regexp.go 7.58 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright 2011 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package syntax

// Note to implementers:
// In this package, re is always a *Regexp and r is always a rune.

import (
	"bytes"
	"strconv"
	"strings"
	"unicode"
)

// A Regexp is a node in a regular expression syntax tree.
type Regexp struct {
	Op       Op // operator
	Flags    Flags
	Sub      []*Regexp  // subexpressions, if any
	Sub0     [1]*Regexp // storage for short Sub
23 24
	Rune     []rune     // matched runes, for OpLiteral, OpCharClass
	Rune0    [2]rune    // storage for short Rune
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	Min, Max int        // min, max for OpRepeat
	Cap      int        // capturing index, for OpCapture
	Name     string     // capturing name, for OpCapture
}

// An Op is a single regular expression operator.
type Op uint8

// Operators are listed in precedence order, tightest binding to weakest.
// Character class operators are listed simplest to most complex
// (OpLiteral, OpCharClass, OpAnyCharNotNL, OpAnyChar).

const (
	OpNoMatch        Op = 1 + iota // matches no strings
	OpEmptyMatch                   // matches empty string
	OpLiteral                      // matches Runes sequence
	OpCharClass                    // matches Runes interpreted as range pair list
	OpAnyCharNotNL                 // matches any character
	OpAnyChar                      // matches any character
	OpBeginLine                    // matches empty string at beginning of line
	OpEndLine                      // matches empty string at end of line
	OpBeginText                    // matches empty string at beginning of text
	OpEndText                      // matches empty string at end of text
	OpWordBoundary                 // matches word boundary `\b`
	OpNoWordBoundary               // matches word non-boundary `\B`
	OpCapture                      // capturing subexpression with index Cap, optional name Name
	OpStar                         // matches Sub[0] zero or more times
	OpPlus                         // matches Sub[0] one or more times
	OpQuest                        // matches Sub[0] zero or one times
	OpRepeat                       // matches Sub[0] at least Min times, at most Max (Max == -1 is no limit)
	OpConcat                       // matches concatenation of Subs
	OpAlternate                    // matches alternation of Subs
)

const opPseudo Op = 128 // where pseudo-ops start

// Equal returns true if x and y have identical structure.
func (x *Regexp) Equal(y *Regexp) bool {
	if x == nil || y == nil {
		return x == y
	}
	if x.Op != y.Op {
		return false
	}
	switch x.Op {
	case OpEndText:
		// The parse flags remember whether this is \z or \Z.
		if x.Flags&WasDollar != y.Flags&WasDollar {
			return false
		}

	case OpLiteral, OpCharClass:
		if len(x.Rune) != len(y.Rune) {
			return false
		}
		for i, r := range x.Rune {
			if r != y.Rune[i] {
				return false
			}
		}

	case OpAlternate, OpConcat:
		if len(x.Sub) != len(y.Sub) {
			return false
		}
		for i, sub := range x.Sub {
			if !sub.Equal(y.Sub[i]) {
				return false
			}
		}

	case OpStar, OpPlus, OpQuest:
		if x.Flags&NonGreedy != y.Flags&NonGreedy || !x.Sub[0].Equal(y.Sub[0]) {
			return false
		}

	case OpRepeat:
		if x.Flags&NonGreedy != y.Flags&NonGreedy || x.Min != y.Min || x.Max != y.Max || !x.Sub[0].Equal(y.Sub[0]) {
			return false
		}

	case OpCapture:
		if x.Cap != y.Cap || x.Name != y.Name || !x.Sub[0].Equal(y.Sub[0]) {
			return false
		}
	}
	return true
}

