df.c 97.2 KB
Newer Older
Jeff Law committed
1
/* Dataflow support routines.
2
   Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Jeff Law committed
3 4 5
   Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
                                    mhayes@redhat.com)

6
This file is part of GCC.
Jeff Law committed
7

8 9 10 11
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Jeff Law committed
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeff Law committed
17 18

You should have received a copy of the GNU General Public License
19 20 21
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
Jeff Law committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88


OVERVIEW:

This file provides some dataflow routines for computing reaching defs,
upward exposed uses, live variables, def-use chains, and use-def
chains.  The global dataflow is performed using simple iterative
methods with a worklist and could be sped up by ordering the blocks
with a depth first search order.

A `struct ref' data structure (ref) is allocated for every register
reference (def or use) and this records the insn and bb the ref is
found within.  The refs are linked together in chains of uses and defs
for each insn and for each register.  Each ref also has a chain field
that links all the use refs for a def or all the def refs for a use.
This is used to create use-def or def-use chains.


USAGE:

Here's an example of using the dataflow routines.

      struct df *df;

      df = df_init ();

      df_analyse (df, 0, DF_ALL);

      df_dump (df, DF_ALL, stderr);

      df_finish (df);


df_init simply creates a poor man's object (df) that needs to be
passed to all the dataflow routines.  df_finish destroys this
object and frees up any allocated memory.

df_analyse performs the following:

1. Records defs and uses by scanning the insns in each basic block
   or by scanning the insns queued by df_insn_modify.
2. Links defs and uses into insn-def and insn-use chains.
3. Links defs and uses into reg-def and reg-use chains.
4. Assigns LUIDs to each insn (for modified blocks).
5. Calculates local reaching definitions.
6. Calculates global reaching definitions.
7. Creates use-def chains.
8. Calculates local reaching uses (upwards exposed uses).
9. Calculates global reaching uses.
10. Creates def-use chains.
11. Calculates local live registers.
12. Calculates global live registers.
13. Calculates register lifetimes and determines local registers.


PHILOSOPHY:

Note that the dataflow information is not updated for every newly
deleted or created insn.  If the dataflow information requires
updating then all the changed, new, or deleted insns needs to be
marked with df_insn_modify (or df_insns_modify) either directly or
indirectly (say through calling df_insn_delete).  df_insn_modify
marks all the modified insns to get processed the next time df_analyse
 is called.

Beware that tinkering with insns may invalidate the dataflow information.
The philosophy behind these routines is that once the dataflow
89
information has been gathered, the user should store what they require
Jeff Law committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
before they tinker with any insn.  Once a reg is replaced, for example,
then the reg-def/reg-use chains will point to the wrong place.  Once a
whole lot of changes have been made, df_analyse can be called again
to update the dataflow information.  Currently, this is not very smart
with regard to propagating changes to the dataflow so it should not
be called very often.


DATA STRUCTURES:

The basic object is a REF (reference) and this may either be a DEF
(definition) or a USE of a register.

These are linked into a variety of lists; namely reg-def, reg-use,
  insn-def, insn-use, def-use, and use-def lists.  For example,
the reg-def lists contain all the refs that define a given register
while the insn-use lists contain all the refs used by an insn.

Note that the reg-def and reg-use chains are generally short (except for the
hard registers) and thus it is much faster to search these chains
110
rather than searching the def or use bitmaps.
Jeff Law committed
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

If the insns are in SSA form then the reg-def and use-def lists
should only contain the single defining ref.

TODO:

1) Incremental dataflow analysis.

Note that if a loop invariant insn is hoisted (or sunk), we do not
need to change the def-use or use-def chains.  All we have to do is to
change the bb field for all the associated defs and uses and to
renumber the LUIDs for the original and new basic blocks of the insn.

When shadowing loop mems we create new uses and defs for new pseudos
so we do not affect the existing dataflow information.

My current strategy is to queue up all modified, created, or deleted
insns so when df_analyse is called we can easily determine all the new
or deleted refs.  Currently the global dataflow information is
recomputed from scratch but this could be propagated more efficiently.

2) Improved global data flow computation using depth first search.

3) Reduced memory requirements.

We could operate a pool of ref structures.  When a ref is deleted it
gets returned to the pool (say by linking on to a chain of free refs).
This will require a pair of bitmaps for defs and uses so that we can
tell which ones have been changed.  Alternatively, we could
periodically squeeze the def and use tables and associated bitmaps and
renumber the def and use ids.

143
4) Ordering of reg-def and reg-use lists.
Jeff Law committed
144 145 146

Should the first entry in the def list be the first def (within a BB)?
Similarly, should the first entry in the use list be the last use
147
(within a BB)?
Jeff Law committed
148 149 150

5) Working with a sub-CFG.

151
Often the whole CFG does not need to be analyzed, for example,
Jeff Law committed
152 153
when optimising a loop, only certain registers are of interest.
Perhaps there should be a bitmap argument to df_analyse to specify
154
 which registers should be analyzed?   */
Jeff Law committed
155 156 157

#include "config.h"
#include "system.h"
158 159
#include "coretypes.h"
#include "tm.h"
160 161 162 163 164 165 166
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "regs.h"
#include "obstack.h"
Jeff Law committed
167 168
#include "hard-reg-set.h"
#include "basic-block.h"
169
#include "sbitmap.h"
Jeff Law committed
170 171
#include "bitmap.h"
#include "df.h"
172
#include "fibheap.h"
Jeff Law committed
173

Kazu Hirata committed
174 175 176 177 178 179 180 181
#define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE)	\
  do							\
    {							\
      unsigned int node_;				\
      EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_,	\
      {(BB) = BASIC_BLOCK (node_); CODE;});		\
    }							\
  while (0)
Jeff Law committed
182 183 184 185 186 187 188 189

static struct obstack df_ref_obstack;
static struct df *ddf;

static void df_reg_table_realloc PARAMS((struct df *, int));
#if 0
static void df_def_table_realloc PARAMS((struct df *, int));
#endif
190
static void df_insn_table_realloc PARAMS((struct df *, unsigned int));
Jeff Law committed
191 192 193 194 195 196 197 198
static void df_bitmaps_alloc PARAMS((struct df *, int));
static void df_bitmaps_free PARAMS((struct df *, int));
static void df_free PARAMS((struct df *));
static void df_alloc PARAMS((struct df *, int));

static rtx df_reg_clobber_gen PARAMS((unsigned int));
static rtx df_reg_use_gen PARAMS((unsigned int));

199
static inline struct df_link *df_link_create PARAMS((struct ref *,
Jeff Law committed
200 201 202 203 204 205
						     struct df_link *));
static struct df_link *df_ref_unlink PARAMS((struct df_link **, struct ref *));
static void df_def_unlink PARAMS((struct df *, struct ref *));
static void df_use_unlink PARAMS((struct df *, struct ref *));
static void df_insn_refs_unlink PARAMS ((struct df *, basic_block, rtx));
#if 0
206
static void df_bb_refs_unlink PARAMS ((struct df *, basic_block));
Jeff Law committed
207 208 209
static void df_refs_unlink PARAMS ((struct df *, bitmap));
#endif

210
static struct ref *df_ref_create PARAMS((struct df *,
211
					 rtx, rtx *, rtx,
212
					 enum df_ref_type, enum df_ref_flags));
213
static void df_ref_record_1 PARAMS((struct df *, rtx, rtx *,
214
				    rtx, enum df_ref_type,
215
				    enum df_ref_flags));
216
static void df_ref_record PARAMS((struct df *, rtx, rtx *,
217
				  rtx, enum df_ref_type,
218
				  enum df_ref_flags));
Jeff Law committed
219 220 221
static void df_def_record_1 PARAMS((struct df *, rtx, basic_block, rtx));
static void df_defs_record PARAMS((struct df *, rtx, basic_block, rtx));
static void df_uses_record PARAMS((struct df *, rtx *,
222 223
				   enum df_ref_type, basic_block, rtx,
				   enum df_ref_flags));
Jeff Law committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static void df_insn_refs_record PARAMS((struct df *, basic_block, rtx));
static void df_bb_refs_record PARAMS((struct df *, basic_block));
static void df_refs_record PARAMS((struct df *, bitmap));

static void df_bb_reg_def_chain_create PARAMS((struct df *, basic_block));
static void df_reg_def_chain_create PARAMS((struct df *, bitmap));
static void df_bb_reg_use_chain_create PARAMS((struct df *, basic_block));
static void df_reg_use_chain_create PARAMS((struct df *, bitmap));
static void df_bb_du_chain_create PARAMS((struct df *, basic_block, bitmap));
static void df_du_chain_create PARAMS((struct df *, bitmap));
static void df_bb_ud_chain_create PARAMS((struct df *, basic_block));
static void df_ud_chain_create PARAMS((struct df *, bitmap));
static void df_bb_rd_local_compute PARAMS((struct df *, basic_block));
static void df_rd_local_compute PARAMS((struct df *, bitmap));
static void df_bb_ru_local_compute PARAMS((struct df *, basic_block));
static void df_ru_local_compute PARAMS((struct df *, bitmap));
static void df_bb_lr_local_compute PARAMS((struct df *, basic_block));
static void df_lr_local_compute PARAMS((struct df *, bitmap));
static void df_bb_reg_info_compute PARAMS((struct df *, basic_block, bitmap));
static void df_reg_info_compute PARAMS((struct df *, bitmap));

static int df_bb_luids_set PARAMS((struct df *df, basic_block));
static int df_luids_set PARAMS((struct df *df, bitmap));

static int df_modified_p PARAMS ((struct df *, bitmap));
static int df_refs_queue PARAMS ((struct df *));
static int df_refs_process PARAMS ((struct df *));
static int df_bb_refs_update PARAMS ((struct df *, basic_block));
static int df_refs_update PARAMS ((struct df *));
static void df_analyse_1 PARAMS((struct df *, bitmap, int, int));

static void df_insns_modify PARAMS((struct df *, basic_block,
				    rtx, rtx));
static int df_rtx_mem_replace PARAMS ((rtx *, void *));
static int df_rtx_reg_replace PARAMS ((rtx *, void *));
void df_refs_reg_replace PARAMS ((struct df *, bitmap,
					 struct df_link *, rtx, rtx));

static int df_def_dominates_all_uses_p PARAMS((struct df *, struct ref *def));
static int df_def_dominates_uses_p PARAMS((struct df *,
					   struct ref *def, bitmap));
static struct ref *df_bb_regno_last_use_find PARAMS((struct df *, basic_block,
						     unsigned int));
static struct ref *df_bb_regno_first_def_find PARAMS((struct df *, basic_block,
						      unsigned int));
static struct ref *df_bb_insn_regno_last_use_find PARAMS((struct df *,
							  basic_block,
							  rtx, unsigned int));
static struct ref *df_bb_insn_regno_first_def_find PARAMS((struct df *,
							   basic_block,
							   rtx, unsigned int));

static void df_chain_dump PARAMS((struct df_link *, FILE *file));
static void df_chain_dump_regno PARAMS((struct df_link *, FILE *file));
static void df_regno_debug PARAMS ((struct df *, unsigned int, FILE *));
static void df_ref_debug PARAMS ((struct df *, struct ref *, FILE *));
Kazu Hirata committed
280
static void df_rd_transfer_function PARAMS ((int, int *, bitmap, bitmap,
281
					     bitmap, bitmap, void *));
Kazu Hirata committed
282
static void df_ru_transfer_function PARAMS ((int, int *, bitmap, bitmap,
283
					     bitmap, bitmap, void *));
Kazu Hirata committed
284
static void df_lr_transfer_function PARAMS ((int, int *, bitmap, bitmap,
285
					     bitmap, bitmap, void *));
Kazu Hirata committed
286 287 288 289
static void hybrid_search_bitmap PARAMS ((basic_block, bitmap *, bitmap *,
					  bitmap *, bitmap *, enum df_flow_dir,
					  enum df_confluence_op,
					  transfer_function_bitmap,
290 291 292 293 294 295
					  sbitmap, sbitmap, void *));
static void hybrid_search_sbitmap PARAMS ((basic_block, sbitmap *, sbitmap *,
					   sbitmap *, sbitmap *, enum df_flow_dir,
					   enum df_confluence_op,
					   transfer_function_sbitmap,
					   sbitmap, sbitmap, void *));
296
static inline bool read_modify_subreg_p PARAMS ((rtx));
Jeff Law committed
297 298 299 300 301


/* Local memory allocation/deallocation routines.  */


302 303
/* Increase the insn info table to have space for at least SIZE + 1
   elements.  */
Jeff Law committed
304 305 306
static void
df_insn_table_realloc (df, size)
     struct df *df;
307
     unsigned int size;
Jeff Law committed
308
{
309 310 311
  size++;
  if (size <= df->insn_size)
    return;
Jeff Law committed
312

313 314 315
  /* Make the table a little larger than requested, so we don't need
     to enlarge it so often.  */
  size += df->insn_size / 4;
316

Jeff Law committed
317 318
  df->insns = (struct insn_info *)
    xrealloc (df->insns, size * sizeof (struct insn_info));
319 320

  memset (df->insns + df->insn_size, 0,
Jeff Law committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	  (size - df->insn_size) * sizeof (struct insn_info));

  df->insn_size = size;

  if (! df->insns_modified)
    {
      df->insns_modified = BITMAP_XMALLOC ();
      bitmap_zero (df->insns_modified);
    }
}


/* Increase the reg info table by SIZE more elements.  */
static void
df_reg_table_realloc (df, size)
     struct df *df;
     int size;
{
  /* Make table 25 percent larger by default.  */
  if (! size)
    size = df->reg_size / 4;

  size += df->reg_size;
344 345
  if (size < max_reg_num ())
    size = max_reg_num ();
Jeff Law committed
346 347 348 349 350

  df->regs = (struct reg_info *)
    xrealloc (df->regs, size * sizeof (struct reg_info));

