (insn_info)
	{
	  bool deleted = false;
	  if (dump_file && insn_info->insn)
	    {
	      fprintf (dump_file, "starting to process insn %d\n",
		       INSN_UID (insn_info->insn));
	      bitmap_print (dump_file, v, "  v:  ", "\n");
	    }

	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
H.J. Lu committed
3528
	  if (insn_info->insn
3529 3530 3531 3532 3533 3534 3535 3536
	      && INSN_P (insn_info->insn)
	      && (!insn_info->cannot_delete)
	      && (!bitmap_empty_p (v)))
	    {
	      store_info_t store_info = insn_info->store_rec;

	      /* Try to delete the current insn.  */
	      deleted = true;
H.J. Lu committed
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546
	      /* Skip the clobbers.  */
	      while (!store_info->is_set)
		store_info = store_info->next;

	      if (store_info->alias_set)
		deleted = false;
	      else
		{
		  HOST_WIDE_INT i;
H.J. Lu committed
3547
		  group_info_t group_info
3548
		    = rtx_group_vec[store_info->group_id];
H.J. Lu committed
3549

3550 3551 3552
		  for (i = store_info->begin; i < store_info->end; i++)
		    {
		      int index = get_bitmap_index (group_info, i);
H.J. Lu committed
3553

3554
		      if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
3555
			fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3556 3557
		      if (index == 0 || !bitmap_bit_p (v, index))
			{
3558
			  if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
3559
			    fprintf (dump_file, "failing at i = %d\n", (int)i);
3560 3561 3562 3563 3564 3565 3566
			  deleted = false;
			  break;
			}
		    }
		}
	      if (deleted)
		{
3567 3568
		  if (dbg_cnt (dse)
		      && check_for_inc_dec_1 (insn_info))
3569 3570 3571 3572 3573 3574 3575 3576
		    {
		      delete_insn (insn_info->insn);
		      insn_info->insn = NULL;
		      globally_deleted++;
		    }
		}
	    }
	  /* We do want to process the local info if the insn was
3577
	     deleted.  For instance, if the insn did a wild read, we
3578
	     no longer need to trash the info.  */
H.J. Lu committed
3579
	  if (insn_info->insn
3580 3581 3582 3583 3584 3585
	      && INSN_P (insn_info->insn)
	      && (!deleted))
	    {
	      scan_stores_nospill (insn_info->store_rec, v, NULL);
	      if (insn_info->wild_read)
		{
3586
		  if (dump_file && (dump_flags & TDF_DETAILS))
3587 3588 3589
		    fprintf (dump_file, "wild read\n");
		  bitmap_clear (v);
		}
3590 3591
	      else if (insn_info->read_rec
                       || insn_info->non_frame_wild_read)
3592
		{
3593
		  if (dump_file && !insn_info->non_frame_wild_read)
3594
		    fprintf (dump_file, "regular read\n");
3595
                  else if (dump_file && (dump_flags & TDF_DETAILS))
3596
		    fprintf (dump_file, "non-frame wild read\n");
3597 3598 3599
		  scan_reads_nospill (insn_info, v, NULL);
		}
	    }
H.J. Lu committed
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	  insn_info = insn_info->prev_insn;
	}
    }
}



/*----------------------------------------------------------------------------
   Sixth step.

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
   Delete stores made redundant by earlier stores (which store the same
   value) that couldn't be eliminated.
----------------------------------------------------------------------------*/

static void
dse_step6 (void)
{
  basic_block bb;

  FOR_ALL_BB (bb)
    {
      bb_info_t bb_info = bb_table[bb->index];
      insn_info_t insn_info = bb_info->last_insn;

      while (insn_info)
	{
	  /* There may have been code deleted by the dce pass run before
	     this phase.  */
	  if (insn_info->insn
	      && INSN_P (insn_info->insn)
	      && !insn_info->cannot_delete)
	    {
	      store_info_t s_info = insn_info->store_rec;

	      while (s_info && !s_info->is_set)
		s_info = s_info->next;
	      if (s_info
		  && s_info->redundant_reason
		  && s_info->redundant_reason->insn
		  && INSN_P (s_info->redundant_reason->insn))
		{
		  rtx rinsn = s_info->redundant_reason->insn;
3643
		  if (dump_file && (dump_flags & TDF_DETAILS))
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		    fprintf (dump_file, "Locally deleting insn %d "
					"because insn %d stores the "
					"same value and couldn't be "
					"eliminated\n",
					INSN_UID (insn_info->insn),
					INSN_UID (rinsn));
		  delete_dead_store_insn (insn_info);
		}
	    }
	  insn_info = insn_info->prev_insn;
	}
    }
}

/*----------------------------------------------------------------------------
   Seventh step.

