store-motion.c 34.9 KB
Newer Older
1
/* Store motion via Lazy Code Motion on the reverse CFG.
2
   Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
24
#include "diagnostic-core.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "toplev.h"

#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "function.h"
#include "expr.h"
#include "except.h"
#include "ggc.h"
#include "intl.h"
#include "tree-pass.h"
42
#include "hash-table.h"
43 44 45
#include "df.h"
#include "dbgcnt.h"

46 47 48 49 50 51 52 53 54 55
/* This pass implements downward store motion.
   As of May 1, 2009, the pass is not enabled by default on any target,
   but bootstrap completes on ia64 and x86_64 with the pass enabled.  */

/* TODO:
   - remove_reachable_equiv_notes is an incomprehensible pile of goo and
     a compile time hog that needs a rewrite (maybe cache st_exprs to
     invalidate REG_EQUAL/REG_EQUIV notes for?).
   - pattern_regs in st_expr should be a regset (on its own obstack).
   - antic_stores and avail_stores should be VECs instead of lists.
56
   - store_motion_mems should be a vec instead of a list.
57 58 59 60 61 62 63 64 65 66 67 68
   - there should be an alloc pool for struct st_expr objects.
   - investigate whether it is helpful to make the address of an st_expr
     a cselib VALUE.
   - when GIMPLE alias information is exported, the effectiveness of this
     pass should be re-evaluated.
*/

/* This is a list of store expressions (MEMs).  The structure is used
   as an expression table to track stores which look interesting, and
   might be moveable towards the exit block.  */

struct st_expr
69
{
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  /* Pattern of this mem.  */
  rtx pattern;
  /* List of registers mentioned by the mem.  */
  rtx pattern_regs;
  /* INSN list of stores that are locally anticipatable.  */
  rtx antic_stores;
  /* INSN list of stores that are locally available.  */
  rtx avail_stores;
  /* Next in the list.  */
  struct st_expr * next;
  /* Store ID in the dataflow bitmaps.  */
  int index;
  /* Hash value for the hash table.  */
  unsigned int hash_index;
  /* Register holding the stored expression when a store is moved.
     This field is also used as a cache in find_moveable_store, see
     LAST_AVAIL_CHECK_FAILURE below.  */
  rtx reaching_reg;
88 89 90
};

/* Head of the list of load/store memory refs.  */
91
static struct st_expr * store_motion_mems = NULL;
92

93 94
/* These bitmaps will hold the local dataflow properties per basic block.  */
static sbitmap *st_kill, *st_avloc, *st_antloc, *st_transp;
95 96

/* Nonzero for expressions which should be inserted on a specific edge.  */
97
static sbitmap *st_insert_map;
98 99

/* Nonzero for expressions which should be deleted in a specific block.  */
100 101 102 103
static sbitmap *st_delete_map;

/* Global holding the number of store expressions we are dealing with.  */
static int num_stores;
104 105 106 107

/* Contains the edge_list returned by pre_edge_lcm.  */
static struct edge_list *edge_list;

108 109 110 111 112 113 114 115 116 117 118 119
/* Hashtable helpers.  */

struct st_expr_hasher : typed_noop_remove <st_expr>
{
  typedef st_expr value_type;
  typedef st_expr compare_type;
  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

inline hashval_t
st_expr_hasher::hash (const value_type *x)
120 121 122 123 124
{
  int do_not_record_p = 0;
  return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
}

125 126
inline bool
st_expr_hasher::equal (const value_type *ptr1, const compare_type *ptr2)
127 128 129 130
{
  return exp_equiv_p (ptr1->pattern, ptr2->pattern, 0, true);
}

131 132 133
/* Hashtable for the load/store memory refs.  */
static hash_table <st_expr_hasher> store_motion_mems_table;

134
/* This will search the st_expr list for a matching expression. If it
135 136
   doesn't find one, we create one and initialize it.  */

137 138
static struct st_expr *
st_expr_entry (rtx x)
139 140
{
  int do_not_record_p = 0;
141
  struct st_expr * ptr;
142
  unsigned int hash;
143
  st_expr **slot;
144
  struct st_expr e;
145 146 147 148 149

  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
		   NULL,  /*have_reg_qty=*/false);

  e.pattern = x;
150
  slot = store_motion_mems_table.find_slot_with_hash (&e, hash, INSERT);
151
  if (*slot)
152
    return *slot;
153

154
  ptr = XNEW (struct st_expr);
155

156
  ptr->next         = store_motion_mems;
157 158
  ptr->pattern      = x;
  ptr->pattern_regs = NULL_RTX;
159 160
  ptr->antic_stores = NULL_RTX;
  ptr->avail_stores = NULL_RTX;
161 162 163
  ptr->reaching_reg = NULL_RTX;
  ptr->index        = 0;
  ptr->hash_index   = hash;
164
  store_motion_mems = ptr;
165 166 167 168 169
  *slot = ptr;

  return ptr;
}

170
/* Free up an individual st_expr entry.  */
171 172

static void
173
free_st_expr_entry (struct st_expr * ptr)
174
{
175 176
  free_INSN_LIST_list (& ptr->antic_stores);
  free_INSN_LIST_list (& ptr->avail_stores);
177 178 179 180

  free (ptr);
}

181
/* Free up all memory associated with the st_expr list.  */
182 183

static void
184
free_store_motion_mems (void)
185
{
186 187
  if (store_motion_mems_table.is_created ())
    store_motion_mems_table.dispose ();
188