  /* Zero the new entries.  */
351
  memset (df->regs + df->reg_size, 0,
Jeff Law committed
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	  (size - df->reg_size) * sizeof (struct reg_info));

  df->reg_size = size;
}


#if 0
/* Not currently used.  */
static void
df_def_table_realloc (df, size)
     struct df *df;
     int size;
{
  int i;
  struct ref *refs;

  /* Make table 25 percent larger by default.  */
  if (! size)
    size = df->def_size / 4;

  df->def_size += size;
373
  df->defs = xrealloc (df->defs,
Jeff Law committed
374 375 376 377 378 379
		       df->def_size * sizeof (*df->defs));

  /* Allocate a new block of memory and link into list of blocks
     that will need to be freed later.  */

  refs = xmalloc (size * sizeof (*refs));
380

Jeff Law committed
381 382
  /* Link all the new refs together, overloading the chain field.  */
  for (i = 0; i < size - 1; i++)
Kazu Hirata committed
383
    refs[i].chain = (struct df_link *) (refs + i + 1);
Jeff Law committed
384 385 386 387 388 389 390 391 392 393 394 395 396
  refs[size - 1].chain = 0;
}
#endif



/* Allocate bitmaps for each basic block.  */
static void
df_bitmaps_alloc (df, flags)
     struct df *df;
     int flags;
{
  int dflags = 0;
397
  basic_block bb;
Jeff Law committed
398 399

  /* Free the bitmaps if they need resizing.  */
Kazu Hirata committed
400
  if ((flags & DF_LR) && df->n_regs < (unsigned int) max_reg_num ())
Jeff Law committed
401 402 403 404 405 406 407 408 409 410 411 412
    dflags |= DF_LR | DF_RU;
  if ((flags & DF_RU) && df->n_uses < df->use_id)
    dflags |= DF_RU;
  if ((flags & DF_RD) && df->n_defs < df->def_id)
    dflags |= DF_RD;

  if (dflags)
    df_bitmaps_free (df, dflags);

  df->n_defs = df->def_id;
  df->n_uses = df->use_id;

413
  FOR_EACH_BB (bb)
Jeff Law committed
414 415
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);
416

Jeff Law committed
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      if (flags & DF_RD && ! bb_info->rd_in)
	{
	  /* Allocate bitmaps for reaching definitions.  */
	  bb_info->rd_kill = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->rd_kill);
	  bb_info->rd_gen = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->rd_gen);
	  bb_info->rd_in = BITMAP_XMALLOC ();
	  bb_info->rd_out = BITMAP_XMALLOC ();
	  bb_info->rd_valid = 0;
	}

      if (flags & DF_RU && ! bb_info->ru_in)
	{
	  /* Allocate bitmaps for upward exposed uses.  */
	  bb_info->ru_kill = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->ru_kill);
	  /* Note the lack of symmetry.  */
	  bb_info->ru_gen = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->ru_gen);
	  bb_info->ru_in = BITMAP_XMALLOC ();
	  bb_info->ru_out = BITMAP_XMALLOC ();
	  bb_info->ru_valid = 0;
	}

      if (flags & DF_LR && ! bb_info->lr_in)
	{
	  /* Allocate bitmaps for live variables.  */
	  bb_info->lr_def = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->lr_def);
	  bb_info->lr_use = BITMAP_XMALLOC ();
	  bitmap_zero (bb_info->lr_use);
	  bb_info->lr_in = BITMAP_XMALLOC ();
	  bb_info->lr_out = BITMAP_XMALLOC ();
	  bb_info->lr_valid = 0;
	}
    }
}


/* Free bitmaps for each basic block.  */
static void
df_bitmaps_free (df, flags)
     struct df *df ATTRIBUTE_UNUSED;
     int flags;
{
463
  basic_block bb;
Jeff Law committed
464

465
  FOR_EACH_BB (bb)
Jeff Law committed
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);

      if (!bb_info)
	continue;

      if ((flags & DF_RD) && bb_info->rd_in)
	{
	  /* Free bitmaps for reaching definitions.  */
	  BITMAP_XFREE (bb_info->rd_kill);
	  bb_info->rd_kill = NULL;
	  BITMAP_XFREE (bb_info->rd_gen);
	  bb_info->rd_gen = NULL;
	  BITMAP_XFREE (bb_info->rd_in);
	  bb_info->rd_in = NULL;
	  BITMAP_XFREE (bb_info->rd_out);
	  bb_info->rd_out = NULL;
	}

      if ((flags & DF_RU) && bb_info->ru_in)
	{
	  /* Free bitmaps for upward exposed uses.  */
	  BITMAP_XFREE (bb_info->ru_kill);
	  bb_info->ru_kill = NULL;
	  BITMAP_XFREE (bb_info->ru_gen);
	  bb_info->ru_gen = NULL;
	  BITMAP_XFREE (bb_info->ru_in);
	  bb_info->ru_in = NULL;
	  BITMAP_XFREE (bb_info->ru_out);
	  bb_info->ru_out = NULL;
	}

      if ((flags & DF_LR) && bb_info->lr_in)
	{
	  /* Free bitmaps for live variables.  */
	  BITMAP_XFREE (bb_info->lr_def);
	  bb_info->lr_def = NULL;
	  BITMAP_XFREE (bb_info->lr_use);
	  bb_info->lr_use = NULL;
	  BITMAP_XFREE (bb_info->lr_in);
	  bb_info->lr_in = NULL;
	  BITMAP_XFREE (bb_info->lr_out);
	  bb_info->lr_out = NULL;
	}
    }
  df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
}


515
/* Allocate and initialize dataflow memory.  */
Jeff Law committed
516 517 518 519 520 521
static void
df_alloc (df, n_regs)
     struct df *df;
     int n_regs;
{
  int n_insns;
522
  basic_block bb;
Jeff Law committed
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

  gcc_obstack_init (&df_ref_obstack);

  /* Perhaps we should use LUIDs to save memory for the insn_refs
     table.  This is only a small saving; a few pointers.  */
  n_insns = get_max_uid () + 1;

  df->def_id = 0;
  df->n_defs = 0;
  /* Approximate number of defs by number of insns.  */
  df->def_size = n_insns;
  df->defs = xmalloc (df->def_size * sizeof (*df->defs));

  df->use_id = 0;
  df->n_uses = 0;
  /* Approximate number of uses by twice number of insns.  */
  df->use_size = n_insns * 2;
  df->uses = xmalloc (df->use_size * sizeof (*df->uses));

  df->n_regs = n_regs;
543
  df->n_bbs = last_basic_block;
Jeff Law committed
544 545 546 547 548 549 550 551 552 553 554 555 556

  /* Allocate temporary working array used during local dataflow analysis.  */
  df->reg_def_last = xmalloc (df->n_regs * sizeof (struct ref *));

  df_insn_table_realloc (df, n_insns);

  df_reg_table_realloc (df, df->n_regs);

  df->bbs_modified = BITMAP_XMALLOC ();
  bitmap_zero (df->bbs_modified);

  df->flags = 0;

557
  df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
Jeff Law committed
558 559

  df->all_blocks = BITMAP_XMALLOC ();
560 561
  FOR_EACH_BB (bb)
    bitmap_set_bit (df->all_blocks, bb->index);
Jeff Law committed
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
}


/* Free all the dataflow info.  */
static void
df_free (df)
     struct df *df;
{
  df_bitmaps_free (df, DF_ALL);

  if (df->bbs)
    free (df->bbs);
  df->bbs = 0;

  if (df->insns)
    free (df->insns);
  df->insns = 0;
  df->insn_size = 0;

  if (df->defs)
    free (df->defs);
  df->defs = 0;
  df->def_size = 0;
  df->def_id = 0;

  if (df->uses)
    free (df->uses);
  df->uses = 0;
  df->use_size = 0;
  df->use_id = 0;

  if (df->regs)
    free (df->regs);
  df->regs = 0;
  df->reg_size = 0;

  if (df->bbs_modified)
    BITMAP_XFREE (df->bbs_modified);
  df->bbs_modified = 0;

  if (df->insns_modified)
    BITMAP_XFREE (df->insns_modified);
  df->insns_modified = 0;

  BITMAP_XFREE (df->all_blocks);
  df->all_blocks = 0;

  obstack_free (&df_ref_obstack, NULL);
}

/* Local miscellaneous routines.  */

/* Return a USE for register REGNO.  */
static rtx df_reg_use_gen (regno)
     unsigned int regno;
{
  rtx reg;
  rtx use;

621
  reg = regno_reg_rtx[regno];
622

Jeff Law committed
623 624 625 626 627 628 629 630 631 632 633 634
  use = gen_rtx_USE (GET_MODE (reg), reg);
  return use;
}


/* Return a CLOBBER for register REGNO.  */
static rtx df_reg_clobber_gen (regno)
     unsigned int regno;
{
  rtx reg;
  rtx use;

635
  reg = regno_reg_rtx[regno];
Jeff Law committed
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

  use = gen_rtx_CLOBBER (GET_MODE (reg), reg);
  return use;
}

/* Local chain manipulation routines.  */

/* Create a link in a def-use or use-def chain.  */
static inline struct df_link *
df_link_create (ref, next)
     struct ref *ref;
     struct df_link *next;
{
  struct df_link *link;

651
  link = (struct df_link *) obstack_alloc (&df_ref_obstack,
Jeff Law committed
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
					   sizeof (*link));
  link->next = next;
  link->ref = ref;
  return link;
}


/* Add REF to chain head pointed to by PHEAD.  */
static struct df_link *
df_ref_unlink (phead, ref)
     struct df_link **phead;
     struct ref *ref;
{
  struct df_link *link = *phead;

  if (link)
    {
      if (! link->next)
	{
	  /* Only a single ref.  It must be the one we want.
	     If not, the def-use and use-def chains are likely to
	     be inconsistent.  */
	  if (link->ref != ref)
	    abort ();
	  /* Now have an empty chain.  */
	  *phead = NULL;
	}
      else
	{
	  /* Multiple refs.  One of them must be us.  */
	  if (link->ref == ref)
	    *phead = link->next;
	  else
	    {
	      /* Follow chain.  */
	      for (; link->next; link = link->next)
		{
		  if (link->next->ref == ref)
		    {
		      /* Unlink from list.  */
		      link->next = link->next->next;
		      return link->next;
		    }
		}
	    }
	}
    }
  return link;
}


/* Unlink REF from all def-use/use-def chains, etc.  */
int
df_ref_remove (df, ref)
     struct df *df;
     struct ref *ref;
{
  if (DF_REF_REG_DEF_P (ref))
    {
      df_def_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
    }
  else
    {
      df_use_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
    }
  return 1;
}


/* Unlink DEF from use-def and reg-def chains.  */
724
static void
Jeff Law committed
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
df_def_unlink (df, def)
     struct df *df ATTRIBUTE_UNUSED;
     struct ref *def;
{
  struct df_link *du_link;
  unsigned int dregno = DF_REF_REGNO (def);

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;

      /* Unlink this def from the use-def chain.  */
      df_ref_unlink (&DF_REF_CHAIN (use), def);
    }
  DF_REF_CHAIN (def) = 0;

  /* Unlink def from reg-def chain.  */
  df_ref_unlink (&df->regs[dregno].defs, def);

  df->defs[DF_REF_ID (def)] = 0;
}


/* Unlink use from def-use and reg-use chains.  */
750
static void
Jeff Law committed
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
df_use_unlink (df, use)
     struct df *df ATTRIBUTE_UNUSED;
     struct ref *use;
{
  struct df_link *ud_link;
  unsigned int uregno = DF_REF_REGNO (use);

  /* Follow use-def chain to find all the defs of this use.  */
  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
    {
      struct ref *def = ud_link->ref;

      /* Unlink this use from the def-use chain.  */
      df_ref_unlink (&DF_REF_CHAIN (def), use);
    }
  DF_REF_CHAIN (use) = 0;

  /* Unlink use from reg-use chain.  */
  df_ref_unlink (&df->regs[uregno].uses, use);

  df->uses[DF_REF_ID (use)] = 0;
}

/* Local routines for recording refs.  */


/* Create a new ref of type DF_REF_TYPE for register REG at address
   LOC within INSN of BB.  */
static struct ref *
780
df_ref_create (df, reg, loc, insn, ref_type, ref_flags)
781
     struct df *df;
Jeff Law committed
782 783 784 785
     rtx reg;
     rtx *loc;
     rtx insn;
     enum df_ref_type ref_type;
786
     enum df_ref_flags ref_flags;
Jeff Law committed
787 788
{
  struct ref *this_ref;
789 790

  this_ref = (struct ref *) obstack_alloc (&df_ref_obstack,
Jeff Law committed
791 792 793 794 795 796
					   sizeof (*this_ref));
  DF_REF_REG (this_ref) = reg;
  DF_REF_LOC (this_ref) = loc;
  DF_REF_INSN (this_ref) = insn;
  DF_REF_CHAIN (this_ref) = 0;
  DF_REF_TYPE (this_ref) = ref_type;
797
  DF_REF_FLAGS (this_ref) = ref_flags;
Jeff Law committed
798 799 800 801 802 803 804

  if (ref_type == DF_REF_REG_DEF)
    {
      if (df->def_id >= df->def_size)
	{
	  /* Make table 25 percent larger.  */
	  df->def_size += (df->def_size / 4);
805
	  df->defs = xrealloc (df->defs,
Jeff Law committed
806 807 808 809 810 811 812 813 814 815 816
			       df->def_size * sizeof (*df->defs));
	}
      DF_REF_ID (this_ref) = df->def_id;
      df->defs[df->def_id++] = this_ref;
    }
  else
    {
      if (df->use_id >= df->use_size)
	{
	  /* Make table 25 percent larger.  */
	  df->use_size += (df->use_size / 4);
817
	  df->uses = xrealloc (df->uses,
Jeff Law committed
818 819 820 821 822 823 824 825 826 827 828 829
			       df->use_size * sizeof (*df->uses));
	}
      DF_REF_ID (this_ref) = df->use_id;
      df->uses[df->use_id++] = this_ref;
    }
  return this_ref;
}


