dfp.c 16.7 KB
Newer Older
Jon Grimm committed
1
/* Decimal floating point support.
2 3
   Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software
   Foundation, Inc.
Jon Grimm committed
4 5 6 7 8

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
Jon Grimm committed
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Jon Grimm committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "toplev.h"
#include "real.h"
#include "tm_p.h"
#include "dfp.h"

/* The order of the following headers is important for making sure
   decNumber structure is large enough to hold decimal128 digits.  */

#include "decimal128.h"
35
#include "decimal128Local.h"
Jon Grimm committed
36 37 38 39
#include "decimal64.h"
#include "decimal32.h"
#include "decNumber.h"

40 41 42 43
#ifndef WORDS_BIGENDIAN
#define WORDS_BIGENDIAN 0
#endif

Jon Grimm committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/* Initialize R (a real with the decimal flag set) from DN.  Can
   utilize status passed in via CONTEXT, if a previous operation had
   interesting status.  */

static void
decimal_from_decnumber (REAL_VALUE_TYPE *r, decNumber *dn, decContext *context)
{
  memset (r, 0, sizeof (REAL_VALUE_TYPE));

  r->cl = rvc_normal;
  if (decNumberIsNaN (dn))
    r->cl = rvc_nan;
  if (decNumberIsInfinite (dn))
    r->cl = rvc_inf;
  if (context->status & DEC_Overflow)
    r->cl = rvc_inf;
  if (decNumberIsNegative (dn))
    r->sign = 1;
  r->decimal = 1;

  if (r->cl != rvc_normal)
    return;

  decContextDefault (context, DEC_INIT_DECIMAL128);
  context->traps = 0;

  decimal128FromNumber ((decimal128 *) r->sig, dn, context);
}

/* Create decimal encoded R from string S.  */

void
decimal_real_from_string (REAL_VALUE_TYPE *r, const char *s)
{
  decNumber dn;
  decContext set;
  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

83
  decNumberFromString (&dn, s, &set);
Jon Grimm committed
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

  /* It would be more efficient to store directly in decNumber format,
     but that is impractical from current data structure size.
     Encoding as a decimal128 is much more compact.  */
  decimal_from_decnumber (r, &dn, &set);
}

/* Initialize a decNumber from a REAL_VALUE_TYPE.  */

static void
decimal_to_decnumber (const REAL_VALUE_TYPE *r, decNumber *dn)
{
  decContext set;
  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  switch (r->cl)
    {
    case rvc_zero:
      decNumberZero (dn);
      break;
    case rvc_inf:
106
      decNumberFromString (dn, "Infinity", &set);
Jon Grimm committed
107 108 109
      break;
    case rvc_nan:
      if (r->signalling)
110
        decNumberFromString (dn, "snan", &set);
Jon Grimm committed
111
      else
112
        decNumberFromString (dn, "nan", &set);
Jon Grimm committed
113 114 115
      break;
    case rvc_normal:
      gcc_assert (r->decimal);
116
      decimal128ToNumber ((const decimal128 *) r->sig, dn);
Jon Grimm committed
117 118 119 120 121 122 123
      break;
    default:
      gcc_unreachable ();
    }

  /* Fix up sign bit.  */
  if (r->sign != decNumberIsNegative (dn))
124
    dn->bits ^= DECNEG;
Jon Grimm committed
125 126
}

127
/* Encode a real into an IEEE 754 decimal32 type.  */
Jon Grimm committed
128

129
void
Jon Grimm committed
130 131 132 133 134 135 136 137 138 139 140 141 142
encode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
		  long *buf, const REAL_VALUE_TYPE *r)
{
  decNumber dn;
  decimal32 d32;
  decContext set;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  decimal_to_decnumber (r, &dn); 
  decimal32FromNumber (&d32, &dn, &set);

143
  memcpy (&buf[0], d32.bytes, sizeof (uint32_t));
Jon Grimm committed
144 145
}

146
/* Decode an IEEE 754 decimal32 type into a real.  */
Jon Grimm committed
147

148 149 150
void
decode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
		  REAL_VALUE_TYPE *r, const long *buf)
Jon Grimm committed
151 152 153 154 155 156 157 158
{
  decNumber dn;
  decimal32 d32;
  decContext set;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

159
  memcpy (&d32.bytes, &buf[0], sizeof (uint32_t));
Jon Grimm committed
160 161 162 163 164

  decimal32ToNumber (&d32, &dn);
  decimal_from_decnumber (r, &dn, &set); 
}

165
/* Encode a real into an IEEE 754 decimal64 type.  */
Jon Grimm committed
166

167
void
Jon Grimm committed
168 169 170 171 172 173 174 175 176 177 178 179 180
encode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
		  long *buf, const REAL_VALUE_TYPE *r)
{
  decNumber dn;
  decimal64 d64;
  decContext set;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  decimal_to_decnumber (r, &dn);
  decimal64FromNumber (&d64, &dn, &set);

