Arrays.java 52.9 KB
Newer Older
Tom Tromey committed
1
/* Arrays.java -- Utility class with methods to operate on arrays
2
   Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
Tom Tromey committed
3 4 5 6 7 8 9

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
10

Tom Tromey committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */


// TO DO:
// ~ Fix the behaviour of sort and binarySearch as applied to float and double
//   arrays containing NaN values. See the JDC, bug ID 4143272.

package java.util;

/**
 * This class contains various static utility methods performing operations on
 * arrays, and a method to provide a List "view" of an array to facilitate
 * using arrays with Collection-based APIs.
 */
39 40
public class Arrays
{
Tom Tromey committed
41 42 43
  /**
   * This class is non-instantiable.
   */
44 45
  private Arrays()
  {
Tom Tromey committed
46 47
  }

48 49 50 51 52
  private static Comparator defaultComparator = new Comparator()
  {
    public int compare(Object o1, Object o2)
    {
      return ((Comparable) o1).compareTo(o2);
Tom Tromey committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    }
  };

  /**
   * Perform a binary search of a byte array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
70 71
  public static int binarySearch(byte[]a, byte key)
  {
Tom Tromey committed
72 73 74
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final byte d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of a char array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
110 111
  public static int binarySearch(char[]a, char key)
  {
Tom Tromey committed
112 113 114
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final char d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of a double array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
150 151
  public static int binarySearch(double[]a, double key)
  {
Tom Tromey committed
152 153 154
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final double d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of a float array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
190 191
  public static int binarySearch(float[]a, float key)
  {
Tom Tromey committed
192 193 194
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final float d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of an int array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
230 231
  public static int binarySearch(int[]a, int key)
  {
Tom Tromey committed
232 233 234
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final int d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of a long array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
270 271
  public static int binarySearch(long[]a, long key)
  {
Tom Tromey committed
272 273 274
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final long d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of a short array for a key. The array must be
   * sorted (as by the sort() method) - if it is not, the behaviour of this
   * method is undefined, and may be an infinite loop. If the array contains
   * the key more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   */
310 311
  public static int binarySearch(short[]a, short key)
  {
Tom Tromey committed
312 313 314
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final short d = a[mid];
	if (d == key)
	  {
	    return mid;
	  }
	else if (d > key)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }
Tom Tromey committed
332 333 334 335 336 337 338 339 340
      }
    return -mid - 1;
  }

  /**
   * This method does the work for the Object binary search methods. 
   * @exception NullPointerException if the specified comparator is null.
   * @exception ClassCastException if the objects are not comparable by c.
   */
341 342
  private static int objectSearch(Object[]a, Object key, final Comparator c)
  {
Tom Tromey committed
343 344 345
    int low = 0;
    int hi = a.length - 1;
    int mid = 0;
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    while (low <= hi)
      {
	mid = (low + hi) >> 1;
	final int d = c.compare(key, a[mid]);
	if (d == 0)
	  {
	    return mid;
	  }
	else if (d < 0)
	  {
	    hi = mid - 1;
	  }
	else
	  {
	    // This gets the insertion point right on the last loop
	    low = ++mid;
	  }	    
Tom Tromey committed
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
      }
    return -mid - 1;
  }

  /**
   * Perform a binary search of an Object array for a key, using the natural
   * ordering of the elements. The array must be sorted (as by the sort()
   * method) - if it is not, the behaviour of this method is undefined, and may
   * be an infinite loop. Further, the key must be comparable with every item
   * in the array. If the array contains the key more than once, any one of
   * them may be found. Note: although the specification allows for an infinite
   * loop if the array is unsorted, it will not happen in this (JCL)
   * implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   * @exception ClassCastException if key could not be compared with one of the
   *   elements of a
   * @exception NullPointerException if a null element has compareTo called
   */
386 387
  public static int binarySearch(Object[]a, Object key)
  {
Tom Tromey committed
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    return objectSearch(a, key, defaultComparator);
  }

  /**
   * Perform a binary search of an Object array for a key, using a supplied
   * Comparator. The array must be sorted (as by the sort() method with the
   * same Comparator) - if it is not, the behaviour of this method is
   * undefined, and may be an infinite loop. Further, the key must be
   * comparable with every item in the array. If the array contains the key
   * more than once, any one of them may be found. Note: although the
   * specification allows for an infinite loop if the array is unsorted, it
   * will not happen in this (JCL) implementation.
   *
   * @param a the array to search (must be sorted)
   * @param key the value to search for
   * @param c the comparator by which the array is sorted
   * @returns the index at which the key was found, or -n-1 if it was not
   *   found, where n is the index of the first value higher than key or
   *   a.length if there is no such value.
   * @exception ClassCastException if key could not be compared with one of the
   *   elements of a
   */
410 411
  public static int binarySearch(Object[]a, Object key, Comparator c)
  {
Tom Tromey committed
412 413 414 415 416 417 418 419 420 421 422
    return objectSearch(a, key, c);
  }