/* Create a new reference of type DF_REF_TYPE for a single register REG,
   used inside the LOC rtx of INSN.  */
static void
830
df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags)
Jeff Law committed
831 832 833 834 835
     struct df *df;
     rtx reg;
     rtx *loc;
     rtx insn;
     enum df_ref_type ref_type;
836
     enum df_ref_flags ref_flags;
Jeff Law committed
837
{
838
  df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
Jeff Law committed
839 840 841 842 843 844
}


/* Create new references of type DF_REF_TYPE for each part of register REG
   at address LOC within INSN of BB.  */
static void
845
df_ref_record (df, reg, loc, insn, ref_type, ref_flags)
Jeff Law committed
846 847 848 849 850
     struct df *df;
     rtx reg;
     rtx *loc;
     rtx insn;
     enum df_ref_type ref_type;
851
     enum df_ref_flags ref_flags;
Jeff Law committed
852 853 854 855 856 857 858 859 860 861 862 863 864
{
  unsigned int regno;

  if (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)
    abort ();

  /* For the reg allocator we are interested in some SUBREG rtx's, but not
     all.  Notably only those representing a word extraction from a multi-word
     reg.  As written in the docu those should have the form
     (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
     XXX Is that true?  We could also use the global word_mode variable.  */
  if (GET_CODE (reg) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
Kazu Hirata committed
865
	  || GET_MODE_SIZE (GET_MODE (reg))
Jeff Law committed
866 867 868 869 870 871 872 873 874 875 876
	       >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
    {
      loc = &SUBREG_REG (reg);
      reg = *loc;
    }

  regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    {
      int i;
      int endregno;
877

Jeff Law committed
878 879 880 881 882 883 884 885
      if (! (df->flags & DF_HARD_REGS))
	return;

      /* GET_MODE (reg) is correct here.  We don't want to go into a SUBREG
         for the mode, because we only want to add references to regs, which
	 are really referenced.  E.g. a (subreg:SI (reg:DI 0) 0) does _not_
	 reference the whole reg 0 in DI mode (which would also include
	 reg 1, at least, if 0 and 1 are SImode registers).  */
886 887 888 889 890
      endregno = HARD_REGNO_NREGS (regno, GET_MODE (reg));
      if (GET_CODE (reg) == SUBREG)
        regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
				      SUBREG_BYTE (reg), GET_MODE (reg));
      endregno += regno;
Jeff Law committed
891 892

      for (i = regno; i < endregno; i++)
893
	df_ref_record_1 (df, regno_reg_rtx[i],
894
			 loc, insn, ref_type, ref_flags);
Jeff Law committed
895 896 897
    }
  else
    {
898
      df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
Jeff Law committed
899 900 901
    }
}

902 903
/* Writes to paradoxical subregs, or subregs which are too narrow
   are read-modify-write.  */
904 905 906 907 908

static inline bool
read_modify_subreg_p (x)
     rtx x;
{
909
  unsigned int isize, osize;
910 911
  if (GET_CODE (x) != SUBREG)
    return false;
912 913 914 915 916
  isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
  osize = GET_MODE_SIZE (GET_MODE (x));
  if (isize <= osize)
    return true;
  if (isize <= UNITS_PER_WORD)
917
    return false;
918
  if (osize >= UNITS_PER_WORD)
919 920 921 922
    return false;
  return true;
}

Jeff Law committed
923 924 925 926 927 928 929 930 931 932
/* Process all the registers defined in the rtx, X.  */
static void
df_def_record_1 (df, x, bb, insn)
     struct df *df;
     rtx x;
     basic_block bb;
     rtx insn;
{
  rtx *loc = &SET_DEST (x);
  rtx dst = *loc;
933
  enum df_ref_flags flags = 0;
Jeff Law committed
934 935 936 937 938 939 940 941

  /* Some targets place small structures in registers for
     return values of functions.  */
  if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
    {
      int i;

      for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
Kazu Hirata committed
942
	df_def_record_1 (df, XVECEXP (dst, 0, i), bb, insn);
Jeff Law committed
943 944 945
      return;
    }

946 947 948 949 950 951 952
#ifdef CLASS_CANNOT_CHANGE_MODE
  if (GET_CODE (dst) == SUBREG
      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst),
				     GET_MODE (SUBREG_REG (dst))))
    flags |= DF_REF_MODE_CHANGE;
#endif

Jeff Law committed
953 954 955
  /* May be, we should flag the use of strict_low_part somehow.  Might be
     handy for the reg allocator.  */
  while (GET_CODE (dst) == STRICT_LOW_PART
Kazu Hirata committed
956
	 || GET_CODE (dst) == ZERO_EXTRACT
Jeff Law committed
957
	 || GET_CODE (dst) == SIGN_EXTRACT
958
	 || read_modify_subreg_p (dst))
Jeff Law committed
959
    {
960 961
      /* Strict low part always contains SUBREG, but we don't want to make
	 it appear outside, as whole register is always considered.  */
962 963 964 965 966
      if (GET_CODE (dst) == STRICT_LOW_PART)
	{
	  loc = &XEXP (dst, 0);
	  dst = *loc;
	}
967 968 969 970 971 972
#ifdef CLASS_CANNOT_CHANGE_MODE
      if (GET_CODE (dst) == SUBREG
	  && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst),
				         GET_MODE (SUBREG_REG (dst))))
        flags |= DF_REF_MODE_CHANGE;
#endif
Jeff Law committed
973 974
      loc = &XEXP (dst, 0);
      dst = *loc;
975
      flags |= DF_REF_READ_WRITE;
Jeff Law committed
976
    }
Kazu Hirata committed
977

Kazu Hirata committed
978 979 980
  if (GET_CODE (dst) == REG
      || (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG))
    df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
Jeff Law committed
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
}


/* Process all the registers defined in the pattern rtx, X.  */
static void
df_defs_record (df, x, bb, insn)
     struct df *df;
     rtx x;
     basic_block bb;
     rtx insn;
{
  RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    {
      /* Mark the single def within the pattern.  */
      df_def_record_1 (df, x, bb, insn);
    }
  else if (code == PARALLEL)
    {
      int i;

      /* Mark the multiple defs within the pattern.  */
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
	}
    }
}


/* Process all the registers used in the rtx at address LOC.  */
static void
1016
df_uses_record (df, loc, ref_type, bb, insn, flags)
Jeff Law committed
1017 1018 1019 1020 1021
     struct df *df;
     rtx *loc;
     enum df_ref_type ref_type;
     basic_block bb;
     rtx insn;
1022
     enum df_ref_flags flags;
Jeff Law committed
1023 1024 1025 1026 1027
{
  RTX_CODE code;
  rtx x;
 retry:
  x = *loc;
1028 1029
  if (!x)
    return;
Jeff Law committed
1030 1031 1032 1033 1034 1035 1036 1037
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
1038
    case CONST_VECTOR:
Jeff Law committed
1039 1040 1041 1042 1043 1044 1045 1046 1047
    case PC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
1048
	df_uses_record (df, &XEXP (XEXP (x, 0), 0),
1049
			DF_REF_REG_MEM_STORE, bb, insn, flags);
Jeff Law committed
1050 1051 1052 1053 1054

      /* If we're clobbering a REG then we have a def so ignore.  */
      return;

    case MEM:
1055
      df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, flags);
Jeff Law committed
1056 1057 1058 1059 1060 1061 1062 1063 1064
      return;

    case SUBREG:
      /* While we're here, optimize this case.  */

      /* In case the SUBREG is not of a register, don't optimize.  */
      if (GET_CODE (SUBREG_REG (x)) != REG)
	{
	  loc = &SUBREG_REG (x);
1065
	  df_uses_record (df, loc, ref_type, bb, insn, flags);
Jeff Law committed
1066 1067
	  return;
	}
1068 1069 1070 1071 1072
#ifdef CLASS_CANNOT_CHANGE_MODE
      if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
				      GET_MODE (SUBREG_REG (x))))
        flags |= DF_REF_MODE_CHANGE;
#endif
1073

Jeff Law committed
1074 1075 1076 1077
      /* ... Fall through ...  */

    case REG:
      /* See a register (or subreg) other than being set.  */
1078
      df_ref_record (df, x, loc, insn, ref_type, flags);
Jeff Law committed
1079 1080 1081 1082 1083 1084
      return;

    case SET:
      {
	rtx dst = SET_DEST (x);

1085
	df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1086

1087
	switch (GET_CODE (dst))
Jeff Law committed
1088
	  {
1089
	    enum df_ref_flags use_flags;
1090 1091 1092
	    case SUBREG:
	      if (read_modify_subreg_p (dst))
		{
1093 1094 1095 1096 1097 1098
		  use_flags = DF_REF_READ_WRITE;
#ifdef CLASS_CANNOT_CHANGE_MODE
		  if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst),
						  GET_MODE (SUBREG_REG (dst))))
		    use_flags |= DF_REF_MODE_CHANGE;
#endif
1099
		  df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1100
				  insn, use_flags);
1101 1102
		  break;
		}
1103
	      /* ... FALLTHRU ...  */
1104 1105
	    case REG:
	    case PC:
1106
	    case PARALLEL:
1107 1108
	      break;
	    case MEM:
Kazu Hirata committed
1109
	      df_uses_record (df, &XEXP (dst, 0),
1110 1111 1112 1113 1114 1115 1116 1117
			      DF_REF_REG_MEM_STORE,
			      bb, insn, 0);
	      break;
	    case STRICT_LOW_PART:
	      /* A strict_low_part uses the whole reg not only the subreg.  */
	      dst = XEXP (dst, 0);
	      if (GET_CODE (dst) != SUBREG)
		abort ();
1118 1119 1120 1121 1122 1123
	      use_flags = DF_REF_READ_WRITE;
#ifdef CLASS_CANNOT_CHANGE_MODE
	      if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst),
					      GET_MODE (SUBREG_REG (dst))))
		use_flags |= DF_REF_MODE_CHANGE;
#endif
1124
	      df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1125
			     insn, use_flags);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	      break;
	    case ZERO_EXTRACT:
	    case SIGN_EXTRACT:
	      df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
			      DF_REF_READ_WRITE);
	      df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
	      df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
	      dst = XEXP (dst, 0);
	      break;
	    default:
	      abort ();
Jeff Law committed
1137
	  }
1138
	return;
Jeff Law committed
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
      }

    case RETURN:
      break;

    case ASM_OPERANDS:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
    case ASM_INPUT:
      {
	/* Traditional and volatile asm instructions must be considered to use
	   and clobber all hard registers, all pseudo-registers and all of
	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.

	   Consider for instance a volatile asm that changes the fpu rounding
	   mode.  An insn should not be moved across this even if it only uses
1155
	   pseudo-regs because it might give an incorrectly rounded result.
Jeff Law committed
1156 1157 1158 1159

	   For now, just mark any regs we can find in ASM_OPERANDS as
	   used.  */

Kazu Hirata committed
1160
	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
Jeff Law committed
1161 1162 1163 1164 1165 1166 1167 1168
	   We can not just fall through here since then we would be confused
	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	   traditional asms unlike their normal usage.  */
	if (code == ASM_OPERANDS)
	  {
	    int j;

	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1169
	      df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1170
			      DF_REF_REG_USE, bb, insn, 0);
1171
	    return;
Jeff Law committed
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	  }
	break;
      }

    case PRE_DEC:
    case POST_DEC:
    case PRE_INC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* Catch the def of the register being modified.  */
1183
      df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
Jeff Law committed
1184

1185
      /* ... Fall through to handle uses ...  */
Jeff Law committed
1186 1187 1188 1189 1190 1191 1192

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */
  {
1193
    const char *fmt = GET_RTX_FORMAT (code);
Jeff Law committed
1194
    int i;
1195

Jeff Law committed
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		loc = &XEXP (x, 0);
		goto retry;
	      }
1206
	    df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
Jeff Law committed
1207 1208 1209 1210 1211 1212
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1213
			      bb, insn, flags);
Jeff Law committed
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	  }
      }
  }
}


/* Record all the df within INSN of basic block BB.  */
static void
df_insn_refs_record (df, bb, insn)
     struct df *df;
     basic_block bb;
     rtx insn;
{
  int i;

  if (INSN_P (insn))
    {
1231 1232
      rtx note;

Jeff Law committed
1233 1234
      /* Record register defs */
      df_defs_record (df, PATTERN (insn), bb, insn);
1235 1236 1237 1238 1239 1240 1241

      if (df->flags & DF_EQUIV_NOTES)
	for (note = REG_NOTES (insn); note;
	     note = XEXP (note, 1))
	  {
	    switch (REG_NOTE_KIND (note))
	      {
Kazu Hirata committed
1242 1243 1244 1245 1246 1247
	      case REG_EQUIV:
	      case REG_EQUAL:
		df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
				bb, insn, 0);
	      default:
		break;
1248 1249
	      }
	  }
1250

Jeff Law committed
1251 1252 1253 1254
      if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;
	  rtx x;
1255

Jeff Law committed
1256 1257 1258 1259 1260
	  /* Record the registers used to pass arguments.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
	       note = XEXP (note, 1))
	    {
	      if (GET_CODE (XEXP (note, 0)) == USE)
1261
		df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1262
				bb, insn, 0);
Jeff Law committed
1263 1264 1265 1266
	    }

	  /* The stack ptr is used (honorarily) by a CALL insn.  */
	  x = df_reg_use_gen (STACK_POINTER_REGNUM);
1267
	  df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1268

Jeff Law committed
1269 1270 1271 1272 1273 1274 1275 1276 1277
	  if (df->flags & DF_HARD_REGS)
	    {
	      /* Calls may also reference any of the global registers,
		 so they are recorded as used.  */
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		if (global_regs[i])
		  {
		    x = df_reg_use_gen (i);
		    df_uses_record (df, &SET_DEST (x),
Kazu Hirata committed
1278
				    DF_REF_REG_USE, bb, insn, 0);
Jeff Law committed
1279 1280 1281
		  }
	    }
	}
1282