181 182
  if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
    {
183 184
      memcpy (&buf[0], &d64.bytes[0], sizeof (uint32_t));
      memcpy (&buf[1], &d64.bytes[4], sizeof (uint32_t));
185 186 187
    }
  else
    {
188 189
      memcpy (&buf[0], &d64.bytes[4], sizeof (uint32_t));
      memcpy (&buf[1], &d64.bytes[0], sizeof (uint32_t));
190
    }
Jon Grimm committed
191 192
}

193
/* Decode an IEEE 754 decimal64 type into a real.  */
Jon Grimm committed
194

195
void
Jon Grimm committed
196 197 198 199 200 201 202 203 204 205
decode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
		  REAL_VALUE_TYPE *r, const long *buf)
{ 
  decNumber dn;
  decimal64 d64;
  decContext set;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

206 207
  if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
    {
208 209
      memcpy (&d64.bytes[0], &buf[0], sizeof (uint32_t));
      memcpy (&d64.bytes[4], &buf[1], sizeof (uint32_t));
210 211 212
    }
  else
    {
213 214
      memcpy (&d64.bytes[0], &buf[1], sizeof (uint32_t));
      memcpy (&d64.bytes[4], &buf[0], sizeof (uint32_t));
215
    }
Jon Grimm committed
216 217 218 219 220

  decimal64ToNumber (&d64, &dn);
  decimal_from_decnumber (r, &dn, &set); 
}

221
/* Encode a real into an IEEE 754 decimal128 type.  */
Jon Grimm committed
222

223
void
Jon Grimm committed
224 225 226 227 228 229 230 231 232 233 234 235 236
encode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
		   long *buf, const REAL_VALUE_TYPE *r)
{
  decNumber dn;
  decContext set;
  decimal128 d128;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  decimal_to_decnumber (r, &dn);
  decimal128FromNumber (&d128, &dn, &set);

237 238
  if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
    {
239 240 241 242
      memcpy (&buf[0], &d128.bytes[0], sizeof (uint32_t));
      memcpy (&buf[1], &d128.bytes[4], sizeof (uint32_t));
      memcpy (&buf[2], &d128.bytes[8], sizeof (uint32_t));
      memcpy (&buf[3], &d128.bytes[12], sizeof (uint32_t));
243 244 245
    }
  else
    {
246 247 248 249
      memcpy (&buf[0], &d128.bytes[12], sizeof (uint32_t));
      memcpy (&buf[1], &d128.bytes[8], sizeof (uint32_t));
      memcpy (&buf[2], &d128.bytes[4], sizeof (uint32_t));
      memcpy (&buf[3], &d128.bytes[0], sizeof (uint32_t));
250
    }
Jon Grimm committed
251 252
}

253
/* Decode an IEEE 754 decimal128 type into a real.  */
Jon Grimm committed
254

255
void
Jon Grimm committed
256 257 258 259 260 261 262 263 264 265
decode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
		   REAL_VALUE_TYPE *r, const long *buf)
{
  decNumber dn;
  decimal128 d128;
  decContext set;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

266 267
  if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
    {
268 269 270 271
      memcpy (&d128.bytes[0],  &buf[0], sizeof (uint32_t));
      memcpy (&d128.bytes[4],  &buf[1], sizeof (uint32_t));
      memcpy (&d128.bytes[8],  &buf[2], sizeof (uint32_t));
      memcpy (&d128.bytes[12], &buf[3], sizeof (uint32_t));
272 273 274
    }
  else
    {
275 276 277 278
      memcpy (&d128.bytes[0],  &buf[3], sizeof (uint32_t));
      memcpy (&d128.bytes[4],  &buf[2], sizeof (uint32_t));
      memcpy (&d128.bytes[8],  &buf[1], sizeof (uint32_t));
      memcpy (&d128.bytes[12], &buf[0], sizeof (uint32_t));
279
    }
Jon Grimm committed
280 281 282 283 284 285 286 287 288 289 290 291 292

  decimal128ToNumber (&d128, &dn);
  decimal_from_decnumber (r, &dn, &set); 
}

/* Helper function to convert from a binary real internal
   representation.  */

static void
decimal_to_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from,
		   enum machine_mode mode)
{
  char string[256];
293
  const decimal128 *const d128 = (const decimal128 *) from->sig;
Jon Grimm committed
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

  decimal128ToString (d128, string);
  real_from_string3 (to, string, mode);
}


/* Helper function to convert from a binary real internal
   representation.  */

static void
decimal_from_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from)
{
  char string[256];

  /* We convert to string, then to decNumber then to decimal128.  */
  real_to_decimal (string, from, sizeof (string), 0, 1);
  decimal_real_from_string (to, string);
}