  /**
   * Compare two byte arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
423 424
  public static boolean equals(byte[]a1, byte[]a2)
  {
Tom Tromey committed
425 426
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
427 428 429
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
430
      }
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
446

447 448 449 450 451
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
452 453 454 455 456 457 458 459 460 461 462 463

    return false;
  }

  /**
   * Compare two char arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
464 465
  public static boolean equals(char[]a1, char[]a2)
  {
Tom Tromey committed
466 467
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
468 469 470
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
471
      }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
487

488 489 490 491 492
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
493 494 495 496 497 498 499 500 501 502 503 504

    return false;
  }

  /**
   * Compare two double arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
505 506
  public static boolean equals(double[]a1, double[]a2)
  {
Tom Tromey committed
507 508
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
509 510 511
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
512
      }
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
528

529 530 531 532 533
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
534 535 536 537 538 539 540 541 542 543 544 545

    return false;
  }

  /**
   * Compare two float arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
546 547
  public static boolean equals(float[]a1, float[]a2)
  {
Tom Tromey committed
548 549
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
550 551 552
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
553
      }
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
569

570 571 572 573 574
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
575 576 577 578 579 580 581 582 583 584 585 586

    return false;
  }

  /**
   * Compare two long arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
587 588
  public static boolean equals(long[]a1, long[]a2)
  {
Tom Tromey committed
589 590
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
591 592 593
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
594
      }
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
610

611 612 613 614 615
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
616 617 618 619 620 621 622 623 624 625 626 627

    return false;
  }

  /**
   * Compare two short arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
628 629
  public static boolean equals(short[]a1, short[]a2)
  {
Tom Tromey committed
630 631
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
632 633 634
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
635
      }
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
651

652 653 654 655 656
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
657 658 659 660 661 662 663 664 665 666 667 668

    return false;
  }

  /**
   * Compare two boolean arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
669 670
  public static boolean equals(boolean[]a1, boolean[]a2)
  {
Tom Tromey committed
671 672
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
673 674 675
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
676
      }
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
692

693 694 695 696 697
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
698 699 700 701 702 703 704 705 706 707 708 709

    return false;
  }

  /**
   * Compare two int arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a2 is of the same length
   *   as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
   */
710 711
  public static boolean equals(int[]a1, int[]a2)
  {
Tom Tromey committed
712 713
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
714 715 716
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
717
      }
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (a1[i] != a2[i])
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
733

734 735 736 737 738
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
739 740 741 742 743 744 745 746 747 748 749 750 751

    return false;
  }

  /**
   * Compare two Object arrays for equality.
   *
   * @param a1 the first array to compare
   * @param a2 the second array to compare
   * @returns true if a1 and a2 are both null, or if a1 is of the same length
   *   as a2, and for each 0 <= i < a.length, a1[i] == null ? a2[i] == null :
   *   a1[i].equals(a2[i]).
   */
752 753
  public static boolean equals(Object[]a1, Object[]a2)
  {
Tom Tromey committed
754 755
    // Quick test which saves comparing elements of the same array, and also
    // catches the case that both are null.
756 757 758
    if (a1 == a2)
      {
	return true;
Tom Tromey committed
759
      }
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
      
    try
      {
	// If they're the same length, test each element
	if (a1.length == a2.length)
	  {
	    for (int i = 0; i < a1.length; i++)
	      {
		if (!(a1[i] == null ? a2[i] == null : a1[i].equals(a2[i])))
		  {
		    return false;
		  }
	      }
	    return true;
	  }
Tom Tromey committed
775

776 777 778 779 780
	// If a1 == null or a2 == null but not both then we will get a NullPointer
      }
    catch (NullPointerException e)
      {
      }
Tom Tromey committed
781 782 783 784 785 786 787 788 789 790

    return false;
  }

  /**
   * Fill an array with a boolean value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
791 792
  public static void fill(boolean[]a, boolean val)
  {
Tom Tromey committed
793 794 795 796 797 798 799 800 801 802 803 804 805 806
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a boolean value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
807 808 809 810 811 812
  public static void fill(boolean[]a, int fromIndex, int toIndex, boolean val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
813 814 815 816 817 818 819 820
  }