Jeff Law committed
1283
      /* Record the register uses.  */
1284
      df_uses_record (df, &PATTERN (insn),
1285
		      DF_REF_REG_USE, bb, insn, 0);
1286

Jeff Law committed
1287 1288 1289 1290 1291 1292 1293

      if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx note;

	  if (df->flags & DF_HARD_REGS)
	    {
1294
	      /* Kill all registers invalidated by a call.  */
Jeff Law committed
1295
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1296
		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
Jeff Law committed
1297 1298 1299 1300 1301
		  {
		    rtx reg_clob = df_reg_clobber_gen (i);
		    df_defs_record (df, reg_clob, bb, insn);
		  }
	    }
1302

Jeff Law committed
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	  /* There may be extra registers to be clobbered.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
	       note;
	       note = XEXP (note, 1))
	    if (GET_CODE (XEXP (note, 0)) == CLOBBER)
	      df_defs_record (df, XEXP (note, 0), bb, insn);
	}
    }
}


/* Record all the refs within the basic block BB.  */
static void
df_bb_refs_record (df, bb)
     struct df *df;
     basic_block bb;
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  /* Record defs within INSN.  */
	  df_insn_refs_record (df, bb, insn);
	}
      if (insn == bb->end)
	break;
    }
}


/* Record all the refs in the basic blocks specified by BLOCKS.  */
static void
df_refs_record (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_refs_record (df, bb);
    });
}

/* Dataflow analysis routines.  */


/* Create reg-def chains for basic block BB.  These are a list of
   definitions for each register.  */
static void
df_bb_reg_def_chain_create (df, bb)
     struct df *df;
     basic_block bb;
{
  rtx insn;
1361

Jeff Law committed
1362 1363 1364
  /* Perhaps the defs should be sorted using a depth first search
     of the CFG (or possibly a breadth first search).  We currently
     scan the basic blocks in reverse order so that the first defs
1365
     appear at the start of the chain.  */
1366

Jeff Law committed
1367 1368 1369 1370 1371 1372 1373 1374
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1375

Jeff Law committed
1376 1377 1378 1379
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1380 1381 1382 1383 1384
          /* Don't add ref's to the chain two times.  I.e. only add
             new refs.  XXX the same could be done by testing if the current
             insn is a modified (or a new) one.  This would be faster.  */
          if (DF_REF_ID (def) < df->def_id_save)
            continue;
1385

Jeff Law committed
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	  df->regs[dregno].defs
	    = df_link_create (def, df->regs[dregno].defs);
	}
    }
}


/* Create reg-def chains for each basic block within BLOCKS.  These
   are a list of definitions for each register.  */
static void
df_reg_def_chain_create (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP/*_REV*/ (blocks, 0, bb,
    {
      df_bb_reg_def_chain_create (df, bb);
    });
}


/* Create reg-use chains for basic block BB.  These are a list of uses
   for each register.  */
static void
df_bb_reg_use_chain_create (df, bb)
     struct df *df;
     basic_block bb;
{
  rtx insn;
1417

Jeff Law committed
1418 1419
  /* Scan in forward order so that the last uses appear at the
	 start of the chain.  */
1420

Jeff Law committed
1421 1422 1423 1424 1425 1426 1427 1428
  for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
       insn = NEXT_INSN (insn))
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1429

Jeff Law committed
1430 1431 1432 1433
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);
1434 1435 1436 1437 1438
          /* Don't add ref's to the chain two times.  I.e. only add
             new refs.  XXX the same could be done by testing if the current
             insn is a modified (or a new) one.  This would be faster.  */
          if (DF_REF_ID (use) < df->use_id_save)
            continue;
1439

Jeff Law committed
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	  df->regs[uregno].uses
	    = df_link_create (use, df->regs[uregno].uses);
	}
    }
}


/* Create reg-use chains for each basic block within BLOCKS.  These
   are a list of uses for each register.  */
static void
df_reg_use_chain_create (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_reg_use_chain_create (df, bb);
    });
}


/* Create def-use chains from reaching use bitmaps for basic block BB.  */
static void
df_bb_du_chain_create (df, bb, ru)
     struct df *df;
     basic_block bb;
     bitmap ru;
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1472

Jeff Law committed
1473
  bitmap_copy (ru, bb_info->ru_out);
1474

Jeff Law committed
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
  /* For each def in BB create a linked list (chain) of uses
     reached from the def.  */
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      struct df_link *def_link;
      struct df_link *use_link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;
1486

Jeff Law committed
1487 1488 1489 1490 1491
      /* For each def in insn...  */
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1492

Jeff Law committed
1493 1494 1495 1496 1497
	  DF_REF_CHAIN (def) = 0;

	  /* While the reg-use chains are not essential, it
	     is _much_ faster to search these short lists rather
	     than all the reaching uses, especially for large functions.  */
1498
	  for (use_link = df->regs[dregno].uses; use_link;
Jeff Law committed
1499 1500 1501
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;
1502

Jeff Law committed
1503 1504
	      if (bitmap_bit_p (ru, DF_REF_ID (use)))
		{
1505
		  DF_REF_CHAIN (def)
Jeff Law committed
1506
		    = df_link_create (use, DF_REF_CHAIN (def));
1507

Jeff Law committed
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		  bitmap_clear_bit (ru, DF_REF_ID (use));
		}
	    }
	}

      /* For each use in insn...  */
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  bitmap_set_bit (ru, DF_REF_ID (use));
	}
    }
}


/* Create def-use chains from reaching use bitmaps for basic blocks
   in BLOCKS.  */
static void
df_du_chain_create (df, blocks)
     struct df *df;
     bitmap blocks;
{
  bitmap ru;
  basic_block bb;

  ru = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_du_chain_create (df, bb, ru);
    });

  BITMAP_XFREE (ru);
}


/* Create use-def chains from reaching def bitmaps for basic block BB.  */
static void
df_bb_ud_chain_create (df, bb)
     struct df *df;
     basic_block bb;
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  struct ref **reg_def_last = df->reg_def_last;
  rtx insn;
1553

Jeff Law committed
1554
  memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1555

Jeff Law committed
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
  /* For each use in BB create a linked list (chain) of defs
     that reach the use.  */
  for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
       insn = NEXT_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *use_link;
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;

1568
      /* For each use in insn...  */
Jeff Law committed
1569 1570 1571 1572
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  unsigned int regno = DF_REF_REGNO (use);
1573

Jeff Law committed
1574 1575 1576 1577 1578 1579 1580 1581 1582
	  DF_REF_CHAIN (use) = 0;

	  /* Has regno been defined in this BB yet?  If so, use
	     the last def as the single entry for the use-def
	     chain for this use.  Otherwise, we need to add all
	     the defs using this regno that reach the start of
	     this BB.  */
	  if (reg_def_last[regno])
	    {
1583
	      DF_REF_CHAIN (use)
Jeff Law committed
1584 1585 1586 1587 1588 1589 1590 1591
		= df_link_create (reg_def_last[regno], 0);
	    }
	  else
	    {
	      /* While the reg-def chains are not essential, it is
		 _much_ faster to search these short lists rather than
		 all the reaching defs, especially for large
		 functions.  */
1592
	      for (def_link = df->regs[regno].defs; def_link;
Jeff Law committed
1593 1594 1595
		   def_link = def_link->next)
		{
		  struct ref *def = def_link->ref;
1596

Jeff Law committed
1597 1598
		  if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
		    {
1599
		      DF_REF_CHAIN (use)
Jeff Law committed
1600 1601 1602 1603 1604
			= df_link_create (def, DF_REF_CHAIN (use));
		    }
		}
	    }
	}
1605

Jeff Law committed
1606 1607 1608 1609 1610 1611

      /* For each def in insn...record the last def of each reg.  */
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  int dregno = DF_REF_REGNO (def);
1612

Jeff Law committed
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	  reg_def_last[dregno] = def;
	}
    }
}


/* Create use-def chains from reaching def bitmaps for basic blocks
   within BLOCKS.  */
static void
df_ud_chain_create (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_ud_chain_create (df, bb);
    });
}


1635

Jeff Law committed
1636
static void
1637 1638 1639 1640 1641
df_rd_transfer_function (bb, changed, in, out, gen, kill, data)
     int bb ATTRIBUTE_UNUSED;
     int *changed;
     bitmap in, out, gen, kill;
     void *data ATTRIBUTE_UNUSED;
Jeff Law committed
1642
{
1643
  *changed = bitmap_union_of_diff (out, gen, in, kill);
Jeff Law committed
1644 1645
}
static void
1646 1647 1648 1649 1650
df_ru_transfer_function (bb, changed, in, out, gen, kill, data)
     int bb ATTRIBUTE_UNUSED;
     int *changed;
     bitmap in, out, gen, kill;
     void *data ATTRIBUTE_UNUSED;
Jeff Law committed
1651
{
1652
  *changed = bitmap_union_of_diff (in, gen, out, kill);
Jeff Law committed
1653 1654 1655
}

static void
1656 1657 1658 1659 1660
df_lr_transfer_function (bb, changed, in, out, use, def, data)
     int bb ATTRIBUTE_UNUSED;
     int *changed;
     bitmap in, out, use, def;
     void *data ATTRIBUTE_UNUSED;
Jeff Law committed
1661
{
1662
  *changed = bitmap_union_of_diff (in, use, out, def);
Jeff Law committed
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}


/* Compute local reaching def info for basic block BB.  */
static void
df_bb_rd_local_compute (df, bb)
     struct df *df;
     basic_block bb;
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1674

Jeff Law committed
1675 1676 1677 1678 1679 1680 1681 1682
  for (insn = bb->head; insn && insn != NEXT_INSN (bb->end);
       insn = NEXT_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;
1683

Jeff Law committed
1684 1685 1686 1687 1688 1689
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int regno = DF_REF_REGNO (def);
	  struct df_link *def2_link;

1690
	  for (def2_link = df->regs[regno].defs; def2_link;
Jeff Law committed
1691 1692 1693 1694 1695 1696 1697 1698 1699
	       def2_link = def2_link->next)
	    {
	      struct ref *def2 = def2_link->ref;

	      /* Add all defs of this reg to the set of kills.  This
		 is greedy since many of these defs will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1700

Jeff Law committed
1701 1702 1703 1704 1705 1706 1707
	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->rd_gen, DF_REF_ID (def2));
	    }

	  bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
	}
    }
Kazu Hirata committed
1708

Jeff Law committed
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
  bb_info->rd_valid = 1;
}


/* Compute local reaching def info for each basic block within BLOCKS.  */
static void
df_rd_local_compute (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_rd_local_compute (df, bb);
  });
}


/* Compute local reaching use (upward exposed use) info for basic
   block BB.  */
static void
df_bb_ru_local_compute (df, bb)
     struct df *df;
     basic_block bb;
{
  /* This is much more tricky than computing reaching defs.  With
     reaching defs, defs get killed by other defs.  With upwards
     exposed uses, these get killed by defs with the same regno.  */
Kazu Hirata committed
1738

Jeff Law committed
1739 1740 1741
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;

1742

Jeff Law committed
1743 1744 1745 1746 1747 1748 1749 1750 1751
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;
      struct df_link *use_link;

      if (! INSN_P (insn))
	continue;
1752

Jeff Law committed
1753 1754 1755 1756 1757
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

1758
	  for (use_link = df->regs[dregno].uses; use_link;
Jeff Law committed
1759 1760 1761 1762 1763 1764 1765 1766 1767
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;

	      /* Add all uses of this reg to the set of kills.  This
		 is greedy since many of these uses will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1768

Jeff Law committed
1769 1770 1771 1772
	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
	    }
	}
1773

Jeff Law committed
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  /* Add use to set of gens in this BB.  */
	  bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
	}
    }
  bb_info->ru_valid = 1;
}


/* Compute local reaching use (upward exposed use) info for each basic
   block within BLOCKS.  */
static void
df_ru_local_compute (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_ru_local_compute (df, bb);
  });
}


/* Compute local live variable info for basic block BB.  */
static void
df_bb_lr_local_compute (df, bb)
     struct df *df;
     basic_block bb;
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1809

Jeff Law committed
1810 1811 1812 1813 1814 1815 1816 1817
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *link;

      if (! INSN_P (insn))
	continue;
1818

Jeff Law committed
1819 1820 1821 1822
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1823

Jeff Law committed
1824 1825
	  /* Add def to set of defs in this BB.  */
	  bitmap_set_bit (bb_info->lr_def, dregno);
1826

Jeff Law committed
1827 1828
	  bitmap_clear_bit (bb_info->lr_use, dregno);
	}
1829

Jeff Law committed
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  /* Add use to set of uses in this BB.  */
	  bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
	}
    }
  bb_info->lr_valid = 1;
}


/* Compute local live variable info for each basic block within BLOCKS.  */
static void
df_lr_local_compute (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_lr_local_compute (df, bb);
  });
}


/* Compute register info: lifetime, bb, and number of defs and uses
   for basic block BB.  */
static void
df_bb_reg_info_compute (df, bb, live)
     struct df *df;
     basic_block bb;
1862
     bitmap live;
Jeff Law committed
1863 1864 1865 1866
{
  struct reg_info *reg_info = df->regs;
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
1867

Jeff Law committed
1868
  bitmap_copy (live, bb_info->lr_out);
1869

Jeff Law committed
1870 1871 1872 1873 1874 1875
  for (insn = bb->end; insn && insn != PREV_INSN (bb->head);
       insn = PREV_INSN (insn))
    {
      unsigned int uid = INSN_UID (insn);
      unsigned int regno;
      struct df_link *link;
1876

Jeff Law committed
1877 1878
      if (! INSN_P (insn))
	continue;
1879

Jeff Law committed
1880 1881 1882 1883
      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);
1884