/* Helper function to real.c:do_compare() to handle decimal internal
314
   representation including when one of the operands is still in the
Jon Grimm committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
   binary internal representation.  */

int
decimal_do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
		    int nan_result)
{
  decContext set;
  decNumber dn, dn2, dn3;
  REAL_VALUE_TYPE a1, b1;

  /* If either operand is non-decimal, create temporary versions.  */
  if (!a->decimal)
    {
      decimal_from_binary (&a1, a);
      a = &a1;
    }
  if (!b->decimal)
    {
      decimal_from_binary (&b1, b);
      b = &b1;
    }
    
  /* Convert into decNumber form for comparison operation.  */
  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;  
340 341
  decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
  decimal128ToNumber ((const decimal128 *) b->sig, &dn3);
Jon Grimm committed
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

  /* Finally, do the comparison.  */
  decNumberCompare (&dn, &dn2, &dn3, &set);

  /* Return the comparison result.  */
  if (decNumberIsNaN (&dn))
    return nan_result;
  else if (decNumberIsZero (&dn))
    return 0;
  else if (decNumberIsNegative (&dn))
    return -1;
  else 
    return 1;
}

/* Helper to round_for_format, handling decimal float types.  */

void
decimal_round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
{
  decNumber dn;
  decContext set;

  /* Real encoding occurs later.  */
  if (r->cl != rvc_normal)
    return;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;
  decimal128ToNumber ((decimal128 *) r->sig, &dn);

  if (fmt == &decimal_quad_format)
    {
      /* The internal format is already in this format.  */
      return;
    }
  else if (fmt == &decimal_single_format)
    {
      decimal32 d32;
      decContextDefault (&set, DEC_INIT_DECIMAL32);
      set.traps = 0;

      decimal32FromNumber (&d32, &dn, &set);
      decimal32ToNumber (&d32, &dn);
    }
  else if (fmt == &decimal_double_format)
    {
      decimal64 d64;
      decContextDefault (&set, DEC_INIT_DECIMAL64);
      set.traps = 0;

      decimal64FromNumber (&d64, &dn, &set);
      decimal64ToNumber (&d64, &dn);
    }
  else
    gcc_unreachable ();

  decimal_from_decnumber (r, &dn, &set);
}

/* Extend or truncate to a new mode.  Handles conversions between
   binary and decimal types.  */

void
decimal_real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode, 
		      const REAL_VALUE_TYPE *a)
{
  const struct real_format *fmt = REAL_MODE_FORMAT (mode);

  if (a->decimal && fmt->b == 10)
    return;
  if (a->decimal)
      decimal_to_binary (r, a, mode);
  else
      decimal_from_binary (r, a);
}

/* Render R_ORIG as a decimal floating point constant.  Emit DIGITS
   significant digits in the result, bounded by BUF_SIZE.  If DIGITS
   is 0, choose the maximum for the representation.  If
   CROP_TRAILING_ZEROS, strip trailing zeros.  Currently, not honoring
   DIGITS or CROP_TRAILING_ZEROS.  */

425 426 427 428 429
void
decimal_real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig,
			 size_t buf_size,
			 size_t digits ATTRIBUTE_UNUSED,
			 int crop_trailing_zeros ATTRIBUTE_UNUSED)
Jon Grimm committed
430
{
431
  const decimal128 *const d128 = (const decimal128*) r_orig->sig;
Jon Grimm committed
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

  /* decimal128ToString requires space for at least 24 characters;
     Require two more for suffix.  */
  gcc_assert (buf_size >= 24);
  decimal128ToString (d128, str);
}

static bool
decimal_do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
		const REAL_VALUE_TYPE *op1, int subtract_p)
{
  decNumber dn;
  decContext set;
  decNumber dn2, dn3;

  decimal_to_decnumber (op0, &dn2);
  decimal_to_decnumber (op1, &dn3);

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  if (subtract_p)
    decNumberSubtract (&dn, &dn2, &dn3, &set);
  else 
    decNumberAdd (&dn, &dn2, &dn3, &set);

  decimal_from_decnumber (r, &dn, &set);

  /* Return true, if inexact.  */
  return (set.status & DEC_Inexact);
}

/* Compute R = OP0 * OP1.  */

static bool
decimal_do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
		     const REAL_VALUE_TYPE *op1)
{
  decContext set;
  decNumber dn, dn2, dn3;

  decimal_to_decnumber (op0, &dn2);
  decimal_to_decnumber (op1, &dn3);

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  decNumberMultiply (&dn, &dn2, &dn3, &set);
  decimal_from_decnumber (r, &dn, &set);