189
  while (store_motion_mems)
190
    {
191 192 193
      struct st_expr * tmp = store_motion_mems;
      store_motion_mems = store_motion_mems->next;
      free_st_expr_entry (tmp);
194
    }
195
  store_motion_mems = NULL;
196 197 198 199 200
}

/* Assign each element of the list of mems a monotonically increasing value.  */

static int
201
enumerate_store_motion_mems (void)
202
{
203
  struct st_expr * ptr;
204 205
  int n = 0;

206
  for (ptr = store_motion_mems; ptr != NULL; ptr = ptr->next)
207 208 209 210 211 212 213
    ptr->index = n++;

  return n;
}

/* Return first item in the list.  */

214 215
static inline struct st_expr *
first_st_expr (void)
216
{
217
  return store_motion_mems;
218 219 220 221
}

/* Return the next item in the list after the specified one.  */

222 223
static inline struct st_expr *
next_st_expr (struct st_expr * ptr)
224 225 226 227
{
  return ptr->next;
}

228
/* Dump debugging info about the store_motion_mems list.  */
229 230

static void
231
print_store_motion_mems (FILE * file)
232
{
233
  struct st_expr * ptr;
234

235
  fprintf (dump_file, "STORE_MOTION list of MEM exprs considered:\n");
236

237
  for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
238 239 240 241 242
    {
      fprintf (file, "  Pattern (%3d): ", ptr->index);

      print_rtl (file, ptr->pattern);

243
      fprintf (file, "\n	 ANTIC stores : ");
244

245 246
      if (ptr->antic_stores)
	print_rtl (file, ptr->antic_stores);
247 248 249
      else
	fprintf (file, "(nil)");

250
      fprintf (file, "\n	 AVAIL stores : ");
251

252 253
      if (ptr->avail_stores)
	print_rtl (file, ptr->avail_stores);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      else
	fprintf (file, "(nil)");

      fprintf (file, "\n\n");
    }

  fprintf (file, "\n");
}

/* Return zero if some of the registers in list X are killed
   due to set of registers in bitmap REGS_SET.  */

static bool
store_ops_ok (const_rtx x, int *regs_set)
{
  const_rtx reg;

  for (; x; x = XEXP (x, 1))
    {
      reg = XEXP (x, 0);
274
      if (regs_set[REGNO (reg)])
275 276 277 278 279 280
	return false;
    }

  return true;
}

281
/* Helper for extract_mentioned_regs.  */
H.J. Lu committed
282

283 284
static int
extract_mentioned_regs_1 (rtx *loc, void *data)
285
{
286
  rtx *mentioned_regs_p = (rtx *) data;
287

288 289
  if (REG_P (*loc))
    *mentioned_regs_p = alloc_EXPR_LIST (0, *loc, *mentioned_regs_p);
290

291
  return 0;
292 293
}

294 295 296
/* Returns a list of registers mentioned in X.
   FIXME: A regset would be prettier and less expensive.  */

297 298 299
static rtx
extract_mentioned_regs (rtx x)
{
300 301 302
  rtx mentioned_regs = NULL;
  for_each_rtx (&x, extract_mentioned_regs_1, &mentioned_regs);
  return mentioned_regs;
303 304 305 306 307 308 309 310 311 312 313 314
}

/* Check to see if the load X is aliased with STORE_PATTERN.
   AFTER is true if we are checking the case when STORE_PATTERN occurs
   after the X.  */

static bool
load_kills_store (const_rtx x, const_rtx store_pattern, int after)
{
  if (after)
    return anti_dependence (x, store_pattern);
  else
315
    return true_dependence (store_pattern, GET_MODE (store_pattern), x);
316 317
}

318
/* Go through the entire rtx X, looking for any loads which might alias
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
   STORE_PATTERN.  Return true if found.
   AFTER is true if we are checking the case when STORE_PATTERN occurs
   after the insn X.  */

static bool
find_loads (const_rtx x, const_rtx store_pattern, int after)
{
  const char * fmt;
  int i, j;
  int ret = false;

  if (!x)
    return false;

  if (GET_CODE (x) == SET)
    x = SET_SRC (x);

  if (MEM_P (x))
    {
      if (load_kills_store (x, store_pattern, after))
	return true;
    }

  /* Recursively process the insn.  */
  fmt = GET_RTX_FORMAT (GET_CODE (x));

  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
    {
      if (fmt[i] == 'e')
	ret |= find_loads (XEXP (x, i), store_pattern, after);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
    }
  return ret;
}