Jeff Law committed
1885 1886 1887 1888
	  /* Kill this register.  */
	  bitmap_clear_bit (live, dregno);
	  reg_info[dregno].n_defs++;
	}
1889

Jeff Law committed
1890 1891 1892 1893
      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);
1894

Jeff Law committed
1895 1896 1897 1898
	  /* This register is now live.  */
	  bitmap_set_bit (live, uregno);
	  reg_info[uregno].n_uses++;
	}
1899

Jeff Law committed
1900 1901
      /* Increment lifetimes of all live registers.  */
      EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
1902
      {
Jeff Law committed
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	reg_info[regno].lifetime++;
      });
    }
}


/* Compute register info: lifetime, bb, and number of defs and uses.  */
static void
df_reg_info_compute (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;
  bitmap live;

  live = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_reg_info_compute (df, bb, live);
  });

  BITMAP_XFREE (live);
}


/* Assign LUIDs for BB.  */
static int
df_bb_luids_set (df, bb)
     struct df *df;
     basic_block bb;
{
  rtx insn;
  int luid = 0;

  /* The LUIDs are monotonically increasing for each basic block.  */

  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	DF_INSN_LUID (df, insn) = luid++;
      DF_INSN_LUID (df, insn) = luid;

      if (insn == bb->end)
	break;
    }
  return luid;
}


/* Assign LUIDs for each basic block within BLOCKS.  */
static int
df_luids_set (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;
  int total = 0;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      total += df_bb_luids_set (df, bb);
    });
  return total;
}

/* Perform dataflow analysis using existing DF structure for blocks
   within BLOCKS.  If BLOCKS is zero, use all basic blocks in the CFG.  */
static void
df_analyse_1 (df, blocks, flags, update)
     struct df *df;
     bitmap blocks;
     int flags;
     int update;
{
  int aflags;
  int dflags;
1980
  int i;
1981 1982
  basic_block bb;

Jeff Law committed
1983
  dflags = 0;
1984
  aflags = flags;
Jeff Law committed
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
  if (flags & DF_UD_CHAIN)
    aflags |= DF_RD | DF_RD_CHAIN;

  if (flags & DF_DU_CHAIN)
    aflags |= DF_RU;

  if (flags & DF_RU)
    aflags |= DF_RU_CHAIN;

  if (flags & DF_REG_INFO)
    aflags |= DF_LR;

  if (! blocks)
Kazu Hirata committed
1998
    blocks = df->all_blocks;
Jeff Law committed
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

  df->flags = flags;
  if (update)
    {
      df_refs_update (df);
      /* More fine grained incremental dataflow analysis would be
	 nice.  For now recompute the whole shebang for the
	 modified blocks.  */
#if 0
      df_refs_unlink (df, blocks);
#endif
      /* All the def-use, use-def chains can be potentially
	 modified by changes in one block.  The size of the
	 bitmaps can also change.  */
    }
  else
    {
      /* Scan the function for all register defs and uses.  */
      df_refs_queue (df);
      df_refs_record (df, blocks);

      /* Link all the new defs and uses to the insns.  */
      df_refs_process (df);
    }

  /* Allocate the bitmaps now the total number of defs and uses are
     known.  If the number of defs or uses have changed, then
     these bitmaps need to be reallocated.  */
  df_bitmaps_alloc (df, aflags);

  /* Set the LUIDs for each specified basic block.  */
  df_luids_set (df, blocks);

  /* Recreate reg-def and reg-use chains from scratch so that first
     def is at the head of the reg-def chain and the last use is at
     the head of the reg-use chain.  This is only important for
     regs local to a basic block as it speeds up searching.  */
  if (aflags & DF_RD_CHAIN)
    {
      df_reg_def_chain_create (df, blocks);
    }

  if (aflags & DF_RU_CHAIN)
    {
      df_reg_use_chain_create (df, blocks);
    }

Kazu Hirata committed
2046 2047 2048 2049 2050 2051
  df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2052

Jeff Law committed
2053
  flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2054
  flow_reverse_top_sort_order_compute (df->rts_order);
Kazu Hirata committed
2055 2056 2057 2058 2059 2060
  for (i = 0; i < n_basic_blocks; i++)
    {
      df->inverse_dfs_map[df->dfs_order[i]] = i;
      df->inverse_rc_map[df->rc_order[i]] = i;
      df->inverse_rts_map[df->rts_order[i]] = i;
    }
Jeff Law committed
2061 2062 2063 2064
  if (aflags & DF_RD)
    {
      /* Compute the sets of gens and kills for the defs of each bb.  */
      df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2065
      {
2066 2067 2068 2069
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
2070
	FOR_EACH_BB (bb)
2071
	  {
2072 2073 2074 2075
	    in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
	    gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
	    kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2076
	  }
Kazu Hirata committed
2077
	iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2078 2079 2080 2081 2082 2083 2084
				   FORWARD, UNION, df_rd_transfer_function,
				   df->inverse_rc_map, NULL);
	free (in);
	free (out);
	free (gen);
	free (kill);
      }
Jeff Law committed
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
    }

  if (aflags & DF_UD_CHAIN)
    {
      /* Create use-def chains.  */
      df_ud_chain_create (df, df->all_blocks);

      if (! (flags & DF_RD))
	dflags |= DF_RD;
    }
2095

Jeff Law committed
2096 2097 2098 2099 2100
  if (aflags & DF_RU)
    {
      /* Compute the sets of gens and kills for the upwards exposed
	 uses in each bb.  */
      df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2101
      {
2102 2103 2104 2105
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *gen = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *kill = xmalloc (sizeof (bitmap) * last_basic_block);
2106
	FOR_EACH_BB (bb)
2107
	  {
2108 2109 2110 2111
	    in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
	    gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
	    kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2112
	  }
Kazu Hirata committed
2113
	iterative_dataflow_bitmap (in, out, gen, kill, df->all_blocks,
2114 2115 2116 2117 2118 2119 2120
				   BACKWARD, UNION, df_ru_transfer_function,
				   df->inverse_rts_map, NULL);
	free (in);
	free (out);
	free (gen);
	free (kill);
      }
Jeff Law committed
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
    }

  if (aflags & DF_DU_CHAIN)
    {
      /* Create def-use chains.  */
      df_du_chain_create (df, df->all_blocks);

      if (! (flags & DF_RU))
	dflags |= DF_RU;
    }

  /* Free up bitmaps that are no longer required.  */
  if (dflags)
Kazu Hirata committed
2134
    df_bitmaps_free (df, dflags);
Jeff Law committed
2135 2136 2137 2138

  if (aflags & DF_LR)
    {
      /* Compute the sets of defs and uses of live variables.  */
Kazu Hirata committed
2139
      df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2140
      {
2141 2142 2143 2144
	bitmap *in = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *out = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *use = xmalloc (sizeof (bitmap) * last_basic_block);
	bitmap *def = xmalloc (sizeof (bitmap) * last_basic_block);
2145
	FOR_EACH_BB (bb)
2146
	  {
2147 2148 2149 2150
	    in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
	    out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
	    use[bb->index] = DF_BB_INFO (df, bb)->lr_use;
	    def[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2151
	  }
Kazu Hirata committed
2152
	iterative_dataflow_bitmap (in, out, use, def, df->all_blocks,
2153 2154 2155 2156 2157 2158 2159
				   BACKWARD, UNION, df_lr_transfer_function,
				   df->inverse_rts_map, NULL);
	free (in);
	free (out);
	free (use);
	free (def);
      }
Jeff Law committed
2160 2161 2162 2163 2164
    }

  if (aflags & DF_REG_INFO)
    {
      df_reg_info_compute (df, df->all_blocks);
2165
    }
Jeff Law committed
2166 2167
  free (df->dfs_order);
  free (df->rc_order);
2168
  free (df->rts_order);
2169 2170 2171
  free (df->inverse_rc_map);
  free (df->inverse_dfs_map);
  free (df->inverse_rts_map);
Jeff Law committed
2172 2173 2174
}


2175
/* Initialize dataflow analysis.  */
Jeff Law committed
2176 2177 2178 2179 2180 2181 2182 2183 2184
struct df *
df_init ()
{
  struct df *df;

  df = xcalloc (1, sizeof (struct df));

  /* Squirrel away a global for debugging.  */
  ddf = df;
2185

Jeff Law committed
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
  return df;
}


/* Start queuing refs.  */
static int
df_refs_queue (df)
     struct df *df;
{
  df->def_id_save = df->def_id;
  df->use_id_save = df->use_id;
  /* ???? Perhaps we should save current obstack state so that we can
     unwind it.  */
  return 0;
}


/* Process queued refs.  */
static int
df_refs_process (df)
     struct df *df;
{
  unsigned int i;

  /* Build new insn-def chains.  */
  for (i = df->def_id_save; i != df->def_id; i++)
    {
      struct ref *def = df->defs[i];
      unsigned int uid = DF_REF_INSN_UID (def);

      /* Add def to head of def list for INSN.  */
      df->insns[uid].defs
	= df_link_create (def, df->insns[uid].defs);
    }

  /* Build new insn-use chains.  */
  for (i = df->use_id_save; i != df->use_id; i++)
    {
      struct ref *use = df->uses[i];
      unsigned int uid = DF_REF_INSN_UID (use);

      /* Add use to head of use list for INSN.  */
      df->insns[uid].uses
	= df_link_create (use, df->insns[uid].uses);
    }
  return 0;
}


/* Update refs for basic block BB.  */
2236
static int
Jeff Law committed
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
df_bb_refs_update (df, bb)
     struct df *df;
     basic_block bb;
{
  rtx insn;
  int count = 0;

  /* While we have to scan the chain of insns for this BB, we don't
     need to allocate and queue a long chain of BB/INSN pairs.  Using
     a bitmap for insns_modified saves memory and avoids queuing
     duplicates.  */

  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      unsigned int uid;

      uid = INSN_UID (insn);

      if (bitmap_bit_p (df->insns_modified, uid))
	{
	  /* Delete any allocated refs of this insn.  MPH,  FIXME.  */
	  df_insn_refs_unlink (df, bb, insn);
2259

Jeff Law committed
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	  /* Scan the insn for refs.  */
	  df_insn_refs_record (df, bb, insn);

	  count++;
	}
      if (insn == bb->end)
	break;
    }
  return count;
}


/* Process all the modified/deleted insns that were queued.  */
static int
df_refs_update (df)
     struct df *df;
{
  basic_block bb;
  int count = 0;

Kazu Hirata committed
2280
  if ((unsigned int) max_reg_num () >= df->reg_size)
Jeff Law committed
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    df_reg_table_realloc (df, 0);

  df_refs_queue (df);

  FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
    {
      count += df_bb_refs_update (df, bb);
    });

  df_refs_process (df);
  return count;
}


2295
/* Return nonzero if any of the requested blocks in the bitmap
Jeff Law committed
2296 2297 2298 2299 2300 2301 2302
   BLOCKS have been modified.  */
static int
df_modified_p (df, blocks)
     struct df *df;
     bitmap blocks;
{
  int update = 0;
2303 2304 2305 2306
  basic_block bb;

  if (!df->n_bbs)
    return 0;
Jeff Law committed
2307

2308 2309 2310
  FOR_EACH_BB (bb)
    if (bitmap_bit_p (df->bbs_modified, bb->index)
	&& (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
Jeff Law committed
2311 2312 2313 2314 2315 2316 2317 2318 2319
    {
      update = 1;
      break;
    }

  return update;
}


2320
/* Analyze dataflow info for the basic blocks specified by the bitmap
Jeff Law committed
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
   BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
   modified blocks if BLOCKS is -1.  */
int
df_analyse (df, blocks, flags)
     struct df *df;
     bitmap blocks;
     int flags;
{
  int update;

  /* We could deal with additional basic blocks being created by
     rescanning everything again.  */
2333
  if (df->n_bbs && df->n_bbs != (unsigned int) last_basic_block)
Jeff Law committed
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
    abort ();

  update = df_modified_p (df, blocks);
  if (update || (flags != df->flags))
    {
      if (! blocks)
	{
	  if (df->n_bbs)
	    {
	      /* Recompute everything from scratch.  */
	      df_free (df);
	    }
2346
	  /* Allocate and initialize data structures.  */
Jeff Law committed
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	  df_alloc (df, max_reg_num ());
	  df_analyse_1 (df, 0, flags, 0);
	  update = 1;
	}
      else
	{
	  if (blocks == (bitmap) -1)
	    blocks = df->bbs_modified;

	  if (! df->n_bbs)
	    abort ();

	  df_analyse_1 (df, blocks, flags, 1);
	  bitmap_zero (df->bbs_modified);
2361
	  bitmap_zero (df->insns_modified);
Jeff Law committed
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	}
    }
  return update;
}


/* Free all the dataflow info and the DF structure.  */
void
df_finish (df)
     struct df *df;
{
  df_free (df);
  free (df);
}


/* Unlink INSN from its reference information.  */
static void
df_insn_refs_unlink (df, bb, insn)
     struct df *df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
{
  struct df_link *link;
  unsigned int uid;
2387

Jeff Law committed
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
  uid = INSN_UID (insn);

  /* Unlink all refs defined by this insn.  */
  for (link = df->insns[uid].defs; link; link = link->next)
    df_def_unlink (df, link->ref);

  /* Unlink all refs used by this insn.  */
  for (link = df->insns[uid].uses; link; link = link->next)
    df_use_unlink (df, link->ref);

  df->insns[uid].defs = 0;
  df->insns[uid].uses = 0;
}


2403
#if 0
Jeff Law committed
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/* Unlink all the insns within BB from their reference information.  */
static void
df_bb_refs_unlink (df, bb)
     struct df *df;
     basic_block bb;
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
  for (insn = bb->head; ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  /* Unlink refs for INSN.  */
	  df_insn_refs_unlink (df, bb, insn);
	}
      if (insn == bb->end)
	break;
    }
}


