tree-data-ref.h 24.9 KB
Newer Older
H.J. Lu committed
1
/* Data references and dependences detectors.
2
   Copyright (C) 2003-2019 Free Software Foundation, Inc.
3
   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 5 6 7 8

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20 21 22 23

#ifndef GCC_TREE_DATA_REF_H
#define GCC_TREE_DATA_REF_H

24
#include "graphds.h"
25
#include "tree-chrec.h"
26
#include "opt-problem.h"
Daniel Berlin committed
27

28
/*
29 30 31 32
  innermost_loop_behavior describes the evolution of the address of the memory
  reference in the innermost enclosing loop.  The address is expressed as
  BASE + STEP * # of iteration, and base is further decomposed as the base
  pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
H.J. Lu committed
33 34
  constant offset (INIT).  Examples, in loop nest

35 36
  for (i = 0; i < 100; i++)
    for (j = 3; j < 100; j++)
37

38
                       Example 1                      Example 2
39
      data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
H.J. Lu committed
40

41

42 43 44 45
  innermost_loop_behavior
      base_address     &a                             p
      offset           i * D_i			      x
      init             3 * D_j + offsetof (b)         28
46 47
      step             D_j                            4

48
  */
49
struct innermost_loop_behavior
50 51 52 53 54
{
  tree base_address;
  tree offset;
  tree init;
  tree step;
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
     from an alignment boundary of BASE_ALIGNMENT bytes.  For example,
     if we had:

       struct S __attribute__((aligned(16))) { ... };

       char *ptr;
       ... *(struct S *) (ptr - 4) ...;

     the information would be:

       base_address:      ptr
       base_aligment:      16
       base_misalignment:   4
       init:               -4

     where init cancels the base misalignment.  If instead we had a
     reference to a particular field:

       struct S __attribute__((aligned(16))) { ... int f; ... };

       char *ptr;
       ... ((struct S *) (ptr - 4))->f ...;

     the information would be:

       base_address:      ptr
       base_aligment:      16
       base_misalignment:   4
       init:               -4 + offsetof (S, f)

     where base_address + init might also be misaligned, and by a different
     amount from base_address.  */
  unsigned int base_alignment;
  unsigned int base_misalignment;

92 93 94 95
  /* The largest power of two that divides OFFSET, capped to a suitably
     high value if the offset is zero.  This is a byte rather than a bit
     quantity.  */
  unsigned int offset_alignment;
96 97 98

  /* Likewise for STEP.  */
  unsigned int step_alignment;
99 100
};

101
/* Describes the evolutions of indices of the memory reference.  The indices
102 103 104 105 106 107 108 109 110
   are indices of the ARRAY_REFs, indexes in artificial dimensions
   added for member selection of records and the operands of MEM_REFs.
   BASE_OBJECT is the part of the reference that is loop-invariant
   (note that this reference does not have to cover the whole object
   being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
   not recommended to use BASE_OBJECT in any code generation).
   For the examples above,

   base_object:        a                              *(p + x + 4B * j_0)
111
   indices:            {j_0, +, 1}_2                  {16, +, 4}_2
112
		       4
113 114 115 116 117
		       {i_0, +, 1}_1
		       {j_0, +, 1}_2
*/

struct indices
118 119 120
{
  /* The object.  */
  tree base_object;
H.J. Lu committed
121

122
  /* A list of chrecs.  Access functions of the indices.  */
123
  vec<tree> access_fns;
124 125 126 127

  /* Whether BASE_OBJECT is an access representing the whole object
     or whether the access could not be constrained.  */
  bool unconstrained_base;
128 129
};

130 131 132
struct dr_alias
{
  /* The alias information that should be used for new pointers to this
133
     location.  */
134
  struct ptr_info_def *ptr_info;
135 136
};

137 138 139 140
/* An integer vector.  A vector formally consists of an element of a vector
   space. A vector space is a set that is closed under vector addition
   and scalar multiplication.  In this vector space, an element is a list of
   integers.  */
141 142
typedef HOST_WIDE_INT lambda_int;
typedef lambda_int *lambda_vector;
143 144 145 146 147

/* An integer matrix.  A matrix consists of m vectors of length n (IE
   all vectors are the same length).  */
typedef lambda_vector *lambda_matrix;