/* Go through pattern PAT looking for any loads which might kill the
   store in X.  Return true if found.
   AFTER is true if we are checking the case when loads kill X occurs
   after the insn for PAT.  */

static inline bool
store_killed_in_pat (const_rtx x, const_rtx pat, int after)
{
  if (GET_CODE (pat) == SET)
    {
      rtx dest = SET_DEST (pat);

      if (GET_CODE (dest) == ZERO_EXTRACT)
	dest = XEXP (dest, 0);

      /* Check for memory stores to aliased objects.  */
      if (MEM_P (dest)
	  && !exp_equiv_p (dest, x, 0, true))
	{
	  if (after)
	    {
	      if (output_dependence (dest, x))
		return true;
	    }
	  else
	    {
	      if (output_dependence (x, dest))
		return true;
	    }
	}
    }

  if (find_loads (pat, x, after))
    return true;

  return false;
}

/* Check if INSN kills the store pattern X (is aliased with it).
   AFTER is true if we are checking the case when store X occurs
   after the insn.  Return true if it does.  */

static bool
store_killed_in_insn (const_rtx x, const_rtx x_regs, const_rtx insn, int after)
{
401
  const_rtx reg, note, pat;
402

403
  if (! NONDEBUG_INSN_P (insn))
404 405 406 407 408 409 410 411 412 413 414 415
    return false;

  if (CALL_P (insn))
    {
      /* A normal or pure call might read from pattern,
	 but a const call will not.  */
      if (!RTL_CONST_CALL_P (insn))
	return true;

      /* But even a const call reads its parameters.  Check whether the
	 base of some of registers used in mem is stack pointer.  */
      for (reg = x_regs; reg; reg = XEXP (reg, 1))
416 417
	if (may_be_sp_based_p (XEXP (reg, 0)))
	  return true;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

      return false;
    }

  pat = PATTERN (insn);
  if (GET_CODE (pat) == SET)
    {
      if (store_killed_in_pat (x, pat, after))
	return true;
    }
  else if (GET_CODE (pat) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (pat, 0); i++)
	if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
	  return true;
    }
  else if (find_loads (PATTERN (insn), x, after))
    return true;

  /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
     location aliased with X, then this insn kills X.  */
  note = find_reg_equal_equiv_note (insn);
  if (! note)
    return false;
  note = XEXP (note, 0);

  /* However, if the note represents a must alias rather than a may
     alias relationship, then it does not kill X.  */
  if (exp_equiv_p (note, x, 0, true))
    return false;

  /* See if there are any aliased loads in the note.  */
  return find_loads (note, x, after);
}

/* Returns true if the expression X is loaded or clobbered on or after INSN
   within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
   or after the insn.  X_REGS is list of registers mentioned in X. If the store
   is killed, return the last insn in that it occurs in FAIL_INSN.  */

static bool
store_killed_after (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
		    int *regs_set_after, rtx *fail_insn)
{
  rtx last = BB_END (bb), act;

  if (!store_ops_ok (x_regs, regs_set_after))
    {
      /* We do not know where it will happen.  */
      if (fail_insn)
	*fail_insn = NULL_RTX;
      return true;
    }

  /* Scan from the end, so that fail_insn is determined correctly.  */
  for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
    if (store_killed_in_insn (x, x_regs, act, false))
      {
	if (fail_insn)
	  *fail_insn = act;
	return true;
      }

  return false;
}

/* Returns true if the expression X is loaded or clobbered on or before INSN
   within basic block BB. X_REGS is list of registers mentioned in X.
   REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
static bool
store_killed_before (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
		     int *regs_set_before)
{
  rtx first = BB_HEAD (bb);

  if (!store_ops_ok (x_regs, regs_set_before))
    return true;

  for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
    if (store_killed_in_insn (x, x_regs, insn, true))
      return true;

  return false;
}

505 506 507 508 509 510 511 512 513 514 515
/* The last insn in the basic block that compute_store_table is processing,
   where store_killed_after is true for X.
   Since we go through the basic block from BB_END to BB_HEAD, this is
   also the available store at the end of the basic block.  Therefore
   this is in effect a cache, to avoid calling store_killed_after for
   equivalent aliasing store expressions.
   This value is only meaningful during the computation of the store
   table.  We hi-jack the REACHING_REG field of struct st_expr to save
   a bit of memory.  */
#define LAST_AVAIL_CHECK_FAILURE(x)	((x)->reaching_reg)

516 517 518 519 520 521 522 523
/* Determine whether INSN is MEM store pattern that we will consider moving.
   REGS_SET_BEFORE is bitmap of registers set before (and including) the
   current insn, REGS_SET_AFTER is bitmap of registers set after (and
   including) the insn in this basic block.  We must be passing through BB from
   head to end, as we are using this fact to speed things up.