/* Unlink all the refs in the basic blocks specified by BLOCKS.
   Not currently used.  */
static void
df_refs_unlink (df, blocks)
     struct df *df;
     bitmap blocks;
{
  basic_block bb;

  if (blocks)
    {
      FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
      {
	df_bb_refs_unlink (df, bb);
      });
    }
  else
    {
2444
      FOR_EACH_BB (bb)
Jeff Law committed
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	df_bb_refs_unlink (df, bb);
    }
}
#endif

/* Functions to modify insns.  */


/* Delete INSN and all its reference information.  */
rtx
df_insn_delete (df, bb, insn)
     struct df *df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
{
  /* If the insn is a jump, we should perhaps call delete_insn to
     handle the JUMP_LABEL?  */

  /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label.  */
  if (insn == bb->head)
    abort ();

  /* Delete the insn.  */
2468
  delete_insn (insn);
Jeff Law committed
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

  df_insn_modify (df, bb, insn);

  return NEXT_INSN (insn);
}


/* Mark that INSN within BB may have changed  (created/modified/deleted).
   This may be called multiple times for the same insn.  There is no
   harm calling this function if the insn wasn't changed; it will just
   slow down the rescanning of refs.  */
void
df_insn_modify (df, bb, insn)
     struct df *df;
     basic_block bb;
     rtx insn;
{
  unsigned int uid;

  uid = INSN_UID (insn);
2489
  if (uid >= df->insn_size)
2490
    df_insn_table_realloc (df, uid);
2491

2492
  bitmap_set_bit (df->bbs_modified, bb->index);
Jeff Law committed
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
  bitmap_set_bit (df->insns_modified, uid);

  /* For incremental updating on the fly, perhaps we could make a copy
     of all the refs of the original insn and turn them into
     anti-refs.  When df_refs_update finds these anti-refs, it annihilates
     the original refs.  If validate_change fails then these anti-refs
     will just get ignored.  */
}


Kazu Hirata committed
2503
typedef struct replace_args {
Jeff Law committed
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
  rtx match;
  rtx replacement;
  rtx insn;
  int modified;
} replace_args;


/* Replace mem pointed to by PX with its associated pseudo register.
   DATA is actually a pointer to a structure describing the
   instruction currently being scanned and the MEM we are currently
   replacing.  */
static int
df_rtx_mem_replace (px, data)
     rtx *px;
     void *data;
{
  replace_args *args = (replace_args *) data;
  rtx mem = *px;

  if (mem == NULL_RTX)
    return 0;

  switch (GET_CODE (mem))
    {
    case MEM:
      break;

    case CONST_DOUBLE:
      /* We're not interested in the MEM associated with a
	 CONST_DOUBLE, so there's no need to traverse into one.  */
      return -1;

    default:
      /* This is not a MEM.  */
      return 0;
    }

  if (!rtx_equal_p (args->match, mem))
    /* This is not the MEM we are currently replacing.  */
    return 0;

  /* Actually replace the MEM.  */
  validate_change (args->insn, px, args->replacement, 1);
  args->modified++;

  return 0;
}


int
df_insn_mem_replace (df, bb, insn, mem, reg)
     struct df *df;
     basic_block bb;
     rtx insn;
     rtx mem;
     rtx reg;
{
  replace_args args;

  args.insn = insn;
  args.match = mem;
  args.replacement = reg;
  args.modified = 0;

2568
  /* Search and replace all matching mems within insn.  */
Jeff Law committed
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
  for_each_rtx (&insn, df_rtx_mem_replace, &args);

  if (args.modified)
    df_insn_modify (df, bb, insn);

  /* ???? FIXME.  We may have a new def or one or more new uses of REG
     in INSN.  REG should be a new pseudo so it won't affect the
     dataflow information that we currently have.  We should add
     the new uses and defs to INSN and then recreate the chains
     when df_analyse is called.  */
  return args.modified;
}


/* Replace one register with another.  Called through for_each_rtx; PX
   points to the rtx being scanned.  DATA is actually a pointer to a
   structure of arguments.  */
static int
df_rtx_reg_replace (px, data)
     rtx *px;
     void *data;
{
  rtx x = *px;
  replace_args *args = (replace_args *) data;

  if (x == NULL_RTX)
    return 0;

  if (x == args->match)
    {
      validate_change (args->insn, px, args->replacement, 1);
      args->modified++;
    }

  return 0;
}


/* Replace the reg within every ref on CHAIN that is within the set
   BLOCKS of basic blocks with NEWREG.  Also update the regs within
   REG_NOTES.  */
void
df_refs_reg_replace (df, blocks, chain, oldreg, newreg)
     struct df *df;
     bitmap blocks;
     struct df_link *chain;
     rtx oldreg;
     rtx newreg;
{
  struct df_link *link;
  replace_args args;

  if (! blocks)
    blocks = df->all_blocks;

  args.match = oldreg;
  args.replacement = newreg;
  args.modified = 0;

  for (link = chain; link; link = link->next)
    {
      struct ref *ref = link->ref;
      rtx insn = DF_REF_INSN (ref);

      if (! INSN_P (insn))
	continue;

      if (bitmap_bit_p (blocks, DF_REF_BBNO (ref)))
	{
	  df_ref_reg_replace (df, ref, oldreg, newreg);

	  /* Replace occurrences of the reg within the REG_NOTES.  */
	  if ((! link->next || DF_REF_INSN (ref)
	      != DF_REF_INSN (link->next->ref))
	      && REG_NOTES (insn))
	    {
	      args.insn = insn;
	      for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
	    }
	}
      else
	{
	  /* Temporary check to ensure that we have a grip on which
	     regs should be replaced.  */
	  abort ();
	}
    }
}


/* Replace all occurrences of register OLDREG with register NEWREG in
   blocks defined by bitmap BLOCKS.  This also replaces occurrences of
   OLDREG in the REG_NOTES but only for insns containing OLDREG.  This
   routine expects the reg-use and reg-def chains to be valid.  */
int
df_reg_replace (df, blocks, oldreg, newreg)
     struct df *df;
     bitmap blocks;
     rtx oldreg;
     rtx newreg;
{
  unsigned int oldregno = REGNO (oldreg);

  df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
  df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
  return 1;
}


/* Try replacing the reg within REF with NEWREG.  Do not modify
   def-use/use-def chains.  */
int
df_ref_reg_replace (df, ref, oldreg, newreg)
     struct df *df;
     struct ref *ref;
     rtx oldreg;
     rtx newreg;
{
  /* Check that insn was deleted by being converted into a NOTE.  If
   so ignore this insn.  */
  if (! INSN_P (DF_REF_INSN (ref)))
    return 0;

  if (oldreg && oldreg != DF_REF_REG (ref))
    abort ();

  if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
    return 0;

  df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
  return 1;
}


struct ref*
df_bb_def_use_swap (df, bb, def_insn, use_insn, regno)
     struct df * df;
     basic_block bb;
     rtx def_insn;
     rtx use_insn;
     unsigned int regno;
{
  struct ref *def;
  struct ref *use;
  int def_uid;
  int use_uid;
  struct df_link *link;

  def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
  if (! def)
    return 0;

  use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
  if (! use)
    return 0;

  /* The USE no longer exists.  */
  use_uid = INSN_UID (use_insn);
  df_use_unlink (df, use);
  df_ref_unlink (&df->insns[use_uid].uses, use);

  /* The DEF requires shifting so remove it from DEF_INSN
     and add it to USE_INSN by reusing LINK.  */
  def_uid = INSN_UID (def_insn);
  link = df_ref_unlink (&df->insns[def_uid].defs, def);
  link->ref = def;
  link->next = df->insns[use_uid].defs;
  df->insns[use_uid].defs = link;

#if 0
  link = df_ref_unlink (&df->regs[regno].defs, def);
  link->ref = def;
  link->next = df->regs[regno].defs;
  df->insns[regno].defs = link;
#endif

  DF_REF_INSN (def) = use_insn;
  return def;
}


2750
/* Record df between FIRST_INSN and LAST_INSN inclusive.  All new
Jeff Law committed
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
   insns must be processed by this routine.  */
static void
df_insns_modify (df, bb, first_insn, last_insn)
     struct df *df;
     basic_block bb;
     rtx first_insn;
     rtx last_insn;
{
  rtx insn;

  for (insn = first_insn; ; insn = NEXT_INSN (insn))
    {
      unsigned int uid;

      /* A non-const call should not have slipped through the net.  If
	 it does, we need to create a new basic block.  Ouch.  The
	 same applies for a label.  */
      if ((GET_CODE (insn) == CALL_INSN
2769
	   && ! CONST_OR_PURE_CALL_P (insn))
Jeff Law committed
2770 2771 2772 2773 2774 2775
	  || GET_CODE (insn) == CODE_LABEL)
	abort ();

      uid = INSN_UID (insn);

      if (uid >= df->insn_size)
2776
	df_insn_table_realloc (df, uid);
Jeff Law committed
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

      df_insn_modify (df, bb, insn);

      if (insn == last_insn)
	break;
    }
}


/* Emit PATTERN before INSN within BB.  */
rtx
df_pattern_emit_before (df, pattern, bb, insn)
     struct df *df ATTRIBUTE_UNUSED;
     rtx pattern;
     basic_block bb;
     rtx insn;
{
  rtx ret_insn;
  rtx prev_insn = PREV_INSN (insn);

  /* We should not be inserting before the start of the block.  */
  if (insn == bb->head)
    abort ();
  ret_insn = emit_insn_before (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;
2803

Jeff Law committed
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
  df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
  return ret_insn;
}


/* Emit PATTERN after INSN within BB.  */
rtx
df_pattern_emit_after (df, pattern, bb, insn)
     struct df *df;
     rtx pattern;
     basic_block bb;
     rtx insn;
{
  rtx ret_insn;

  ret_insn = emit_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Emit jump PATTERN after INSN within BB.  */
rtx
df_jump_pattern_emit_after (df, pattern, bb, insn)
     struct df *df;
     rtx pattern;
     basic_block bb;
     rtx insn;
{
  rtx ret_insn;

  ret_insn = emit_jump_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Move INSN within BB before BEFORE_INSN within BEFORE_BB.

   This function should only be used to move loop invariant insns
   out of a loop where it has been proven that the def-use info
   will still be valid.  */
rtx
df_insn_move_before (df, bb, insn, before_bb, before_insn)
     struct df *df;
     basic_block bb;
     rtx insn;
     basic_block before_bb;
     rtx before_insn;
{
  struct df_link *link;
  unsigned int uid;

  if (! bb)
    return df_pattern_emit_before (df, insn, before_bb, before_insn);

  uid = INSN_UID (insn);

  /* Change bb for all df defined and used by this insn.  */
2869
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2870
    DF_REF_BB (link->ref) = before_bb;
2871
  for (link = df->insns[uid].uses; link; link = link->next)
Jeff Law committed
2872 2873 2874 2875 2876 2877 2878 2879 2880
    DF_REF_BB (link->ref) = before_bb;

  /* The lifetimes of the registers used in this insn will be reduced
     while the lifetimes of the registers defined in this insn
     are likely to be increased.  */

  /* ???? Perhaps all the insns moved should be stored on a list
     which df_analyse removes when it recalculates data flow.  */

2881
  return emit_insn_before (insn, before_insn);
Jeff Law committed
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
}

/* Functions to query dataflow information.  */


int
df_insn_regno_def_p (df, bb, insn, regno)
     struct df *df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
     unsigned int regno;
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2899
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2900 2901
    {
      struct ref *def = link->ref;
2902

Jeff Law committed
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
      if (DF_REF_REGNO (def) == regno)
	return 1;
    }

  return 0;
}


static int
df_def_dominates_all_uses_p (df, def)
     struct df *df ATTRIBUTE_UNUSED;
     struct ref *def;
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;
2923

Jeff Law committed
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
      /* Follow use-def chain to check all the defs for this use.  */
      for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	if (ud_link->ref != def)
	  return 0;
    }
  return 1;
}


int
df_insn_dominates_all_uses_p (df, bb, insn)
     struct df *df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

2944
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
2945 2946
    {
      struct ref *def = link->ref;
2947

Jeff Law committed
2948 2949 2950 2951 2952 2953 2954 2955
      if (! df_def_dominates_all_uses_p (df, def))
	return 0;
    }

  return 1;
}


2956
/* Return nonzero if all DF dominates all the uses within the bitmap
Jeff Law committed
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
   BLOCKS.  */
static int
df_def_dominates_uses_p (df, def, blocks)
     struct df *df ATTRIBUTE_UNUSED;
     struct ref *def;
     bitmap blocks;
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;

      /* Only worry about the uses within BLOCKS.  For example,
      consider a register defined within a loop that is live at the
      loop exits.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
	{
	  /* Follow use-def chain to check all the defs for this use.  */
	  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	    if (ud_link->ref != def)
	      return 0;
	}
    }
  return 1;
}


2987
/* Return nonzero if all the defs of INSN within BB dominates
Jeff Law committed
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
   all the corresponding uses.  */
int
df_insn_dominates_uses_p (df, bb, insn, blocks)
     struct df *df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
     bitmap blocks;
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

3001
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    {
      struct ref *def = link->ref;

      /* Only consider the defs within BLOCKS.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
	  && ! df_def_dominates_uses_p (df, def, blocks))
	return 0;
    }
  return 1;
}


/* Return the basic block that REG referenced in or NULL if referenced
   in multiple basic blocks.  */
basic_block
df_regno_bb (df, regno)
     struct df *df;
     unsigned int regno;
{
  struct df_link *defs = df->regs[regno].defs;
  struct df_link *uses = df->regs[regno].uses;
  struct ref *def = defs ? defs->ref : 0;
  struct ref *use = uses ? uses->ref : 0;
  basic_block bb_def = def ? DF_REF_BB (def) : 0;
  basic_block bb_use = use ? DF_REF_BB (use) : 0;