  /**
   * Fill an array with a byte value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
821 822
  public static void fill(byte[]a, byte val)
  {
Tom Tromey committed
823 824 825 826 827 828 829 830 831 832 833 834 835 836
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a byte value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
837 838 839 840 841 842
  public static void fill(byte[]a, int fromIndex, int toIndex, byte val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
843 844 845 846 847 848 849 850
  }

  /**
   * Fill an array with a char value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
851 852
  public static void fill(char[]a, char val)
  {
Tom Tromey committed
853 854 855 856 857 858 859 860 861 862 863 864 865 866
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a char value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
867 868 869 870 871 872
  public static void fill(char[]a, int fromIndex, int toIndex, char val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
873 874 875 876 877 878 879 880
  }

  /**
   * Fill an array with a double value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
881 882
  public static void fill(double[]a, double val)
  {
Tom Tromey committed
883 884 885 886 887 888 889 890 891 892 893 894 895 896
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a double value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
897 898 899 900 901 902
  public static void fill(double[]a, int fromIndex, int toIndex, double val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
903 904 905 906 907 908 909 910
  }

  /**
   * Fill an array with a float value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
911 912
  public static void fill(float[]a, float val)
  {
Tom Tromey committed
913 914 915 916 917 918 919 920 921 922 923 924 925 926
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a float value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
927 928 929 930 931 932
  public static void fill(float[]a, int fromIndex, int toIndex, float val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
933 934 935 936 937 938 939 940
  }

  /**
   * Fill an array with an int value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
941 942
  public static void fill(int[]a, int val)
  {
Tom Tromey committed
943 944 945 946 947 948 949 950 951 952 953 954 955 956
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with an int value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
957 958 959 960 961 962
  public static void fill(int[]a, int fromIndex, int toIndex, int val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
963 964 965 966 967 968 969 970
  }

  /**
   * Fill an array with a long value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
971 972
  public static void fill(long[]a, long val)
  {
Tom Tromey committed
973 974 975 976 977 978 979 980 981 982 983 984 985 986
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a long value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
987 988 989 990 991 992
  public static void fill(long[]a, int fromIndex, int toIndex, long val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
993 994 995 996 997 998 999 1000
  }

  /**
   * Fill an array with a short value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   */
1001 1002
  public static void fill(short[]a, short val)
  {
Tom Tromey committed
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with a short value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   */
1017 1018 1019 1020 1021 1022
  public static void fill(short[]a, int fromIndex, int toIndex, short val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  }

  /**
   * Fill an array with an Object value.
   *
   * @param a the array to fill
   * @param val the value to fill it with
   * @exception ClassCastException if val is not an instance of the element
   *   type of a.
   */
1033 1034
  public static void fill(Object[]a, Object val)
  {
Tom Tromey committed
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    // This implementation is slightly inefficient timewise, but the extra
    // effort over inlining it is O(1) and small, and I refuse to repeat code
    // if it can be helped.
    fill(a, 0, a.length, val);
  }

  /**
   * Fill a range of an array with an Object value.
   *
   * @param a the array to fill
   * @param fromIndex the index to fill from, inclusive
   * @param toIndex the index to fill to, exclusive
   * @param val the value to fill with
   * @exception ClassCastException if val is not an instance of the element
   *   type of a.
   */
1051 1052 1053 1054 1055 1056
  public static void fill(Object[]a, int fromIndex, int toIndex, Object val)
  {
    for (int i = fromIndex; i < toIndex; i++)
      {
	a[i] = val;
      }
Tom Tromey committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
  }

  // Thanks to Paul Fisher <rao@gnu.org> for finding this quicksort algorithm
  // as specified by Sun and porting it to Java.