   The results are stored this way:

524
   -- the first anticipatable expression is added into ANTIC_STORES
525 526 527
   -- if the processed expression is not anticipatable, NULL_RTX is added
      there instead, so that we can use it as indicator that no further
      expression of this type may be anticipatable
528
   -- if the expression is available, it is added as head of AVAIL_STORES;
529 530
      consequently, all of them but this head are dead and may be deleted.
   -- if the expression is not available, the insn due to that it fails to be
531
      available is stored in REACHING_REG (via LAST_AVAIL_CHECK_FAILURE).
532 533 534 535 536 537 538 539 540

   The things are complicated a bit by fact that there already may be stores
   to the same MEM from other blocks; also caller must take care of the
   necessary cleanup of the temporary markers after end of the basic block.
   */

static void
find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
{
541
  struct st_expr * ptr;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
  rtx dest, set, tmp;
  int check_anticipatable, check_available;
  basic_block bb = BLOCK_FOR_INSN (insn);

  set = single_set (insn);
  if (!set)
    return;

  dest = SET_DEST (set);

  if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
      || GET_MODE (dest) == BLKmode)
    return;

  if (side_effects_p (dest))
    return;

  /* If we are handling exceptions, we must be careful with memory references
560
     that may trap.  If we are not, the behavior is undefined, so we may just
561
     continue.  */
562
  if (cfun->can_throw_non_call_exceptions && may_trap_p (dest))
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    return;

  /* Even if the destination cannot trap, the source may.  In this case we'd
     need to handle updating the REG_EH_REGION note.  */
  if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
    return;

  /* Make sure that the SET_SRC of this store insns can be assigned to
     a register, or we will fail later on in replace_store_insn, which
     assumes that we can do this.  But sometimes the target machine has
     oddities like MEM read-modify-write instruction.  See for example
     PR24257.  */
  if (!can_assign_to_reg_without_clobbers_p (SET_SRC (set)))
    return;

578
  ptr = st_expr_entry (dest);
579 580 581 582 583 584
  if (!ptr->pattern_regs)
    ptr->pattern_regs = extract_mentioned_regs (dest);

  /* Do not check for anticipatability if we either found one anticipatable
     store already, or tested for one and found out that it was killed.  */
  check_anticipatable = 0;
585
  if (!ptr->antic_stores)
586 587 588
    check_anticipatable = 1;
  else
    {
589
      tmp = XEXP (ptr->antic_stores, 0);
590 591 592 593 594 595 596 597 598 599
      if (tmp != NULL_RTX
	  && BLOCK_FOR_INSN (tmp) != bb)
	check_anticipatable = 1;
    }
  if (check_anticipatable)
    {
      if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
	tmp = NULL_RTX;
      else
	tmp = insn;
600
      ptr->antic_stores = alloc_INSN_LIST (tmp, ptr->antic_stores);
601 602 603 604 605 606
    }

  /* It is not necessary to check whether store is available if we did
     it successfully before; if we failed before, do not bother to check
     until we reach the insn that caused us to fail.  */
  check_available = 0;
607
  if (!ptr->avail_stores)
608 609 610
    check_available = 1;
  else
    {
611
      tmp = XEXP (ptr->avail_stores, 0);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
      if (BLOCK_FOR_INSN (tmp) != bb)
	check_available = 1;
    }
  if (check_available)
    {
      /* Check that we have already reached the insn at that the check
	 failed last time.  */
      if (LAST_AVAIL_CHECK_FAILURE (ptr))
	{
	  for (tmp = BB_END (bb);
	       tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
	       tmp = PREV_INSN (tmp))
	    continue;
	  if (tmp == insn)
	    check_available = 0;
	}
      else
	check_available = store_killed_after (dest, ptr->pattern_regs, insn,
					      bb, regs_set_after,
					      &LAST_AVAIL_CHECK_FAILURE (ptr));
    }
  if (!check_available)
634
    ptr->avail_stores = alloc_INSN_LIST (insn, ptr->avail_stores);
635 636 637 638 639 640 641 642 643
}

/* Find available and anticipatable stores.  */

static int
compute_store_table (void)
{
  int ret;
  basic_block bb;
644
#ifdef ENABLE_CHECKING
645
  unsigned regno;
646
#endif
647 648
  rtx insn, tmp;
  df_ref *def_rec;
649
  int *last_set_in, *already_set;
650
  struct st_expr * ptr, **prev_next_ptr_ptr;
651 652
  unsigned int max_gcse_regno = max_reg_num ();

653
  store_motion_mems = NULL;
654
  store_motion_mems_table.create (13);
655 656 657 658
  last_set_in = XCNEWVEC (int, max_gcse_regno);
  already_set = XNEWVEC (int, max_gcse_regno);

  /* Find all the stores we care about.  */
659
  FOR_EACH_BB_FN (bb, cfun)
660 661 662 663
    {
      /* First compute the registers set in this block.  */
      FOR_BB_INSNS (bb, insn)
	{
664

665
	  if (! NONDEBUG_INSN_P (insn))
666 667
	    continue;

668 669
	  for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
	    last_set_in[DF_REF_REGNO (*def_rec)] = INSN_UID (insn);
670 671 672 673 674 675
	}