H.J. Lu committed
3661
   Destroy everything left standing.
3662 3663
----------------------------------------------------------------------------*/

H.J. Lu committed
3664
static void
3665
dse_step7 (void)
3666
{
3667 3668
  bitmap_obstack_release (&dse_bitmap_obstack);
  obstack_free (&dse_obstack, NULL);
3669

3670 3671
  end_alias_analysis ();
  free (bb_table);
3672
  rtx_group_table.dispose ();
3673
  rtx_group_vec.release ();
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
  BITMAP_FREE (all_blocks);
  BITMAP_FREE (scratch);

  free_alloc_pool (rtx_store_info_pool);
  free_alloc_pool (read_info_pool);
  free_alloc_pool (insn_info_pool);
  free_alloc_pool (bb_info_pool);
  free_alloc_pool (rtx_group_info_pool);
  free_alloc_pool (deferred_change_pool);
}


/* -------------------------------------------------------------------------
   DSE
   ------------------------------------------------------------------------- */

/* Callback for running pass_rtl_dse.  */

static unsigned int
rest_of_handle_dse (void)
{
  df_set_flags (DF_DEFER_INSN_RESCAN);

3697 3698 3699 3700 3701
  /* Need the notes since we must track live hardregs in the forwards
     direction.  */
  df_note_add_problem ();
  df_analyze ();

3702 3703 3704 3705 3706 3707 3708
  dse_step0 ();
  dse_step1 ();
  dse_step2_init ();
  if (dse_step2_nospill ())
    {
      df_set_flags (DF_LR_RUN_DCE);
      df_analyze ();
3709
      if (dump_file && (dump_flags & TDF_DETAILS))
3710 3711 3712 3713 3714 3715
	fprintf (dump_file, "doing global processing\n");
      dse_step3 (false);
      dse_step4 ();
      dse_step5_nospill ();
    }

3716
  dse_step6 ();
3717
  dse_step7 ();
3718 3719 3720 3721 3722 3723 3724 3725

  if (dump_file)
    fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
	     locally_deleted, globally_deleted, spill_deleted);
  return 0;
}

static bool
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
gate_dse1 (void)
{
  return optimize > 0 && flag_dse
    && dbg_cnt (dse1);
}

static bool
gate_dse2 (void)
{
  return optimize > 0 && flag_dse
    && dbg_cnt (dse2);
3737 3738
}

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
namespace {

const pass_data pass_data_rtl_dse1 =
{
  RTL_PASS, /* type */
  "dse1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_DSE1, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3754 3755
};

3756 3757 3758
class pass_rtl_dse1 : public rtl_opt_pass
{
public:
3759 3760
  pass_rtl_dse1 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
  {}

  /* opt_pass methods: */
  bool gate () { return gate_dse1 (); }
  unsigned int execute () { return rest_of_handle_dse (); }

}; // class pass_rtl_dse1

} // anon namespace

rtl_opt_pass *
make_pass_rtl_dse1 (gcc::context *ctxt)
{
  return new pass_rtl_dse1 (ctxt);
}

namespace {

const pass_data pass_data_rtl_dse2 =
{
  RTL_PASS, /* type */
  "dse2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_DSE2, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3792
};
3793 3794 3795 3796

class pass_rtl_dse2 : public rtl_opt_pass
{
public:
3797 3798
  pass_rtl_dse2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
  {}

  /* opt_pass methods: */
  bool gate () { return gate_dse2 (); }
  unsigned int execute () { return rest_of_handle_dse (); }

}; // class pass_rtl_dse2

} // anon namespace

rtl_opt_pass *
make_pass_rtl_dse2 (gcc::context *ctxt)
{
  return new pass_rtl_dse2 (ctxt);
}