  /**
   * Sort a byte array into ascending order. The sort algorithm is an optimised
   * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
   * "Engineering a Sort Function", Software-Practice and Experience, Vol.
   * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort.
   *
   * @param a the array to sort
   */
1072 1073
  public static void sort(byte[]a)
  {
Tom Tromey committed
1074 1075 1076
    qsort(a, 0, a.length);
  }

1077 1078 1079
  public static void sort(byte[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
Tom Tromey committed
1080 1081
  }

1082 1083
  private static int med3(int a, int b, int c, byte[]d)
  {
1084 1085 1086
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1087
  }
1088 1089 1090

  private static void swap(int i, int j, byte[]a)
  {
Tom Tromey committed
1091 1092 1093 1094 1095
    byte c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1096 1097
  private static void qsort(byte[]a, int start, int n)
  {
Tom Tromey committed
1098
    // use an insertion sort on small arrays
1099
    if (n <= 7)
1100 1101
      {
	for (int i = start + 1; i < start + n; i++)
1102
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
1103 1104 1105
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1121 1122 1123
      }

    int pa, pb, pc, pd, pv;
1124
    int r;
Tom Tromey committed
1125

1126 1127
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1128
    pa = pb = start;
1129 1130 1131 1132
    pc = pd = start + n - 1;

    for (;;)
      {
1133
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1134 1135 1136 1137 1138 1139 1140 1141
	  {
	    if (r == 0)
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1142
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	  {
	    if (r == 0)
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1157 1158
    int pn = start + n;
    int s;
1159 1160 1161 1162 1163 1164 1165 1166
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1167 1168
  }

1169 1170
  private static void vecswap(int i, int j, int n, byte[]a)
  {
Tom Tromey committed
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * Sort a char array into ascending order. The sort algorithm is an optimised
   * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
   * "Engineering a Sort Function", Software-Practice and Experience, Vol.
   * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort.
   *
   * @param a the array to sort
   */
1185 1186
  public static void sort(char[]a)
  {
Tom Tromey committed
1187 1188 1189
    qsort(a, 0, a.length);
  }

1190 1191 1192 1193 1194 1195 1196
  public static void sort(char[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
  }

  private static int med3(int a, int b, int c, char[]d)
  {
1197 1198 1199
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1200
  }
1201 1202 1203

  private static void swap(int i, int j, char[]a)
  {
Tom Tromey committed
1204 1205 1206 1207 1208
    char c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1209 1210
  private static void qsort(char[]a, int start, int n)
  {
Tom Tromey committed
1211
    // use an insertion sort on small arrays
1212
    if (n <= 7)
1213 1214
      {
	for (int i = start + 1; i < start + n; i++)
1215
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
1216 1217 1218
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1234 1235 1236 1237 1238
      }

    int pa, pb, pc, pd, pv;
    int r;

1239 1240
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1241
    pa = pb = start;
1242 1243 1244 1245
    pc = pd = start + n - 1;

    for (;;)
      {
1246
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1247 1248 1249 1250 1251 1252 1253 1254
	  {
	    if (r == 0)
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1255
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	  {
	    if (r == 0)
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1270 1271
    int pn = start + n;
    int s;
1272 1273 1274 1275 1276 1277 1278 1279
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1280 1281
  }

1282 1283
  private static void vecswap(int i, int j, int n, char[]a)
  {
Tom Tromey committed
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * Sort a double array into ascending order. The sort algorithm is an
   * optimised quicksort, as described in Jon L. Bentley and M. Douglas
   * McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
   * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort. Note that this implementation, like Sun's, has undefined
   * behaviour if the array contains any NaN values.
   *
   * @param a the array to sort
   */
1299 1300
  public static void sort(double[]a)
  {
Tom Tromey committed
1301 1302 1303
    qsort(a, 0, a.length);
  }

1304 1305 1306
  public static void sort(double[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
Tom Tromey committed
1307 1308
  }

1309 1310
  private static int med3(int a, int b, int c, double[]d)
  {
1311 1312 1313
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1314
  }
1315 1316 1317

  private static void swap(int i, int j, double[]a)
  {
Tom Tromey committed
1318 1319 1320 1321 1322
    double c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1323 1324
  private static void qsort(double[]a, int start, int n)
  {
Tom Tromey committed
1325
    // use an insertion sort on small arrays
1326
    if (n <= 7)
1327 1328
      {
	for (int i = start + 1; i < start + n; i++)
1329
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
1330 1331 1332
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1348 1349 1350 1351 1352
      }

    int pa, pb, pc, pd, pv;
    double r;

1353 1354
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1355
    pa = pb = start;
1356 1357 1358 1359
    pc = pd = start + n - 1;

    for (;;)
      {
1360
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1361 1362 1363 1364 1365 1366 1367 1368
	  {
	    if (r == 0)
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1369
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	  {
	    if (r == 0)
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1384 1385
    int pn = start + n;
    int s;
1386 1387 1388 1389 1390 1391 1392 1393
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1394 1395
  }