      /* Now find the stores.  */
      memset (already_set, 0, sizeof (int) * max_gcse_regno);
      FOR_BB_INSNS (bb, insn)
	{
676
	  if (! NONDEBUG_INSN_P (insn))
677 678
	    continue;

679 680
	  for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
	    already_set[DF_REF_REGNO (*def_rec)] = INSN_UID (insn);
681 682 683 684 685

	  /* Now that we've marked regs, look for stores.  */
	  find_moveable_store (insn, already_set, last_set_in);

	  /* Unmark regs that are no longer set.  */
686 687 688
	  for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
	    if (last_set_in[DF_REF_REGNO (*def_rec)] == INSN_UID (insn))
	      last_set_in[DF_REF_REGNO (*def_rec)] = 0;
689 690 691 692 693 694 695 696 697
	}

#ifdef ENABLE_CHECKING
      /* last_set_in should now be all-zero.  */
      for (regno = 0; regno < max_gcse_regno; regno++)
	gcc_assert (!last_set_in[regno]);
#endif

      /* Clear temporary marks.  */
698
      for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
699
	{
700 701 702 703
	  LAST_AVAIL_CHECK_FAILURE (ptr) = NULL_RTX;
	  if (ptr->antic_stores
	      && (tmp = XEXP (ptr->antic_stores, 0)) == NULL_RTX)
	    ptr->antic_stores = XEXP (ptr->antic_stores, 1);
704 705 706 707 708
	}
    }

  /* Remove the stores that are not available anywhere, as there will
     be no opportunity to optimize them.  */
709
  for (ptr = store_motion_mems, prev_next_ptr_ptr = &store_motion_mems;
710 711 712
       ptr != NULL;
       ptr = *prev_next_ptr_ptr)
    {
713
      if (! ptr->avail_stores)
714 715
	{
	  *prev_next_ptr_ptr = ptr->next;
716
	  store_motion_mems_table.remove_elt_with_hash (ptr, ptr->hash_index);
717
	  free_st_expr_entry (ptr);
718 719 720 721 722
	}
      else
	prev_next_ptr_ptr = &ptr->next;
    }

723
  ret = enumerate_store_motion_mems ();
724 725

  if (dump_file)
726
    print_store_motion_mems (dump_file);
727 728 729 730 731 732

  free (last_set_in);
  free (already_set);
  return ret;
}

733 734 735 736 737
/* In all code following after this, REACHING_REG has its original
   meaning again.  Avoid confusion, and undef the accessor macro for
   the temporary marks usage in compute_store_table.  */
#undef LAST_AVAIL_CHECK_FAILURE

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/* Insert an instruction at the beginning of a basic block, and update
   the BB_HEAD if needed.  */

static void
insert_insn_start_basic_block (rtx insn, basic_block bb)
{
  /* Insert at start of successor block.  */
  rtx prev = PREV_INSN (BB_HEAD (bb));
  rtx before = BB_HEAD (bb);
  while (before != 0)
    {
      if (! LABEL_P (before)
	  && !NOTE_INSN_BASIC_BLOCK_P (before))
	break;
      prev = before;
      if (prev == BB_END (bb))
	break;
      before = NEXT_INSN (before);
    }

  insn = emit_insn_after_noloc (insn, prev, bb);

  if (dump_file)
    {
      fprintf (dump_file, "STORE_MOTION  insert store at start of BB %d:\n",
	       bb->index);
      print_inline_rtx (dump_file, insn, 6);
      fprintf (dump_file, "\n");
    }
}

769
/* This routine will insert a store on an edge. EXPR is the st_expr entry for
770 771 772 773
   the memory reference, and E is the edge to insert it on.  Returns nonzero
   if an edge insertion was performed.  */

static int
774
insert_store (struct st_expr * expr, edge e)
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
{
  rtx reg, insn;
  basic_block bb;
  edge tmp;
  edge_iterator ei;

  /* We did all the deleted before this insert, so if we didn't delete a
     store, then we haven't set the reaching reg yet either.  */
  if (expr->reaching_reg == NULL_RTX)
    return 0;

  if (e->flags & EDGE_FAKE)
    return 0;

  reg = expr->reaching_reg;
  insn = gen_move_insn (copy_rtx (expr->pattern), reg);

  /* If we are inserting this expression on ALL predecessor edges of a BB,
     insert it at the start of the BB, and reset the insert bits on the other
     edges so we don't try to insert it on the other edges.  */
  bb = e->dest;
  FOR_EACH_EDGE (tmp, ei, e->dest->preds)
    if (!(tmp->flags & EDGE_FAKE))
      {
	int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
H.J. Lu committed
800

801
	gcc_assert (index != EDGE_INDEX_NO_EDGE);
802
	if (! bitmap_bit_p (st_insert_map[index], expr->index))
803 804 805 806 807
	  break;
      }

  /* If tmp is NULL, we found an insertion on every edge, blank the
     insertion vector for these edges, and insert at the start of the BB.  */
808
  if (!tmp && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
809 810 811 812
    {
      FOR_EACH_EDGE (tmp, ei, e->dest->preds)
	{
	  int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
813
	  bitmap_clear_bit (st_insert_map[index], expr->index);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	}
      insert_insn_start_basic_block (insn, bb);
      return 0;
    }

  /* We can't put stores in the front of blocks pointed to by abnormal
     edges since that may put a store where one didn't used to be.  */
  gcc_assert (!(e->flags & EDGE_ABNORMAL));

  insert_insn_on_edge (insn, e);

  if (dump_file)
    {
      fprintf (dump_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
	       e->src->index, e->dest->index);
      print_inline_rtx (dump_file, insn, 6);
      fprintf (dump_file, "\n");
    }

  return 1;
}

/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
   memory location in SMEXPR set in basic block BB.