  /* Compare blocks of first def and last use.  ???? FIXME.  What if
     the reg-def and reg-use lists are not correctly ordered.  */
  return bb_def == bb_use ? bb_def : 0;
}


3034
/* Return nonzero if REG used in multiple basic blocks.  */
Jeff Law committed
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
int
df_reg_global_p (df, reg)
     struct df *df;
     rtx reg;
{
  return df_regno_bb (df, REGNO (reg)) != 0;
}


/* Return total lifetime (in insns) of REG.  */
int
df_reg_lifetime (df, reg)
     struct df *df;
     rtx reg;
{
  return df->regs[REGNO (reg)].lifetime;
}


3054
/* Return nonzero if REG live at start of BB.  */
Jeff Law committed
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
int
df_bb_reg_live_start_p (df, bb, reg)
     struct df *df ATTRIBUTE_UNUSED;
     basic_block bb;
     rtx reg;
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);

#ifdef ENABLE_CHECKING
  if (! bb_info->lr_in)
    abort ();
#endif
3067

Jeff Law committed
3068 3069 3070 3071
  return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
}


3072
/* Return nonzero if REG live at end of BB.  */
Jeff Law committed
3073 3074 3075 3076 3077 3078 3079
int
df_bb_reg_live_end_p (df, bb, reg)
     struct df *df ATTRIBUTE_UNUSED;
     basic_block bb;
     rtx reg;
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
3080

Jeff Law committed
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
#ifdef ENABLE_CHECKING
  if (! bb_info->lr_in)
    abort ();
#endif

  return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
}


/* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
   after life of REG2, or 0, if the lives overlap.  */
int
df_bb_regs_lives_compare (df, bb, reg1, reg2)
     struct df *df;
     basic_block bb;
     rtx reg1;
     rtx reg2;
{
  unsigned int regno1 = REGNO (reg1);
  unsigned int regno2 = REGNO (reg2);
  struct ref *def1;
  struct ref *use1;
  struct ref *def2;
  struct ref *use2;

3106

Jeff Law committed
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
  /* The regs must be local to BB.  */
  if (df_regno_bb (df, regno1) != bb
      || df_regno_bb (df, regno2) != bb)
    abort ();

  def2 = df_bb_regno_first_def_find (df, bb, regno2);
  use1 = df_bb_regno_last_use_find (df, bb, regno1);

  if (DF_INSN_LUID (df, DF_REF_INSN (def2))
      > DF_INSN_LUID (df, DF_REF_INSN (use1)))
    return -1;

  def1 = df_bb_regno_first_def_find (df, bb, regno1);
  use2 = df_bb_regno_last_use_find (df, bb, regno2);

  if (DF_INSN_LUID (df, DF_REF_INSN (def1))
      > DF_INSN_LUID (df, DF_REF_INSN (use2)))
    return 1;

  return 0;
}


/* Return last use of REGNO within BB.  */
static struct ref *
df_bb_regno_last_use_find (df, bb, regno)
     struct df * df;
     basic_block bb ATTRIBUTE_UNUSED;
     unsigned int regno;
{
  struct df_link *link;

  /* This assumes that the reg-use list is ordered such that for any
     BB, the last use is found first.  However, since the BBs are not
     ordered, the first use in the chain is not necessarily the last
     use in the function.  */
3143
  for (link = df->regs[regno].uses; link; link = link->next)
Jeff Law committed
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
    {
      struct ref *use = link->ref;

      if (DF_REF_BB (use) == bb)
	return use;
    }
  return 0;
}


/* Return first def of REGNO within BB.  */
static struct ref *
df_bb_regno_first_def_find (df, bb, regno)
     struct df * df;
     basic_block bb ATTRIBUTE_UNUSED;
     unsigned int regno;
{
  struct df_link *link;

  /* This assumes that the reg-def list is ordered such that for any
     BB, the first def is found first.  However, since the BBs are not
     ordered, the first def in the chain is not necessarily the first
     def in the function.  */
3167
  for (link = df->regs[regno].defs; link; link = link->next)
Jeff Law committed
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
    {
      struct ref *def = link->ref;

      if (DF_REF_BB (def) == bb)
	return def;
    }
  return 0;
}


/* Return first use of REGNO inside INSN within BB.  */
static struct ref *
df_bb_insn_regno_last_use_find (df, bb, insn, regno)
     struct df * df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
     unsigned int regno;
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

3191
  for (link = df->insns[uid].uses; link; link = link->next)
Jeff Law committed
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
    {
      struct ref *use = link->ref;

      if (DF_REF_REGNO (use) == regno)
	return use;
    }

  return 0;
}


/* Return first def of REGNO inside INSN within BB.  */
static struct ref *
df_bb_insn_regno_first_def_find (df, bb, insn, regno)
     struct df * df;
     basic_block bb ATTRIBUTE_UNUSED;
     rtx insn;
     unsigned int regno;
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

3216
  for (link = df->insns[uid].defs; link; link = link->next)
Jeff Law committed
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
    {
      struct ref *def = link->ref;

      if (DF_REF_REGNO (def) == regno)
	return def;
    }

  return 0;
}


/* Return insn using REG if the BB contains only a single
   use and def of REG.  */
rtx
df_bb_single_def_use_insn_find (df, bb, insn, reg)
     struct df * df;
     basic_block bb;
     rtx insn;
     rtx reg;
{
  struct ref *def;
  struct ref *use;
  struct df_link *du_link;

  def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));

  if (! def)
    abort ();

  du_link = DF_REF_CHAIN (def);

  if (! du_link)
    return NULL_RTX;

  use = du_link->ref;

  /* Check if def is dead.  */
  if (! use)
    return NULL_RTX;

  /* Check for multiple uses.  */
  if (du_link->next)
    return NULL_RTX;
3260

Jeff Law committed
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
  return DF_REF_INSN (use);
}

/* Functions for debugging/dumping dataflow information.  */


/* Dump a def-use or use-def chain for REF to FILE.  */
static void
df_chain_dump (link, file)
     struct df_link *link;
     FILE *file;
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d ",
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref));
    }
  fprintf (file, "}");
}

static void
df_chain_dump_regno (link, file)
     struct df_link *link;
     FILE *file;
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d(%d) ",
Kazu Hirata committed
3292 3293 3294
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref),
	       DF_REF_REGNO (link->ref));
Jeff Law committed
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
    }
  fprintf (file, "}");
}

/* Dump dataflow info.  */
void
df_dump (df, flags, file)
     struct df *df;
     int flags;
     FILE *file;
{
  unsigned int j;
3307
  basic_block bb;
Jeff Law committed
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317

  if (! df || ! file)
    return;

  fprintf (file, "\nDataflow summary:\n");
  fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
	   df->n_regs, df->n_defs, df->n_uses, df->n_bbs);

  if (flags & DF_RD)
    {
3318 3319
      basic_block bb;

Jeff Law committed
3320
      fprintf (file, "Reaching defs:\n");
3321
      FOR_EACH_BB (bb)
Jeff Law committed
3322
	{
3323 3324
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3325 3326 3327
	  if (! bb_info->rd_in)
	    continue;

3328
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3329
	  dump_bitmap (file, bb_info->rd_in);
3330
	  fprintf (file, "bb %d gen \t", bb->index);
Jeff Law committed
3331
	  dump_bitmap (file, bb_info->rd_gen);
3332
	  fprintf (file, "bb %d kill\t", bb->index);
Jeff Law committed
3333
	  dump_bitmap (file, bb_info->rd_kill);
3334
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	  dump_bitmap (file, bb_info->rd_out);
	}
    }

  if (flags & DF_UD_CHAIN)
    {
      fprintf (file, "Use-def chains:\n");
      for (j = 0; j < df->n_defs; j++)
	{
	  if (df->defs[j])
	    {
	      fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->defs[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
		       DF_REF_INSN_UID (df->defs[j]),
		       DF_REF_REGNO (df->defs[j]));
3351 3352
	      if (df->defs[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
Jeff Law committed
3353 3354 3355 3356 3357 3358 3359 3360 3361
	      df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_RU)
    {
      fprintf (file, "Reaching uses:\n");
3362
      FOR_EACH_BB (bb)
Jeff Law committed
3363
	{
3364 3365
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3366 3367 3368
	  if (! bb_info->ru_in)
	    continue;

3369
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3370
	  dump_bitmap (file, bb_info->ru_in);
3371
	  fprintf (file, "bb %d gen \t", bb->index);
Jeff Law committed
3372
	  dump_bitmap (file, bb_info->ru_gen);
3373
	  fprintf (file, "bb %d kill\t", bb->index);
Jeff Law committed
3374
	  dump_bitmap (file, bb_info->ru_kill);
3375
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	  dump_bitmap (file, bb_info->ru_out);
	}
    }

  if (flags & DF_DU_CHAIN)
    {
      fprintf (file, "Def-use chains:\n");
      for (j = 0; j < df->n_uses; j++)
	{
	  if (df->uses[j])
	    {
	      fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->uses[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
		       DF_REF_INSN_UID (df->uses[j]),
		       DF_REF_REGNO (df->uses[j]));
3392 3393
	      if (df->uses[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
Jeff Law committed
3394 3395 3396 3397 3398 3399 3400 3401 3402
	      df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_LR)
    {
      fprintf (file, "Live regs:\n");
3403
      FOR_EACH_BB (bb)
Jeff Law committed
3404
	{
3405 3406
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

Jeff Law committed
3407 3408 3409
	  if (! bb_info->lr_in)
	    continue;

3410
	  fprintf (file, "bb %d in  \t", bb->index);
Jeff Law committed
3411
	  dump_bitmap (file, bb_info->lr_in);
3412
	  fprintf (file, "bb %d use \t", bb->index);
Jeff Law committed
3413
	  dump_bitmap (file, bb_info->lr_use);
3414
	  fprintf (file, "bb %d def \t", bb->index);
Jeff Law committed
3415
	  dump_bitmap (file, bb_info->lr_def);
3416
	  fprintf (file, "bb %d out \t", bb->index);
Jeff Law committed
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	  dump_bitmap (file, bb_info->lr_out);
	}
    }

  if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
    {
      struct reg_info *reg_info = df->regs;

      fprintf (file, "Register info:\n");
      for (j = 0; j < df->n_regs; j++)
	{
3428
	  if (((flags & DF_REG_INFO)
Jeff Law committed
3429 3430 3431
	       && (reg_info[j].n_uses || reg_info[j].n_defs))
	      || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
	      || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
Kazu Hirata committed
3432 3433 3434 3435 3436
	    {
	      fprintf (file, "reg %d", j);
	      if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
		{
		  basic_block bb = df_regno_bb (df, j);
3437

Kazu Hirata committed
3438 3439 3440 3441 3442 3443 3444 3445 3446
		  if (bb)
		    fprintf (file, " bb %d", bb->index);
		  else
		    fprintf (file, " bb ?");
		}
	      if (flags & DF_REG_INFO)
		{
		  fprintf (file, " life %d", reg_info[j].lifetime);
		}
Jeff Law committed
3447

Kazu Hirata committed
3448 3449 3450 3451 3452 3453 3454 3455
	      if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
		{
		  fprintf (file, " defs ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_defs);
		  if (flags & DF_RD_CHAIN)
		    df_chain_dump (reg_info[j].defs, file);
		}
Jeff Law committed
3456

Kazu Hirata committed
3457 3458 3459 3460 3461 3462 3463 3464
	      if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
		{
		  fprintf (file, " uses ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_uses);
		  if (flags & DF_RU_CHAIN)
		    df_chain_dump (reg_info[j].uses, file);
		}
Jeff Law committed
3465

Kazu Hirata committed
3466 3467
	      fprintf (file, "\n");
	    }
Jeff Law committed
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	}
    }
  fprintf (file, "\n");
}


void
df_insn_debug (df, insn, file)
     struct df *df;
     rtx insn;
     FILE *file;
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
Kazu Hirata committed
3489
  else if (df->insns[uid].uses)
Jeff Law committed
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
	   uid, bbi, DF_INSN_LUID (df, insn));
  df_chain_dump (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->insns[uid].uses, file);
  fprintf (file, "\n");
}

void
df_insn_debug_regno (df, insn, file)
     struct df *df;
     rtx insn;
     FILE *file;
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
Kazu Hirata committed
3517
  else if (df->insns[uid].uses)
Jeff Law committed
3518 3519 3520 3521 3522
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
Kazu Hirata committed
3523
	   uid, bbi, DF_INSN_LUID (df, insn));
Jeff Law committed
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
  df_chain_dump_regno (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump_regno (df->insns[uid].uses, file);
  fprintf (file, "\n");
}

static void
df_regno_debug (df, regno, file)
     struct df *df;
     unsigned int regno;
     FILE *file;
{
  if (regno >= df->reg_size)
    return;

  fprintf (file, "reg %d life %d defs ",
	   regno, df->regs[regno].lifetime);
  df_chain_dump (df->regs[regno].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->regs[regno].uses, file);
  fprintf (file, "\n");
}


static void
df_ref_debug (df, ref, file)
     struct df *df;
3551
     struct ref *ref;
Jeff Law committed
3552 3553 3554 3555 3556
     FILE *file;
{
  fprintf (file, "%c%d ",
	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
	   DF_REF_ID (ref));
3557
  fprintf (file, "reg %d bb %d luid %d insn %d chain ",
Jeff Law committed
3558
	   DF_REF_REGNO (ref),
3559
	   DF_REF_BBNO (ref),
Jeff Law committed
3560 3561 3562 3563 3564 3565 3566
	   DF_INSN_LUID (df, DF_REF_INSN (ref)),
	   INSN_UID (DF_REF_INSN (ref)));
  df_chain_dump (DF_REF_CHAIN (ref), file);
  fprintf (file, "\n");
}