1396 1397
  private static void vecswap(int i, int j, int n, double[]a)
  {
Tom Tromey committed
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * Sort a float array into ascending order. The sort algorithm is an
   * optimised quicksort, as described in Jon L. Bentley and M. Douglas
   * McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
   * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort. Note that this implementation, like Sun's, has undefined
   * behaviour if the array contains any NaN values.
   *
   * @param a the array to sort
   */
1413 1414
  public static void sort(float[]a)
  {
Tom Tromey committed
1415 1416 1417
    qsort(a, 0, a.length);
  }

1418 1419 1420 1421 1422 1423 1424
  public static void sort(float[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
  }

  private static int med3(int a, int b, int c, float[]d)
  {
1425 1426 1427
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1428 1429
  }

1430 1431
  private static void swap(int i, int j, float[]a)
  {
Tom Tromey committed
1432 1433 1434 1435 1436
    float c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1437 1438
  private static void qsort(float[]a, int start, int n)
  {
Tom Tromey committed
1439
    // use an insertion sort on small arrays
1440
    if (n <= 7)
1441 1442
      {
	for (int i = start + 1; i < start + n; i++)
1443
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
1444 1445 1446
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1462 1463 1464 1465 1466
      }

    int pa, pb, pc, pd, pv;
    float r;

1467 1468
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1469
    pa = pb = start;
1470 1471 1472 1473
    pc = pd = start + n - 1;

    for (;;)
      {
1474
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1475 1476 1477 1478 1479 1480 1481 1482
	  {
	    if (r == 0)
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1483
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	  {
	    if (r == 0)
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1498 1499
    int pn = start + n;
    int s;
1500 1501 1502 1503 1504 1505 1506 1507
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1508 1509
  }

1510 1511
  private static void vecswap(int i, int j, int n, float[]a)
  {
Tom Tromey committed
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * Sort an int array into ascending order. The sort algorithm is an optimised
   * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
   * "Engineering a Sort Function", Software-Practice and Experience, Vol.
   * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort.
   *
   * @param a the array to sort
   */
1526 1527
  public static void sort(int[]a)
  {
Tom Tromey committed
1528 1529 1530
    qsort(a, 0, a.length);
  }

1531 1532 1533 1534 1535 1536 1537
  public static void sort(int[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
  }

  private static int med3(int a, int b, int c, int[]d)
  {
1538 1539 1540
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1541
  }
1542 1543 1544

  private static void swap(int i, int j, int[]a)
  {
Tom Tromey committed
1545 1546 1547 1548 1549
    int c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1550 1551
  private static void qsort(int[]a, int start, int n)
  {
Tom Tromey committed
1552
    // use an insertion sort on small arrays
1553
    if (n <= 7)
1554 1555
      {
	for (int i = start + 1; i < start + n; i++)
1556
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
1557 1558 1559
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1575 1576 1577
      }

    int pa, pb, pc, pd, pv;
1578
    int r;
Tom Tromey committed
1579

1580 1581
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1582
    pa = pb = start;
1583 1584 1585 1586
    pc = pd = start + n - 1;

    for (;;)
      {
1587
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1588 1589 1590 1591 1592 1593 1594 1595
	  {
	    if (r == 0)
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1596
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	  {
	    if (r == 0)
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1611 1612
    int pn = start + n;
    int s;
1613 1614 1615 1616 1617 1618 1619 1620
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1621 1622
  }

1623 1624
  private static void vecswap(int i, int j, int n, int[]a)
  {
Tom Tromey committed
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * Sort a long array into ascending order. The sort algorithm is an optimised
   * quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
   * "Engineering a Sort Function", Software-Practice and Experience, Vol.
   * 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort.
   *
   * @param a the array to sort
   */
1639 1640
  public static void sort(long[]a)
  {
Tom Tromey committed
1641 1642 1643
    qsort(a, 0, a.length);
  }

1644 1645 1646 1647 1648 1649 1650
  public static void sort(long[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
  }

  private static int med3(int a, int b, int c, long[]d)
  {
1651 1652 1653
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1654
  }
1655 1656 1657

  private static void swap(int i, int j, long[]a)
  {
Tom Tromey committed
1658 1659 1660 1661 1662
    long c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1663 1664
  private static void qsort(long[]a, int start, int n)
  {
Tom Tromey committed
1665
    // use an insertion sort on small arrays
1666
    if (n <= 7)
1667 1668 1669 1670 1671 1672
      {
	for (int i = start + 1; i < start + n; i++)
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1688 1689 1690
      }

    int pa, pb, pc, pd, pv;
1691
    long r;
Tom Tromey committed
1692

1693 1694
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1695
    pa = pb = start;
1696 1697 1698 1699
    pc = pd = start + n - 1;

    for (;;)
      {
1700
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1701
	  {
1702
	    if (r == 0)
1703 1704 1705 1706 1707 1708
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1709
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1710
	  {
1711
	    if (r == 0)
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1724 1725
    int pn = start + n;
    int s;
1726 1727 1728 1729 1730 1731 1732 1733
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1734 1735
  }