148 149


Daniel Berlin committed
150
struct data_reference
151 152
{
  /* A pointer to the statement that contains this DR.  */
153
  gimple *stmt;
H.J. Lu committed
154

155
  /* A pointer to the memory reference.  */
156 157 158
  tree ref;

  /* Auxiliary info specific to a pass.  */
159
  void *aux;
160 161 162 163

  /* True when the data reference is in RHS of a stmt.  */
  bool is_read;

164 165 166 167 168
  /* True when the data reference is conditional within STMT,
     i.e. if it might not occur even when the statement is executed
     and runs to completion.  */
  bool is_conditional_in_stmt;

169 170
  /* Behavior of the memory reference in the innermost loop.  */
  struct innermost_loop_behavior innermost;
171

172
  /* Subscripts of this data reference.  */
173
  struct indices indices;
174

175 176
  /* Alias information for the data reference.  */
  struct dr_alias alias;
177
};
178

179 180
#define DR_STMT(DR)                (DR)->stmt
#define DR_REF(DR)                 (DR)->ref
181
#define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
182
#define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
183
#define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
184 185
#define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
#define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
186
#define DR_IS_READ(DR)             (DR)->is_read
187
#define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
188
#define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
189 190 191 192 193
#define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
#define DR_OFFSET(DR)              (DR)->innermost.offset
#define DR_INIT(DR)                (DR)->innermost.init
#define DR_STEP(DR)                (DR)->innermost.step
#define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
194 195
#define DR_BASE_ALIGNMENT(DR)      (DR)->innermost.base_alignment
#define DR_BASE_MISALIGNMENT(DR)   (DR)->innermost.base_misalignment
196
#define DR_OFFSET_ALIGNMENT(DR)    (DR)->innermost.offset_alignment
197
#define DR_STEP_ALIGNMENT(DR)      (DR)->innermost.step_alignment
198
#define DR_INNERMOST(DR)           (DR)->innermost
199 200

typedef struct data_reference *data_reference_p;
201

202 203 204 205
/* This struct is used to store the information of a data reference,
   including the data ref itself and the segment length for aliasing
   checks.  This is used to merge alias checks.  */

206
class dr_with_seg_len
207
{
208
public:
209 210 211
  dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
		   unsigned int a)
    : dr (d), seg_len (len), access_size (size), align (a) {}
212 213

  data_reference_p dr;
214 215
  /* The offset of the last access that needs to be checked minus
     the offset of the first.  */
216
  tree seg_len;
217 218 219 220 221 222
  /* A value that, when added to abs (SEG_LEN), gives the total number of
     bytes in the segment.  */
  poly_uint64 access_size;
  /* The minimum common alignment of DR's start address, SEG_LEN and
     ACCESS_SIZE.  */
  unsigned int align;
223 224
};

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/* Flags that describe a potential alias between two dr_with_seg_lens.
   In general, each pair of dr_with_seg_lens represents a composite of
   multiple access pairs P, so testing flags like DR_IS_READ on the DRs
   does not give meaningful information.

   DR_ALIAS_RAW:
	There is a pair in P for which the second reference is a read
	and the first is a write.

   DR_ALIAS_WAR:
	There is a pair in P for which the second reference is a write
	and the first is a read.

   DR_ALIAS_WAW:
	There is a pair in P for which both references are writes.

   DR_ALIAS_ARBITRARY:
	Either
	(a) it isn't possible to classify one pair in P as RAW, WAW or WAR; or
	(b) there is a pair in P that breaks the ordering assumption below.

	This flag overrides the RAW, WAR and WAW flags above.

   DR_ALIAS_UNSWAPPED:
   DR_ALIAS_SWAPPED:
	Temporary flags that indicate whether there is a pair P whose
	DRs have or haven't been swapped around.

253 254 255 256 257 258
   DR_ALIAS_MIXED_STEPS:
	The DR_STEP for one of the data references in the pair does not
	accurately describe that reference for all members of P.  (Note
	that the flag does not say anything about whether the DR_STEPs
	of the two references in the pair are the same.)