// writeRegexp writes the Perl syntax for the regular expression re to b.
func writeRegexp(b *bytes.Buffer, re *Regexp) {
	switch re.Op {
	default:
		b.WriteString("<invalid op" + strconv.Itoa(int(re.Op)) + ">")
	case OpNoMatch:
		b.WriteString(`[^\x00-\x{10FFFF}]`)
	case OpEmptyMatch:
		b.WriteString(`(?:)`)
	case OpLiteral:
		if re.Flags&FoldCase != 0 {
			b.WriteString(`(?i:`)
		}
		for _, r := range re.Rune {
			escape(b, r, false)
		}
		if re.Flags&FoldCase != 0 {
			b.WriteString(`)`)
		}
	case OpCharClass:
		if len(re.Rune)%2 != 0 {
			b.WriteString(`[invalid char class]`)
			break
		}
		b.WriteRune('[')
		if len(re.Rune) == 0 {
			b.WriteString(`^\x00-\x{10FFFF}`)
		} else if re.Rune[0] == 0 && re.Rune[len(re.Rune)-1] == unicode.MaxRune {
			// Contains 0 and MaxRune.  Probably a negated class.
			// Print the gaps.
			b.WriteRune('^')
			for i := 1; i < len(re.Rune)-1; i += 2 {
				lo, hi := re.Rune[i]+1, re.Rune[i+1]-1
				escape(b, lo, lo == '-')
				if lo != hi {
					b.WriteRune('-')
					escape(b, hi, hi == '-')
				}
			}
		} else {
			for i := 0; i < len(re.Rune); i += 2 {
				lo, hi := re.Rune[i], re.Rune[i+1]
				escape(b, lo, lo == '-')
				if lo != hi {
					b.WriteRune('-')
					escape(b, hi, hi == '-')
				}
			}
		}
		b.WriteRune(']')
	case OpAnyCharNotNL:
165
		b.WriteString(`(?-s:.)`)
166
	case OpAnyChar:
167
		b.WriteString(`(?s:.)`)
168 169 170 171 172 173 174
	case OpBeginLine:
		b.WriteRune('^')
	case OpEndLine:
		b.WriteRune('$')
	case OpBeginText:
		b.WriteString(`\A`)
	case OpEndText:
175 176 177 178 179
		if re.Flags&WasDollar != 0 {
			b.WriteString(`(?-m:$)`)
		} else {
			b.WriteString(`\z`)
		}
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	case OpWordBoundary:
		b.WriteString(`\b`)
	case OpNoWordBoundary:
		b.WriteString(`\B`)
	case OpCapture:
		if re.Name != "" {
			b.WriteString(`(?P<`)
			b.WriteString(re.Name)
			b.WriteRune('>')
		} else {
			b.WriteRune('(')
		}
		if re.Sub[0].Op != OpEmptyMatch {
			writeRegexp(b, re.Sub[0])
		}
		b.WriteRune(')')
	case OpStar, OpPlus, OpQuest, OpRepeat:
197
		if sub := re.Sub[0]; sub.Op > OpCapture || sub.Op == OpLiteral && len(sub.Rune) > 1 {
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			b.WriteString(`(?:`)
			writeRegexp(b, sub)
			b.WriteString(`)`)
		} else {
			writeRegexp(b, sub)
		}
		switch re.Op {
		case OpStar:
			b.WriteRune('*')
		case OpPlus:
			b.WriteRune('+')
		case OpQuest:
			b.WriteRune('?')
		case OpRepeat:
			b.WriteRune('{')
			b.WriteString(strconv.Itoa(re.Min))
			if re.Max != re.Min {
				b.WriteRune(',')
				if re.Max >= 0 {
					b.WriteString(strconv.Itoa(re.Max))
				}
			}
			b.WriteRune('}')
		}
222 223 224
		if re.Flags&NonGreedy != 0 {
			b.WriteRune('?')
		}
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	case OpConcat:
		for _, sub := range re.Sub {
			if sub.Op == OpAlternate {
				b.WriteString(`(?:`)
				writeRegexp(b, sub)
				b.WriteString(`)`)
			} else {
				writeRegexp(b, sub)
			}
		}
	case OpAlternate:
		for i, sub := range re.Sub {
			if i > 0 {
				b.WriteRune('|')
			}
			writeRegexp(b, sub)
		}
	}
}

func (re *Regexp) String() string {
	var b bytes.Buffer
	writeRegexp(&b, re)
	return b.String()
}

const meta = `\.+*?()|[]{}^$`

253
func escape(b *bytes.Buffer, r rune, force bool) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	if unicode.IsPrint(r) {
		if strings.IndexRune(meta, r) >= 0 || force {
			b.WriteRune('\\')
		}
		b.WriteRune(r)
		return
	}

	switch r {
	case '\a':
		b.WriteString(`\a`)
	case '\f':
		b.WriteString(`\f`)
	case '\n':
		b.WriteString(`\n`)
	case '\r':
		b.WriteString(`\r`)
	case '\t':
		b.WriteString(`\t`)
	case '\v':
		b.WriteString(`\v`)
	default:
		if r < 0x100 {
			b.WriteString(`\x`)
278
			s := strconv.FormatInt(int64(r), 16)
279 280 281 282 283 284 285
			if len(s) == 1 {
				b.WriteRune('0')
			}
			b.WriteString(s)
			break
		}
		b.WriteString(`\x{`)
286
		b.WriteString(strconv.FormatInt(int64(r), 16))
287 288 289
		b.WriteString(`}`)
	}
}
290 291 292 293 294 295 296 297 298 299 300 301 302 303

// MaxCap walks the regexp to find the maximum capture index.
func (re *Regexp) MaxCap() int {
	m := 0
	if re.Op == OpCapture {
		m = re.Cap
	}
	for _, sub := range re.Sub {
		if n := sub.MaxCap(); m < n {
			m = n
		}
	}
	return m
}
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

// CapNames walks the regexp to find the names of capturing groups.
func (re *Regexp) CapNames() []string {
	names := make([]string, re.MaxCap()+1)
	re.capNames(names)
	return names
}

func (re *Regexp) capNames(names []string) {
	if re.Op == OpCapture {
		names[re.Cap] = re.Name
	}
	for _, sub := range re.Sub {
		sub.capNames(names)
	}
}