1736 1737
  private static void vecswap(int i, int j, int n, long[]a)
  {
Tom Tromey committed
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * Sort a short array into ascending order. The sort algorithm is an
   * optimised quicksort, as described in Jon L. Bentley and M. Douglas
   * McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
   * Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
   * performance on many arrays that would take quadratic time with a standard
   * quicksort.
   *
   * @param a the array to sort
   */
1752 1753
  public static void sort(short[]a)
  {
Tom Tromey committed
1754 1755 1756
    qsort(a, 0, a.length);
  }

1757 1758 1759
  public static void sort(short[] a, int fromIndex, int toIndex)
  {
    qsort(a, fromIndex, toIndex);
Tom Tromey committed
1760 1761
  }

1762 1763
  private static int med3(int a, int b, int c, short[]d)
  {
1764 1765 1766
    return d[a] < d[b] ? 
               (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
	     : (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
Tom Tromey committed
1767
  }
1768 1769 1770

  private static void swap(int i, int j, short[]a)
  {
Tom Tromey committed
1771 1772 1773 1774 1775
    short c = a[i];
    a[i] = a[j];
    a[j] = c;
  }

1776 1777
  private static void qsort(short[]a, int start, int n)
  {
Tom Tromey committed
1778
    // use an insertion sort on small arrays
1779
    if (n <= 7)
1780 1781
      {
	for (int i = start + 1; i < start + n; i++)
1782
	  for (int j = i; j > 0 && a[j - 1] > a[j]; j--)
1783 1784 1785
	    swap(j, j - 1, a);
	return;
      }
Tom Tromey committed
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
    int pm = n / 2;		// small arrays, middle element
    if (n > 7)
      {
	int pl = start;
	int pn = start + n - 1;

	if (n > 40)
	  {			// big arrays, pseudomedian of 9
	    int s = n / 8;
	    pl = med3(pl, pl + s, pl + 2 * s, a);
	    pm = med3(pm - s, pm, pm + s, a);
	    pn = med3(pn - 2 * s, pn - s, pn, a);
	  }
	pm = med3(pl, pm, pn, a);	// mid-size, med of 3
Tom Tromey committed
1801 1802 1803 1804 1805
      }

    int pa, pb, pc, pd, pv;
    int r;

1806 1807
    pv = start;
    swap(pv, pm, a);
Tom Tromey committed
1808
    pa = pb = start;
1809 1810 1811 1812
    pc = pd = start + n - 1;

    for (;;)
      {
1813
	while (pb <= pc && (r = a[pb] - a[pv]) <= 0)
1814 1815 1816 1817 1818 1819 1820 1821
	  {
	    if (r == 0)
	      {
		swap(pa, pb, a);
		pa++;
	      }
	    pb++;
	  }
1822
	while (pc >= pb && (r = a[pc] - a[pv]) >= 0)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	  {
	    if (r == 0)
	      {
		swap(pc, pd, a);
		pd--;
	      }
	    pc--;
	  }
	if (pb > pc)
	  break;
	swap(pb, pc, a);
	pb++;
	pc--;
      }
Tom Tromey committed
1837 1838
    int pn = start + n;
    int s;
1839 1840 1841 1842 1843 1844 1845 1846
    s = Math.min(pa - start, pb - pa);
    vecswap(start, pb - s, s, a);
    s = Math.min(pd - pc, pn - pd - 1);
    vecswap(pb, pn - s, s, a);
    if ((s = pb - pa) > 1)
      qsort(a, start, s);
    if ((s = pd - pc) > 1)
      qsort(a, pn - s, s);
Tom Tromey committed
1847 1848
  }

1849 1850
  private static void vecswap(int i, int j, int n, short[]a)
  {
Tom Tromey committed
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
    for (; n > 0; i++, j++, n--)
      swap(i, j, a);
  }