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
   The ordering assumption mentioned above is that for every pair
   (DR_A, DR_B) in P:

   (1) The original code accesses n elements for DR_A and n elements for DR_B,
       interleaved as follows:

	 one access of size DR_A.access_size at DR_A.dr
	 one access of size DR_B.access_size at DR_B.dr
	 one access of size DR_A.access_size at DR_A.dr + STEP_A
	 one access of size DR_B.access_size at DR_B.dr + STEP_B
	 one access of size DR_A.access_size at DR_A.dr + STEP_A * 2
	 one access of size DR_B.access_size at DR_B.dr + STEP_B * 2
	 ...

   (2) The new code accesses the same data in exactly two chunks:

	 one group of accesses spanning |DR_A.seg_len| + DR_A.access_size
	 one group of accesses spanning |DR_B.seg_len| + DR_B.access_size

   A pair might break this assumption if the DR_A and DR_B accesses
   in the original or the new code are mingled in some way.  For example,
   if DR_A.access_size represents the effect of two individual writes
   to nearby locations, the pair breaks the assumption if those writes
   occur either side of the access for DR_B.

   Note that DR_ALIAS_ARBITRARY describes whether the ordering assumption
   fails to hold for any individual pair in P.  If the assumption *does*
   hold for every pair in P, it doesn't matter whether it holds for the
   composite pair or not.  In other words, P should represent the complete
   set of pairs that the composite pair is testing, so only the ordering
   of two accesses in the same member of P matters.  */
const unsigned int DR_ALIAS_RAW = 1U << 0;
const unsigned int DR_ALIAS_WAR = 1U << 1;
const unsigned int DR_ALIAS_WAW = 1U << 2;
const unsigned int DR_ALIAS_ARBITRARY = 1U << 3;
const unsigned int DR_ALIAS_SWAPPED = 1U << 4;
const unsigned int DR_ALIAS_UNSWAPPED = 1U << 5;
296
const unsigned int DR_ALIAS_MIXED_STEPS = 1U << 6;
297

298 299 300
/* This struct contains two dr_with_seg_len objects with aliasing data
   refs.  Two comparisons are generated from them.  */

301
class dr_with_seg_len_pair_t
302
{
303
public:
304 305 306 307 308 309
  /* WELL_ORDERED indicates that the ordering assumption described above
     DR_ALIAS_ARBITRARY holds.  REORDERED indicates that it doesn't.  */
  enum sequencing { WELL_ORDERED, REORDERED };

  dr_with_seg_len_pair_t (const dr_with_seg_len &,
			  const dr_with_seg_len &, sequencing);
310 311 312

  dr_with_seg_len first;
  dr_with_seg_len second;
313
  unsigned int flags;
314 315
};

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
inline dr_with_seg_len_pair_t::
dr_with_seg_len_pair_t (const dr_with_seg_len &d1, const dr_with_seg_len &d2,
			sequencing seq)
  : first (d1), second (d2), flags (0)
{
  if (DR_IS_READ (d1.dr) && DR_IS_WRITE (d2.dr))
    flags |= DR_ALIAS_WAR;
  else if (DR_IS_WRITE (d1.dr) && DR_IS_READ (d2.dr))
    flags |= DR_ALIAS_RAW;
  else if (DR_IS_WRITE (d1.dr) && DR_IS_WRITE (d2.dr))
    flags |= DR_ALIAS_WAW;
  else
    gcc_unreachable ();
  if (seq == REORDERED)
    flags |= DR_ALIAS_ARBITRARY;
}

333
enum data_dependence_direction {
H.J. Lu committed
334 335 336
  dir_positive,
  dir_negative,
  dir_equal,
337 338 339 340 341 342 343
  dir_positive_or_negative,
  dir_positive_or_equal,
  dir_negative_or_equal,
  dir_star,
  dir_independent
};

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/* The description of the grid of iterations that overlap.  At most
   two loops are considered at the same time just now, hence at most
   two functions are needed.  For each of the functions, we store
   the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
   where x, y, ... are variables.  */

#define MAX_DIM 2

/* Special values of N.  */
#define NO_DEPENDENCE 0
#define NOT_KNOWN (MAX_DIM + 1)
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)

359
typedef vec<tree> affine_fn;
360

361
struct conflict_function
362 363 364
{
  unsigned n;
  affine_fn fns[MAX_DIM];
365
};
366

367 368 369 370 371 372 373
/* What is a subscript?  Given two array accesses a subscript is the
   tuple composed of the access functions for a given dimension.
   Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
   subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
   are stored in the data_dependence_relation structure under the form
   of an array of subscripts.  */