   This could be rather expensive.  */

static void
842
remove_reachable_equiv_notes (basic_block bb, struct st_expr *smexpr)
843 844 845 846
{
  edge_iterator *stack, ei;
  int sp;
  edge act;
847
  sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
848 849 850
  rtx last, insn, note;
  rtx mem = smexpr->pattern;

851
  stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun));
852 853 854
  sp = 0;
  ei = ei_start (bb->succs);

855
  bitmap_clear (visited);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
  while (1)
    {
      if (!act)
	{
	  if (!sp)
	    {
	      free (stack);
	      sbitmap_free (visited);
	      return;
	    }
	  act = ei_edge (stack[--sp]);
	}
      bb = act->dest;

872
      if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
873
	  || bitmap_bit_p (visited, bb->index))
874 875 876 877 878 879
	{
	  if (!ei_end_p (ei))
	      ei_next (&ei);
	  act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
	  continue;
	}
880
      bitmap_set_bit (visited, bb->index);
881

882
      if (bitmap_bit_p (st_antloc[bb->index], smexpr->index))
883
	{
884
	  for (last = smexpr->antic_stores;
885 886 887 888 889 890 891 892 893
	       BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
	       last = XEXP (last, 1))
	    continue;
	  last = XEXP (last, 0);
	}
      else
	last = NEXT_INSN (BB_END (bb));

      for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
894
	if (NONDEBUG_INSN_P (insn))
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	  {
	    note = find_reg_equal_equiv_note (insn);
	    if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
	      continue;

	    if (dump_file)
	      fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
		       INSN_UID (insn));
	    remove_note (insn, note);
	  }

      if (!ei_end_p (ei))
	ei_next (&ei);
      act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;

      if (EDGE_COUNT (bb->succs) > 0)
	{
	  if (act)
	    stack[sp++] = ei;
	  ei = ei_start (bb->succs);
	  act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
	}
    }
}

/* This routine will replace a store with a SET to a specified register.  */

static void
923
replace_store_insn (rtx reg, rtx del, basic_block bb, struct st_expr *smexpr)
924 925 926 927 928 929
{
  rtx insn, mem, note, set, ptr;

  mem = smexpr->pattern;
  insn = gen_move_insn (reg, SET_SRC (single_set (del)));

930
  for (ptr = smexpr->antic_stores; ptr; ptr = XEXP (ptr, 1))
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    if (XEXP (ptr, 0) == del)
      {
	XEXP (ptr, 0) = insn;
	break;
      }

  /* Move the notes from the deleted insn to its replacement.  */
  REG_NOTES (insn) = REG_NOTES (del);

  /* Emit the insn AFTER all the notes are transferred.
     This is cheaper since we avoid df rescanning for the note change.  */
  insn = emit_insn_after (insn, del);

  if (dump_file)
    {
      fprintf (dump_file,
	       "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
      print_inline_rtx (dump_file, del, 6);
      fprintf (dump_file, "\nSTORE_MOTION  replaced with insn:\n      ");
      print_inline_rtx (dump_file, insn, 6);
      fprintf (dump_file, "\n");
    }

  delete_insn (del);

  /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
     they are no longer accurate provided that they are reached by this
     definition, so drop them.  */
  for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
960
    if (NONDEBUG_INSN_P (insn))
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
      {
	set = single_set (insn);
	if (!set)
	  continue;
	if (exp_equiv_p (SET_DEST (set), mem, 0, true))
	  return;
	note = find_reg_equal_equiv_note (insn);
	if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
	  continue;

	if (dump_file)
	  fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
		   INSN_UID (insn));
	remove_note (insn, note);
      }
  remove_reachable_equiv_notes (bb, smexpr);
}


/* Delete a store, but copy the value that would have been stored into
   the reaching_reg for later storing.  */

static void
984
delete_store (struct st_expr * expr, basic_block bb)
985 986 987 988 989 990 991 992
{
  rtx reg, i, del;

  if (expr->reaching_reg == NULL_RTX)
    expr->reaching_reg = gen_reg_rtx_and_attrs (expr->pattern);

  reg = expr->reaching_reg;

993
  for (i = expr->avail_stores; i; i = XEXP (i, 1))
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    {
      del = XEXP (i, 0);
      if (BLOCK_FOR_INSN (del) == bb)
	{
	  /* We know there is only one since we deleted redundant
	     ones during the available computation.  */
	  replace_store_insn (reg, del, bb, expr);
	  break;
	}
    }
}