3567
void
Jeff Law committed
3568 3569 3570 3571 3572 3573 3574 3575
debug_df_insn (insn)
     rtx insn;
{
  df_insn_debug (ddf, insn, stderr);
  debug_rtx (insn);
}


3576
void
Jeff Law committed
3577 3578 3579 3580 3581 3582 3583
debug_df_reg (reg)
     rtx reg;
{
  df_regno_debug (ddf, REGNO (reg), stderr);
}


3584
void
Jeff Law committed
3585 3586 3587 3588 3589 3590 3591
debug_df_regno (regno)
     unsigned int regno;
{
  df_regno_debug (ddf, regno, stderr);
}


3592
void
Jeff Law committed
3593 3594 3595 3596 3597 3598 3599
debug_df_ref (ref)
     struct ref *ref;
{
  df_ref_debug (ddf, ref, stderr);
}


3600
void
Jeff Law committed
3601 3602 3603 3604 3605 3606 3607
debug_df_defno (defno)
     unsigned int defno;
{
  df_ref_debug (ddf, ddf->defs[defno], stderr);
}


3608
void
Jeff Law committed
3609 3610 3611 3612 3613 3614 3615
debug_df_useno (defno)
     unsigned int defno;
{
  df_ref_debug (ddf, ddf->uses[defno], stderr);
}


3616
void
Jeff Law committed
3617 3618 3619 3620 3621 3622
debug_df_chain (link)
     struct df_link *link;
{
  df_chain_dump (link, stderr);
  fputc ('\n', stderr);
}
3623

3624 3625
/* Hybrid search algorithm from "Implementation Techniques for
   Efficient Data-Flow Analysis of Large Programs".  */
Kazu Hirata committed
3626 3627 3628
static void
hybrid_search_bitmap (block, in, out, gen, kill, dir,
		      conf_op, transfun, visited, pending,
3629 3630 3631
		      data)
     basic_block block;
     bitmap *in, *out, *gen, *kill;
3632 3633
     enum df_flow_dir dir;
     enum df_confluence_op conf_op;
3634 3635 3636
     transfer_function_bitmap transfun;
     sbitmap visited;
     sbitmap pending;
3637 3638 3639
     void *data;
{
  int changed;
3640
  int i = block->index;
3641
  edge e;
Kazu Hirata committed
3642
  basic_block bb = block;
3643 3644
  SET_BIT (visited, block->index);
  if (TEST_BIT (pending, block->index))
3645 3646 3647 3648
    {
      if (dir == FORWARD)
	{
	  /*  Calculate <conf_op> of predecessor_outs */
3649
	  bitmap_zero (in[i]);
3650 3651 3652 3653 3654 3655 3656
	  for (e = bb->pred; e != 0; e = e->pred_next)
	    {
	      if (e->src == ENTRY_BLOCK_PTR)
		continue;
	      switch (conf_op)
		{
		case UNION:
3657
		  bitmap_a_or_b (in[i], in[i], out[e->src->index]);
3658 3659
		  break;
		case INTERSECTION:
3660
		  bitmap_a_and_b (in[i], in[i], out[e->src->index]);
3661 3662 3663 3664
		  break;
		}
	    }
	}
Kazu Hirata committed
3665
      else
3666 3667
	{
	  /* Calculate <conf_op> of successor ins */
Kazu Hirata committed
3668
	  bitmap_zero (out[i]);
3669 3670 3671 3672 3673
	  for (e = bb->succ; e != 0; e = e->succ_next)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;
	      switch (conf_op)
Kazu Hirata committed
3674
		{
3675
		case UNION:
3676
		  bitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3677 3678
		  break;
		case INTERSECTION:
3679
		  bitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3680 3681 3682
		  break;
		}
	    }
Kazu Hirata committed
3683
	}
3684 3685
      /* Common part */
      (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3686
      RESET_BIT (pending, i);
3687 3688 3689 3690 3691 3692
      if (changed)
	{
	  if (dir == FORWARD)
	    {
	      for (e = bb->succ; e != 0; e = e->succ_next)
		{
3693
		  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3694
		    continue;
3695
		  SET_BIT (pending, e->dest->index);
3696 3697 3698 3699 3700 3701
		}
	    }
	  else
	    {
	      for (e = bb->pred; e != 0; e = e->pred_next)
		{
3702
		  if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3703
		    continue;
3704
		  SET_BIT (pending, e->src->index);
3705 3706 3707 3708
		}
	    }
	}
    }
3709 3710 3711 3712
  if (dir == FORWARD)
    {
      for (e = bb->succ; e != 0; e = e->succ_next)
	{
3713
	  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3714
	    continue;
3715 3716 3717
	  if (!TEST_BIT (visited, e->dest->index))
	    hybrid_search_bitmap (e->dest, in, out, gen, kill, dir,
				  conf_op, transfun, visited, pending,
3718 3719 3720 3721 3722 3723 3724
				  data);
	}
    }
  else
    {
      for (e = bb->pred; e != 0; e = e->pred_next)
	{
3725
	  if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3726
	    continue;
3727
	  if (!TEST_BIT (visited, e->src->index))
Kazu Hirata committed
3728 3729
	    hybrid_search_bitmap (e->src, in, out, gen, kill, dir,
				  conf_op, transfun, visited, pending,
3730 3731 3732
				  data);
	}
    }
3733
}
3734 3735 3736


/* Hybrid search for sbitmaps, rather than bitmaps.  */
Kazu Hirata committed
3737 3738
static void
hybrid_search_sbitmap (block, in, out, gen, kill, dir,
3739 3740 3741 3742
		       conf_op, transfun, visited, pending,
		       data)
     basic_block block;
     sbitmap *in, *out, *gen, *kill;
3743 3744
     enum df_flow_dir dir;
     enum df_confluence_op conf_op;
3745 3746 3747
     transfer_function_sbitmap transfun;
     sbitmap visited;
     sbitmap pending;
3748 3749 3750
     void *data;
{
  int changed;
3751
  int i = block->index;
3752
  edge e;
Kazu Hirata committed
3753
  basic_block bb = block;
3754 3755
  SET_BIT (visited, block->index);
  if (TEST_BIT (pending, block->index))
3756
    {
3757 3758 3759
      if (dir == FORWARD)
	{
	  /*  Calculate <conf_op> of predecessor_outs */
3760
	  sbitmap_zero (in[i]);
3761 3762 3763 3764 3765 3766 3767
	  for (e = bb->pred; e != 0; e = e->pred_next)
	    {
	      if (e->src == ENTRY_BLOCK_PTR)
		continue;
	      switch (conf_op)
		{
		case UNION:
3768
		  sbitmap_a_or_b (in[i], in[i], out[e->src->index]);
3769 3770
		  break;
		case INTERSECTION:
3771
		  sbitmap_a_and_b (in[i], in[i], out[e->src->index]);
3772 3773 3774 3775
		  break;
		}
	    }
	}
Kazu Hirata committed
3776
      else
3777 3778
	{
	  /* Calculate <conf_op> of successor ins */
Kazu Hirata committed
3779
	  sbitmap_zero (out[i]);
3780 3781 3782 3783 3784
	  for (e = bb->succ; e != 0; e = e->succ_next)
	    {
	      if (e->dest == EXIT_BLOCK_PTR)
		continue;
	      switch (conf_op)
Kazu Hirata committed
3785
		{
3786
		case UNION:
3787
		  sbitmap_a_or_b (out[i], out[i], in[e->dest->index]);
3788 3789
		  break;
		case INTERSECTION:
3790
		  sbitmap_a_and_b (out[i], out[i], in[e->dest->index]);
3791 3792 3793
		  break;
		}
	    }
Kazu Hirata committed
3794
	}
3795 3796
      /* Common part */
      (*transfun)(i, &changed, in[i], out[i], gen[i], kill[i], data);
3797
      RESET_BIT (pending, i);
3798 3799 3800 3801 3802 3803
      if (changed)
	{
	  if (dir == FORWARD)
	    {
	      for (e = bb->succ; e != 0; e = e->succ_next)
		{
3804
		  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3805
		    continue;
3806
		  SET_BIT (pending, e->dest->index);
3807 3808 3809 3810 3811 3812
		}
	    }
	  else
	    {
	      for (e = bb->pred; e != 0; e = e->pred_next)
		{
3813
		  if (e->src == ENTRY_BLOCK_PTR || e->dest->index == i)
3814
		    continue;
3815
		  SET_BIT (pending, e->src->index);
3816 3817 3818 3819
		}
	    }
	}
    }
3820 3821 3822 3823
  if (dir == FORWARD)
    {
      for (e = bb->succ; e != 0; e = e->succ_next)
	{
3824
	  if (e->dest == EXIT_BLOCK_PTR || e->dest->index == i)
3825
	    continue;
3826
	  if (!TEST_BIT (visited, e->dest->index))
Kazu Hirata committed
3827 3828
	    hybrid_search_sbitmap (e->dest, in, out, gen, kill, dir,
				   conf_op, transfun, visited, pending,
3829 3830 3831 3832 3833 3834 3835
				   data);
	}
    }
  else
    {
      for (e = bb->pred; e != 0; e = e->pred_next)
	{
3836
	  if (e->src == ENTRY_BLOCK_PTR || e->src->index == i)
3837
	    continue;
3838
	  if (!TEST_BIT (visited, e->src->index))
Kazu Hirata committed
3839 3840
	    hybrid_search_sbitmap (e->src, in, out, gen, kill, dir,
				   conf_op, transfun, visited, pending,
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
				   data);
	}
    }
}




/* gen = GEN set.
   kill = KILL set.
   in, out = Filled in by function.
   blocks = Blocks to analyze.
   dir = Dataflow direction.
   conf_op = Confluence operation.
   transfun = Transfer function.
   order = Order to iterate in. (Should map block numbers -> order)
   data = Whatever you want.  It's passed to the transfer function.
Kazu Hirata committed
3858

3859 3860 3861 3862 3863 3864
   This function will perform iterative bitvector dataflow, producing
   the in and out sets.  Even if you only want to perform it for a
   small number of blocks, the vectors for in and out must be large
   enough for *all* blocks, because changing one block might affect
   others.  However, it'll only put what you say to analyze on the
   initial worklist.
Kazu Hirata committed
3865

3866 3867 3868 3869
   For forward problems, you probably want to pass in a mapping of
   block number to rc_order (like df->inverse_rc_map).
*/
void
Kazu Hirata committed
3870 3871
iterative_dataflow_sbitmap (in, out, gen, kill, blocks,
			    dir, conf_op, transfun, order, data)
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
     sbitmap *in, *out, *gen, *kill;
     bitmap blocks;
     enum df_flow_dir dir;
     enum df_confluence_op conf_op;
     transfer_function_sbitmap transfun;
     int *order;
     void *data;
{
  int i;
  fibheap_t worklist;
  basic_block bb;
  sbitmap visited, pending;
3884 3885
  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
3886 3887 3888 3889 3890
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  worklist = fibheap_new ();
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
  {
Kazu Hirata committed
3891
    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
    SET_BIT (pending, i);
    if (dir == FORWARD)
      sbitmap_copy (out[i], gen[i]);
    else
      sbitmap_copy (in[i], gen[i]);
  });
  while (sbitmap_first_set_bit (pending) != -1)
    {
      while (!fibheap_empty (worklist))
	{
3902
	  i = (size_t) fibheap_extract_min (worklist);
3903
	  bb = BASIC_BLOCK (i);
3904
	  if (!TEST_BIT (visited, bb->index))
Kazu Hirata committed
3905
	    hybrid_search_sbitmap (bb, in, out, gen, kill, dir,
3906
				   conf_op, transfun, visited, pending, data);
3907 3908 3909 3910 3911
	}
      if (sbitmap_first_set_bit (pending) != -1)
	{
	  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
	  {
3912
	    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3913 3914 3915 3916 3917 3918
	  });
	  sbitmap_zero (visited);
	}
      else
	{
	  break;
Kazu Hirata committed
3919
	}
3920 3921 3922
    }
  sbitmap_free (pending);
  sbitmap_free (visited);
3923
  fibheap_delete (worklist);
3924 3925 3926 3927 3928
}

/* Exactly the same as iterative_dataflow_sbitmap, except it works on
   bitmaps instead */
void
Kazu Hirata committed
3929 3930
iterative_dataflow_bitmap (in, out, gen, kill, blocks,
			   dir, conf_op, transfun, order, data)
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
     bitmap *in, *out, *gen, *kill;
     bitmap blocks;
     enum df_flow_dir dir;
     enum df_confluence_op conf_op;
     transfer_function_bitmap transfun;
     int *order;
     void *data;
{
  int i;
  fibheap_t worklist;
  basic_block bb;
  sbitmap visited, pending;
3943 3944
  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
3945 3946 3947 3948 3949
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  worklist = fibheap_new ();
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
  {
3950
    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
    SET_BIT (pending, i);
    if (dir == FORWARD)
      bitmap_copy (out[i], gen[i]);
    else
      bitmap_copy (in[i], gen[i]);
  });
  while (sbitmap_first_set_bit (pending) != -1)
    {
      while (!fibheap_empty (worklist))
	{
3961
	  i = (size_t) fibheap_extract_min (worklist);
3962
	  bb = BASIC_BLOCK (i);
3963
	  if (!TEST_BIT (visited, bb->index))
Kazu Hirata committed
3964
	    hybrid_search_bitmap (bb, in, out, gen, kill, dir,
3965
				  conf_op, transfun, visited, pending, data);
3966 3967 3968 3969 3970
	}
      if (sbitmap_first_set_bit (pending) != -1)
	{
	  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
	  {
3971
	    fibheap_insert (worklist, order[i], (void *) (size_t) i);
3972 3973 3974 3975 3976 3977
	  });
	  sbitmap_zero (visited);
	}
      else
	{
	  break;
Kazu Hirata committed
3978
	}
3979 3980 3981
    }
  sbitmap_free (pending);
  sbitmap_free (visited);
Kazu Hirata committed
3982
  fibheap_delete (worklist);
3983
}