Daniel Berlin committed
374
struct subscript
375
{
376 377 378
  /* The access functions of the two references.  */
  tree access_fn[2];

379 380
  /* A description of the iterations for which the elements are
     accessed twice.  */
381 382
  conflict_function *conflicting_iterations_in_a;
  conflict_function *conflicting_iterations_in_b;
H.J. Lu committed
383

384
  /* This field stores the information about the iteration domain
385
     validity of the dependence relation.  */
386
  tree last_conflict;
H.J. Lu committed
387

388 389
  /* Distance from the iteration that access a conflicting element in
     A to the iteration that access this same conflicting element in
390
     B.  The distance is a tree scalar expression, i.e. a constant or a
391 392 393 394
     symbolic expression, but certainly not a chrec function.  */
  tree distance;
};

395 396
typedef struct subscript *subscript_p;

397
#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
398 399 400 401
#define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
#define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
#define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
#define SUB_DISTANCE(SUB) (SUB)->distance
402 403 404 405

/* A data_dependence_relation represents a relation between two
   data_references A and B.  */

Daniel Berlin committed
406
struct data_dependence_relation
407
{
H.J. Lu committed
408

409 410 411 412
  struct data_reference *a;
  struct data_reference *b;

  /* A "yes/no/maybe" field for the dependence relation:
H.J. Lu committed
413

414 415 416
     - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
       relation between A and B, and the description of this relation
       is given in the SUBSCRIPTS array,
H.J. Lu committed
417

418 419
     - when "ARE_DEPENDENT == chrec_known", there is no dependence and
       SUBSCRIPTS is empty,
H.J. Lu committed
420

421 422 423
     - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
       but the analyzer cannot be more specific.  */
  tree are_dependent;
H.J. Lu committed
424

425 426 427 428 429 430 431
  /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
     independent when the runtime addresses of OBJECT_A and OBJECT_B
     are different.  The addresses of both objects are invariant in the
     loop nest.  */
  tree object_a;
  tree object_b;

432 433 434
  /* For each subscript in the dependence test, there is an element in
     this array.  This is the attribute that labels the edge A->B of
     the data_dependence_relation.  */
435
  vec<subscript_p> subscripts;
Daniel Berlin committed
436

437
  /* The analyzed loop nest.  */
438
  vec<loop_p> loop_nest;
439

Daniel Berlin committed
440
  /* The classic direction vector.  */
441
  vec<lambda_vector> dir_vects;
Daniel Berlin committed
442 443

  /* The classic distance vector.  */
444
  vec<lambda_vector> dist_vects;
445 446 447

  /* Is the dependence reversed with respect to the lexicographic order?  */
  bool reversed_p;
448 449 450 451 452 453 454 455

  /* When the dependence relation is affine, it can be represented by
     a distance vector.  */
  bool affine_p;

  /* Set to true when the dependence relation is on the same data
     access.  */
  bool self_reference_p;
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

  /* True if the dependence described is conservatively correct rather
     than exact, and if it is still possible for the accesses to be
     conditionally independent.  For example, the a and b references in:

       struct s *a, *b;
       for (int i = 0; i < n; ++i)
         a->f[i] += b->f[i];

     conservatively have a distance vector of (0), for the case in which
     a == b, but the accesses are independent if a != b.  Similarly,
     the a and b references in:

       struct s *a, *b;
       for (int i = 0; i < n; ++i)
         a[0].f[i] += b[i].f[i];

     conservatively have a distance vector of (0), but they are indepenent
     when a != b + i.  In contrast, the references in:

       struct s *a;
       for (int i = 0; i < n; ++i)
         a->f[i] += a->f[i];

     have the same distance vector of (0), but the accesses can never be
     independent.  */
  bool could_be_independent_p;
483 484
};

485 486
typedef struct data_dependence_relation *ddr_p;

487 488 489 490
#define DDR_A(DDR) (DDR)->a
#define DDR_B(DDR) (DDR)->b
#define DDR_AFFINE_P(DDR) (DDR)->affine_p
#define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
491 492
#define DDR_OBJECT_A(DDR) (DDR)->object_a
#define DDR_OBJECT_B(DDR) (DDR)->object_b
493
#define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
494 495
#define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
#define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
496