/* Fill in available, anticipatable, transparent and kill vectors in
   STORE_DATA, based on lists of available and anticipatable stores.  */
static void
build_store_vectors (void)
{
  basic_block bb;
  int *regs_set_in_block;
  rtx insn, st;
1014
  struct st_expr * ptr;
1015 1016 1017 1018
  unsigned int max_gcse_regno = max_reg_num ();

  /* Build the gen_vector. This is any store in the table which is not killed
     by aliasing later in its block.  */
1019 1020 1021
  st_avloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				   num_stores);
  bitmap_vector_clear (st_avloc, last_basic_block_for_fn (cfun));
1022

1023 1024 1025
  st_antloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				    num_stores);
  bitmap_vector_clear (st_antloc, last_basic_block_for_fn (cfun));
1026

1027
  for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1028
    {
1029
      for (st = ptr->avail_stores; st != NULL; st = XEXP (st, 1))
1030 1031 1032 1033 1034 1035 1036 1037
	{
	  insn = XEXP (st, 0);
	  bb = BLOCK_FOR_INSN (insn);

	  /* If we've already seen an available expression in this block,
	     we can delete this one (It occurs earlier in the block). We'll
	     copy the SRC expression to an unused register in case there
	     are any side effects.  */
1038
	  if (bitmap_bit_p (st_avloc[bb->index], ptr->index))
1039 1040 1041 1042 1043 1044 1045
	    {
	      rtx r = gen_reg_rtx_and_attrs (ptr->pattern);
	      if (dump_file)
		fprintf (dump_file, "Removing redundant store:\n");
	      replace_store_insn (r, XEXP (st, 0), bb, ptr);
	      continue;
	    }
1046
	  bitmap_set_bit (st_avloc[bb->index], ptr->index);
1047 1048
	}

1049
      for (st = ptr->antic_stores; st != NULL; st = XEXP (st, 1))
1050 1051 1052
	{
	  insn = XEXP (st, 0);
	  bb = BLOCK_FOR_INSN (insn);
1053
	  bitmap_set_bit (st_antloc[bb->index], ptr->index);
1054 1055 1056
	}
    }

1057 1058
  st_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
  bitmap_vector_clear (st_kill, last_basic_block_for_fn (cfun));
1059

1060 1061
  st_transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
  bitmap_vector_clear (st_transp, last_basic_block_for_fn (cfun));
1062 1063
  regs_set_in_block = XNEWVEC (int, max_gcse_regno);

1064
  FOR_EACH_BB_FN (bb, cfun)
1065
    {
1066 1067
      memset (regs_set_in_block, 0, sizeof (int) * max_gcse_regno);

1068
      FOR_BB_INSNS (bb, insn)
1069
	if (NONDEBUG_INSN_P (insn))
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	  {
	    df_ref *def_rec;
	    for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
	      {
		unsigned int ref_regno = DF_REF_REGNO (*def_rec);
		if (ref_regno < max_gcse_regno)
		  regs_set_in_block[DF_REF_REGNO (*def_rec)] = 1;
	      }
	  }

1080
      for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1081 1082 1083 1084 1085 1086
	{
	  if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
				  bb, regs_set_in_block, NULL))
	    {
	      /* It should not be necessary to consider the expression
		 killed if it is both anticipatable and available.  */
1087 1088 1089
	      if (!bitmap_bit_p (st_antloc[bb->index], ptr->index)
		  || !bitmap_bit_p (st_avloc[bb->index], ptr->index))
		bitmap_set_bit (st_kill[bb->index], ptr->index);
1090 1091
	    }
	  else
1092
	    bitmap_set_bit (st_transp[bb->index], ptr->index);
1093 1094 1095 1096 1097 1098 1099
	}
    }

  free (regs_set_in_block);

  if (dump_file)
    {
1100 1101 1102 1103 1104 1105 1106 1107
      dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
			  last_basic_block_for_fn (cfun));
      dump_bitmap_vector (dump_file, "st_kill", "", st_kill,
			  last_basic_block_for_fn (cfun));
      dump_bitmap_vector (dump_file, "st_transp", "", st_transp,
			  last_basic_block_for_fn (cfun));
      dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
			  last_basic_block_for_fn (cfun));
1108 1109 1110 1111 1112 1113 1114 1115
    }
}

/* Free memory used by store motion.  */

static void
free_store_memory (void)
{
1116 1117 1118 1119 1120 1121 1122 1123
  free_store_motion_mems ();

  if (st_avloc)
    sbitmap_vector_free (st_avloc);
  if (st_kill)
    sbitmap_vector_free (st_kill);
  if (st_transp)
    sbitmap_vector_free (st_transp);
1124 1125
  if (st_antloc)
    sbitmap_vector_free (st_antloc);
1126 1127 1128 1129
  if (st_insert_map)
    sbitmap_vector_free (st_insert_map);
  if (st_delete_map)
    sbitmap_vector_free (st_delete_map);
1130