  /**
   * The bulk of the work for the object sort routines.  In general,
   * the code attempts to be simple rather than fast, the idea being
   * that a good optimising JIT will be able to optimise it better
   * than I can, and if I try it will make it more confusing for the
   * JIT.  
   */
1862
  private static void mergeSort(Object[]a, int from, int to, Comparator c)
Tom Tromey committed
1863 1864 1865 1866 1867
  {
    // First presort the array in chunks of length 6 with insertion sort. 
    // mergesort would give too much overhead for this length.
    for (int chunk = from; chunk < to; chunk += 6)
      {
1868
	int end = Math.min(chunk + 6, to);
Tom Tromey committed
1869 1870
	for (int i = chunk + 1; i < end; i++)
	  {
1871
	    if (c.compare(a[i - 1], a[i]) > 0)
Tom Tromey committed
1872 1873
	      {
		// not already sorted
1874
		int j = i;
Tom Tromey committed
1875
		Object elem = a[j];
1876
		do
Tom Tromey committed
1877
		  {
1878
		    a[j] = a[j - 1];
Tom Tromey committed
1879
		    j--;
1880 1881
		  }
		while (j > chunk && c.compare(a[j - 1], elem) > 0);
Tom Tromey committed
1882 1883 1884 1885
		a[j] = elem;
	      }
	  }
      }
1886

Tom Tromey committed
1887 1888 1889 1890 1891
    int len = to - from;
    // If length is smaller or equal 6 we are done.
    if (len <= 6)
      return;

1892 1893 1894
    Object[]src = a;
    Object[]dest = new Object[len];
    Object[]t = null;		// t is used for swapping src and dest
Tom Tromey committed
1895 1896 1897 1898 1899

    // The difference of the fromIndex of the src and dest array.
    int srcDestDiff = -from;

    // The merges are done in this loop
1900
    for (int size = 6; size < len; size <<= 1)
Tom Tromey committed
1901 1902 1903 1904 1905 1906 1907
      {
	for (int start = from; start < to; start += size << 1)
	  {
	    // mid ist the start of the second sublist;
	    // end the start of the next sublist (or end of array).
	    int mid = start + size;
	    int end = Math.min(to, mid + size);
1908

Tom Tromey committed
1909 1910
	    // The second list is empty or the elements are already in
	    // order - no need to merge
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	    if (mid >= end || c.compare(src[mid - 1], src[mid]) <= 0)
	      {
		System.arraycopy(src, start,
				 dest, start + srcDestDiff, end - start);

		// The two halves just need swapping - no need to merge
	      }
	    else if (c.compare(src[start], src[end - 1]) > 0)
	      {
		System.arraycopy(src, start,
				 dest, end - size + srcDestDiff, size);
		System.arraycopy(src, mid,
				 dest, start + srcDestDiff, end - mid);

	      }
	    else
	      {
		// Declare a lot of variables to save repeating
		// calculations.  Hopefully a decent JIT will put these
		// in registers and make this fast
		int p1 = start;
		int p2 = mid;
		int i = start + srcDestDiff;

		// The main merge loop; terminates as soon as either
		// half is ended
		while (p1 < mid && p2 < end)
		  {
		    dest[i++] =
		      src[c.compare(src[p1], src[p2]) <= 0 ? p1++ : p2++];
		  }

		// Finish up by copying the remainder of whichever half
		// wasn't finished.
		if (p1 < mid)
		  System.arraycopy(src, p1, dest, i, mid - p1);
		else
		  System.arraycopy(src, p2, dest, i, end - p2);
	      }
Tom Tromey committed
1950 1951
	  }
	// swap src and dest ready for the next merge
1952 1953 1954
	t = src;
	src = dest;
	dest = t;
Tom Tromey committed
1955
	from += srcDestDiff;
1956
	to += srcDestDiff;
Tom Tromey committed
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	srcDestDiff = -srcDestDiff;
      }

    // make sure the result ends up back in the right place.  Note
    // that src and dest may have been swapped above, so src 
    // contains the sorted array.
    if (src != a)
      {
	// Note that from == 0.
	System.arraycopy(src, 0, a, srcDestDiff, to);
      }
  }

  /**
   * Sort an array of Objects according to their natural ordering. The sort is
   * guaranteed to be stable, that is, equal elements will not be reordered.
   * The sort algorithm is a mergesort with the merge omitted if the last
   * element of one half comes before the first element of the other half. This
   * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
   * copy of the array.
   *
   * @param a the array to be sorted
   * @exception ClassCastException if any two elements are not mutually
   *   comparable
   * @exception NullPointerException if an element is null (since
   *   null.compareTo cannot work)
   */
1984 1985
  public static void sort(Object[]a)
  {
Tom Tromey committed
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    mergeSort(a, 0, a.length, defaultComparator);
  }