497
#define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
498 499
/* The size of the direction/distance vectors: the number of loops in
   the loop nest.  */
500
#define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
501
#define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
502 503 504 505

#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
#define DDR_NUM_DIST_VECTS(DDR) \
506
  (DDR_DIST_VECTS (DDR).length ())
507
#define DDR_NUM_DIR_VECTS(DDR) \
508
  (DDR_DIR_VECTS (DDR).length ())
509
#define DDR_DIR_VECT(DDR, I) \
510
  DDR_DIR_VECTS (DDR)[I]
511
#define DDR_DIST_VECT(DDR, I) \
512
  DDR_DIST_VECTS (DDR)[I]
513
#define DDR_REVERSED_P(DDR) (DDR)->reversed_p
514
#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
515 516


517
opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
518 519
				 class loop *, const gimple *);
extern bool compute_data_dependences_for_loop (class loop *, bool,
520 521 522 523
					       vec<loop_p> *,
					       vec<data_reference_p> *,
					       vec<ddr_p> *);
extern void debug_ddrs (vec<ddr_p> );
524
extern void dump_data_reference (FILE *, struct data_reference *);
525 526
extern void debug (data_reference &ref);
extern void debug (data_reference *ptr);
527
extern void debug_data_reference (struct data_reference *);
528
extern void debug_data_references (vec<data_reference_p> );
529 530
extern void debug (vec<data_reference_p> &ref);
extern void debug (vec<data_reference_p> *ptr);
531
extern void debug_data_dependence_relation (struct data_dependence_relation *);
532
extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
533 534
extern void debug (vec<ddr_p> &ref);
extern void debug (vec<ddr_p> *ptr);
535
extern void debug_data_dependence_relations (vec<ddr_p> );
Daniel Berlin committed
536
extern void free_dependence_relation (struct data_dependence_relation *);
537
extern void free_dependence_relations (vec<ddr_p> );
538
extern void free_data_ref (data_reference_p);
539
extern void free_data_refs (vec<data_reference_p> );
540
extern opt_result find_data_references_in_stmt (class loop *, gimple *,
541
						vec<data_reference_p> *);
542
extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
543
						   vec<data_reference_p> *);
544
tree find_data_references_in_loop (class loop *, vec<data_reference_p> *);
Aditya Kumar committed
545
bool loop_nest_has_data_refs (loop_p loop);
546
struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
547
					bool);
548
extern bool find_loop_nest (class loop *, vec<loop_p> *);
549
extern struct data_dependence_relation *initialize_data_dependence_relation
550
     (struct data_reference *, struct data_reference *, vec<loop_p>);
551 552
extern void compute_affine_dependence (struct data_dependence_relation *,
				       loop_p);
553
extern void compute_self_dependence (struct data_dependence_relation *);
554 555 556
extern bool compute_all_dependences (vec<data_reference_p> ,
				     vec<ddr_p> *,
				     vec<loop_p>, bool);
557
extern tree find_data_references_in_bb (class loop *, basic_block,
558
                                        vec<data_reference_p> *);
559
extern unsigned int dr_alignment (innermost_loop_behavior *);
560
extern tree get_base_for_alignment (tree, unsigned int *);
561 562 563 564 565 566 567 568 569

/* Return the alignment in bytes that DR is guaranteed to have at all
   times.  */

inline unsigned int
dr_alignment (data_reference *dr)
{
  return dr_alignment (&DR_INNERMOST (dr));
}
570 571

extern bool dr_may_alias_p (const struct data_reference *,
572
			    const struct data_reference *, class loop *);
573 574
extern bool dr_equal_offsets_p (struct data_reference *,
                                struct data_reference *);
575

576
extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool);
577
extern int data_ref_compare_tree (tree, tree);
578
extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
579
					   poly_uint64);
580
extern void create_runtime_alias_checks (class loop *,
581
					 vec<dr_with_seg_len_pair_t> *, tree*);
582 583 584 585
extern tree dr_direction_indicator (struct data_reference *);
extern tree dr_zero_step_indicator (struct data_reference *);
extern bool dr_known_forward_stride_p (struct data_reference *);