1131 1132
  st_avloc = st_kill = st_transp = st_antloc = NULL;
  st_insert_map = st_delete_map = NULL;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
}

/* Perform store motion. Much like gcse, except we move expressions the
   other way by looking at the flowgraph in reverse.
   Return non-zero if transformations are performed by the pass.  */

static int
one_store_motion_pass (void)
{
  basic_block bb;
  int x;
1144 1145 1146 1147
  struct st_expr * ptr;
  int did_edge_inserts = 0;
  int n_stores_deleted = 0;
  int n_stores_created = 0;
1148 1149 1150 1151 1152 1153 1154

  init_alias_analysis ();

  /* Find all the available and anticipatable stores.  */
  num_stores = compute_store_table ();
  if (num_stores == 0)
    {
1155
      store_motion_mems_table.dispose ();
1156 1157 1158 1159 1160 1161 1162 1163 1164
      end_alias_analysis ();
      return 0;
    }

  /* Now compute kill & transp vectors.  */
  build_store_vectors ();
  add_noreturn_fake_exit_edges ();
  connect_infinite_loops_to_exit ();

1165 1166 1167
  edge_list = pre_edge_rev_lcm (num_stores, st_transp, st_avloc,
				st_antloc, st_kill, &st_insert_map,
				&st_delete_map);
1168 1169

  /* Now we want to insert the new stores which are going to be needed.  */
1170
  for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1171 1172 1173 1174
    {
      /* If any of the edges we have above are abnormal, we can't move this
	 store.  */
      for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
1175
	if (bitmap_bit_p (st_insert_map[x], ptr->index)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	    && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
	  break;

      if (x >= 0)
	{
	  if (dump_file != NULL)
	    fprintf (dump_file,
		     "Can't replace store %d: abnormal edge from %d to %d\n",
		     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
		     INDEX_EDGE (edge_list, x)->dest->index);
	  continue;
	}
H.J. Lu committed
1188

1189 1190
      /* Now we want to insert the new stores which are going to be needed.  */

1191
      FOR_EACH_BB_FN (bb, cfun)
1192
	if (bitmap_bit_p (st_delete_map[bb->index], ptr->index))
1193 1194
	  {
	    delete_store (ptr, bb);
1195
	    n_stores_deleted++;
1196 1197 1198
	  }

      for (x = 0; x < NUM_EDGES (edge_list); x++)
1199
	if (bitmap_bit_p (st_insert_map[x], ptr->index))
1200
	  {
1201 1202
	    did_edge_inserts |= insert_store (ptr, INDEX_EDGE (edge_list, x));
	    n_stores_created++;
1203 1204 1205
	  }
    }

1206
  if (did_edge_inserts)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    commit_edge_insertions ();

  free_store_memory ();
  free_edge_list (edge_list);
  remove_fake_exit_edges ();
  end_alias_analysis ();

  if (dump_file)
    {
      fprintf (dump_file, "STORE_MOTION of %s, %d basic blocks, ",
1217
	       current_function_name (), n_basic_blocks_for_fn (cfun));
1218 1219
      fprintf (dump_file, "%d insns deleted, %d insns created\n",
	       n_stores_deleted, n_stores_created);
1220 1221
    }

1222
  return (n_stores_deleted > 0 || n_stores_created > 0);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
}


static unsigned int
execute_rtl_store_motion (void)
{
  delete_unreachable_blocks ();
  df_analyze ();
  flag_rerun_cse_after_global_opts |= one_store_motion_pass ();
  return 0;
}

1235 1236 1237
namespace {

const pass_data pass_data_rtl_store_motion =
1238
{
1239 1240 1241 1242 1243 1244 1245 1246 1247
  RTL_PASS, /* type */
  "store_motion", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_execute */
  TV_LSM, /* tv_id */
  PROP_cfglayout, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
1248
  TODO_df_finish, /* todo_flags_finish */
1249
};
1250 1251 1252 1253

class pass_rtl_store_motion : public rtl_opt_pass
{
public:
1254 1255
  pass_rtl_store_motion (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_store_motion, ctxt)
1256 1257 1258
  {}

  /* opt_pass methods: */
1259
  virtual bool gate (function *);
1260 1261 1262 1263
  virtual unsigned int execute (function *)
    {
      return execute_rtl_store_motion ();
    }
1264 1265 1266

}; // class pass_rtl_store_motion

1267 1268 1269 1270 1271 1272 1273 1274 1275
bool
pass_rtl_store_motion::gate (function *fun)
{
  return optimize > 0 && flag_gcse_sm
    && !fun->calls_setjmp
    && optimize_function_for_speed_p (fun)
    && dbg_cnt (store_motion);
}

1276 1277 1278 1279 1280 1281 1282
} // anon namespace

rtl_opt_pass *
make_pass_rtl_store_motion (gcc::context *ctxt)
{
  return new pass_rtl_store_motion (ctxt);
}