  /**
   * Sort an array of Objects according to a Comparator. The sort is
   * guaranteed to be stable, that is, equal elements will not be reordered.
   * The sort algorithm is a mergesort with the merge omitted if the last
   * element of one half comes before the first element of the other half. This
   * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
   * copy of the array.
   *
   * @param a the array to be sorted
   * @param c a Comparator to use in sorting the array
   * @exception ClassCastException if any two elements are not mutually
   *   comparable by the Comparator provided
   */
2002 2003
  public static void sort(Object[]a, Comparator c)
  {
Tom Tromey committed
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    mergeSort(a, 0, a.length, c);
  }

  /**
   * Sort an array of Objects according to their natural ordering. The sort is
   * guaranteed to be stable, that is, equal elements will not be reordered.
   * The sort algorithm is a mergesort with the merge omitted if the last
   * element of one half comes before the first element of the other half. This
   * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
   * copy of the array.
   *
   * @param a the array to be sorted
   * @param fromIndex the index of the first element to be sorted.
   * @param toIndex the index of the last element to be sorted plus one.
   * @exception ClassCastException if any two elements are not mutually
   *   comparable by the Comparator provided
   * @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex
   *   are not in range.
   * @exception IllegalArgumentException if fromIndex > toIndex
   */
2024 2025
  public static void sort(Object[]a, int fromIndex, int toIndex)
  {
Tom Tromey committed
2026
    if (fromIndex > toIndex)
2027 2028
      throw new IllegalArgumentException("fromIndex " + fromIndex
					 + " > toIndex " + toIndex);
Tom Tromey committed
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
    mergeSort(a, fromIndex, toIndex, defaultComparator);
  }

  /**
   * Sort an array of Objects according to a Comparator. The sort is
   * guaranteed to be stable, that is, equal elements will not be reordered.
   * The sort algorithm is a mergesort with the merge omitted if the last
   * element of one half comes before the first element of the other half. This
   * algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
   * copy of the array.
   *
   * @param a the array to be sorted
   * @param fromIndex the index of the first element to be sorted.
   * @param toIndex the index of the last element to be sorted plus one.
   * @param c a Comparator to use in sorting the array
   * @exception ClassCastException if any two elements are not mutually
   *   comparable by the Comparator provided
   * @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex
   *   are not in range.
   * @exception IllegalArgumentException if fromIndex > toIndex
   */
2050 2051
  public static void sort(Object[]a, int fromIndex, int toIndex, Comparator c)
  {
Tom Tromey committed
2052
    if (fromIndex > toIndex)
2053 2054
      throw new IllegalArgumentException("fromIndex " + fromIndex
					 + " > toIndex " + toIndex);
Tom Tromey committed
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
    mergeSort(a, fromIndex, toIndex, c);
  }

  /**
   * Returns a list "view" of the specified array. This method is intended to
   * make it easy to use the Collections API with existing array-based APIs and
   * programs.
   *
   * @param a the array to return a view of
   * @returns a fixed-size list, changes to which "write through" to the array
   */
2066 2067 2068 2069 2070 2071
  public static List asList(final Object[]a)
  {
    if (a == null)
      {
	throw new NullPointerException();
      }
Tom Tromey committed
2072

2073
    return new ListImpl(a);
Tom Tromey committed
2074 2075 2076 2077 2078 2079 2080 2081 2082
  }


  /**
   * Inner class used by asList(Object[]) to provide a list interface
   * to an array. The methods are all simple enough to be self documenting.
   * Note: When Sun fully specify serialized forms, this class will have to
   * be renamed.
   */
2083 2084 2085 2086
  private static class ListImpl extends AbstractList
  {
    ListImpl(Object[]a)
    {
Tom Tromey committed
2087 2088 2089
      this.a = a;
    }

2090 2091
    public Object get(int index)
    {
Tom Tromey committed
2092 2093 2094
      return a[index];
    }

2095 2096
    public int size()
    {
Tom Tromey committed
2097 2098 2099
      return a.length;
    }

2100 2101
    public Object set(int index, Object element)
    {
Tom Tromey committed
2102 2103 2104 2105 2106 2107 2108 2109
      Object old = a[index];
      a[index] = element;
      return old;
    }

    private Object[] a;
  }
}