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/* Return true when the base objects of data references A and B are
   the same memory object.  */

static inline bool
same_data_refs_base_objects (data_reference_p a, data_reference_p b)
{
  return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
    && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
}

/* Return true when the data references A and B are accessing the same
   memory object with the same access functions.  */

static inline bool
same_data_refs (data_reference_p a, data_reference_p b)
{
  unsigned int i;

  /* The references are exactly the same.  */
  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
    return true;

  if (!same_data_refs_base_objects (a, b))
    return false;

  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
    if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
      return false;

  return true;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/* Returns true when all the dependences are computable.  */

inline bool
known_dependences_p (vec<ddr_p> dependence_relations)
{
  ddr_p ddr;
  unsigned int i;

  FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
    if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
      return false;

  return true;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/* Returns the dependence level for a vector DIST of size LENGTH.
   LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
   to the sequence of statements, not carried by any loop.  */

static inline unsigned
dependence_level (lambda_vector dist_vect, int length)
{
  int i;

  for (i = 0; i < length; i++)
    if (dist_vect[i] != 0)
      return i + 1;

  return 0;
}

649 650 651 652 653 654 655 656
/* Return the dependence level for the DDR relation.  */

static inline unsigned
ddr_dependence_level (ddr_p ddr)
{
  unsigned vector;
  unsigned level = 0;

657
  if (DDR_DIST_VECTS (ddr).exists ())
658 659 660 661 662 663 664 665
    level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));

  for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
    level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
					  DDR_NB_LOOPS (ddr)));
  return level;
}

666 667 668
/* Return the index of the variable VAR in the LOOP_NEST array.  */

static inline int
669
index_in_loop_nest (int var, vec<loop_p> loop_nest)
670
{
671
  class loop *loopi;
672 673
  int var_index;

674
  for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
675
    if (loopi->num == var)
676
      return var_index;
677

678
  gcc_unreachable ();
679 680
}

681 682
/* Returns true when the data reference DR the form "A[i] = ..."
   with a stride equal to its unit type size.  */
683 684

static inline bool
685
adjacent_dr_p (struct data_reference *dr)
686
{
687 688 689 690 691 692 693 694 695 696 697 698
  /* If this is a bitfield store bail out.  */
  if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
      && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
    return false;

  if (!DR_STEP (dr)
      || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
    return false;

  return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
					 DR_STEP (dr)),
			     TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
699 700
}

701 702
void split_constant_offset (tree , tree *, tree *);

703 704
/* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */

705
static inline lambda_int
706 707 708
lambda_vector_gcd (lambda_vector vector, int size)
{
  int i;
709
  lambda_int gcd1 = 0;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

  if (size > 0)
    {
      gcd1 = vector[0];
      for (i = 1; i < size; i++)
	gcd1 = gcd (gcd1, vector[i]);
    }
  return gcd1;
}

/* Allocate a new vector of given SIZE.  */

static inline lambda_vector
lambda_vector_new (int size)
{
725
  /* ???  We shouldn't abuse the GC allocator here.  */
726
  return ggc_cleared_vec_alloc<lambda_int> (size);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
}

/* Clear out vector VEC1 of length SIZE.  */

static inline void
lambda_vector_clear (lambda_vector vec1, int size)
{
  memset (vec1, 0, size * sizeof (*vec1));
}

/* Returns true when the vector V is lexicographically positive, in
   other words, when the first nonzero element is positive.  */

static inline bool
lambda_vector_lexico_pos (lambda_vector v,
			  unsigned n)
{
  unsigned i;
  for (i = 0; i < n; i++)
    {
      if (v[i] == 0)
	continue;
      if (v[i] < 0)
	return false;
      if (v[i] > 0)
	return true;
    }
  return true;
}

/* Return true if vector VEC1 of length SIZE is the zero vector.  */

static inline bool
lambda_vector_zerop (lambda_vector vec1, int size)
{
  int i;
  for (i = 0; i < size; i++)
    if (vec1[i] != 0)
      return false;
  return true;
}

/* Allocate a matrix of M rows x  N cols.  */

static inline lambda_matrix
lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
{
  lambda_matrix mat;
  int i;

777
  mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
778 779

  for (i = 0; i < m; i++)
780
    mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
781 782 783 784

  return mat;
}

785
#endif  /* GCC_TREE_DATA_REF_H  */