  /* Return true, if inexact.  */
  return (set.status & DEC_Inexact);
}

/* Compute R = OP0 / OP1.  */

static bool
decimal_do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
		   const REAL_VALUE_TYPE *op1)
{
  decContext set;
  decNumber dn, dn2, dn3;

  decimal_to_decnumber (op0, &dn2);
  decimal_to_decnumber (op1, &dn3);

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;

  decNumberDivide (&dn, &dn2, &dn3, &set);
  decimal_from_decnumber (r, &dn, &set);

  /* Return true, if inexact.  */
  return (set.status & DEC_Inexact);
}

/* Set R to A truncated to an integral value toward zero (decimal
   floating point).  */

void
decimal_do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
{
  decNumber dn, dn2;
  decContext set;

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;
  set.round = DEC_ROUND_DOWN;
520
  decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
Jon Grimm committed
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

  decNumberToIntegralValue (&dn, &dn2, &set);
  decimal_from_decnumber (r, &dn, &set);
}

/* Render decimal float value R as an integer.  */

HOST_WIDE_INT
decimal_real_to_integer (const REAL_VALUE_TYPE *r)
{
  decContext set;
  decNumber dn, dn2, dn3;
  REAL_VALUE_TYPE to;
  char string[256];

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;
  set.round = DEC_ROUND_DOWN;
539
  decimal128ToNumber ((const decimal128 *) r->sig, &dn);
Jon Grimm committed
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

  decNumberToIntegralValue (&dn2, &dn, &set);
  decNumberZero (&dn3);
  decNumberRescale (&dn, &dn2, &dn3, &set);

  /* Convert to REAL_VALUE_TYPE and call appropriate conversion
     function.  */
  decNumberToString (&dn, string);
  real_from_string (&to, string);
  return real_to_integer (&to);
}

/* Likewise, but to an integer pair, HI+LOW.  */

void
decimal_real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
			  const REAL_VALUE_TYPE *r)
{
  decContext set;
  decNumber dn, dn2, dn3;
  REAL_VALUE_TYPE to;
  char string[256];

  decContextDefault (&set, DEC_INIT_DECIMAL128);
  set.traps = 0;
  set.round = DEC_ROUND_DOWN;
566
  decimal128ToNumber ((const decimal128 *) r->sig, &dn);
Jon Grimm committed
567 568 569 570 571

  decNumberToIntegralValue (&dn2, &dn, &set);
  decNumberZero (&dn3);
  decNumberRescale (&dn, &dn2, &dn3, &set);

572
  /* Convert to REAL_VALUE_TYPE and call appropriate conversion
Jon Grimm committed
573 574 575 576 577 578
     function.  */
  decNumberToString (&dn, string);
  real_from_string (&to, string);
  real_to_integer2 (plow, phigh, &to);
}

579 580 581
/* Perform the decimal floating point operation described by CODE.
   For a unary operation, OP1 will be NULL.  This function returns
   true if the result may be inexact due to loss of precision.  */
Jon Grimm committed
582 583

bool
584
decimal_real_arithmetic (REAL_VALUE_TYPE *r, enum tree_code code,
Jon Grimm committed
585 586 587
			 const REAL_VALUE_TYPE *op0,
			 const REAL_VALUE_TYPE *op1)
{
588
  REAL_VALUE_TYPE a, b;
Jon Grimm committed
589

590
  /* If either operand is non-decimal, create temporaries.  */
Jon Grimm committed
591 592
  if (!op0->decimal)
    {
593 594
      decimal_from_binary (&a, op0);
      op0 = &a;
Jon Grimm committed
595 596 597
    }
  if (op1 && !op1->decimal)
    {
598 599
      decimal_from_binary (&b, op1);
      op1 = &b;
Jon Grimm committed
600 601 602 603 604
    }

  switch (code)
    {
    case PLUS_EXPR:
605
      return decimal_do_add (r, op0, op1, 0);
Jon Grimm committed
606 607

    case MINUS_EXPR:
608
      return decimal_do_add (r, op0, op1, 1);
Jon Grimm committed
609 610

    case MULT_EXPR:
611
      return decimal_do_multiply (r, op0, op1);
Jon Grimm committed
612 613

    case RDIV_EXPR:
614
      return decimal_do_divide (r, op0, op1);
Jon Grimm committed
615 616 617 618 619 620 621 622

    case MIN_EXPR:
      if (op1->cl == rvc_nan)
        *r = *op1;
      else if (real_compare (UNLT_EXPR, op0, op1))
        *r = *op0;
      else
        *r = *op1;
623
      return false;
Jon Grimm committed
624 625 626 627 628 629 630 631

    case MAX_EXPR:
      if (op1->cl == rvc_nan)
        *r = *op1;
      else if (real_compare (LT_EXPR, op0, op1))
        *r = *op1;
      else
        *r = *op0;
632
      return false;
Jon Grimm committed
633 634 635 636

    case NEGATE_EXPR:
      {
	*r = *op0;
637 638
	/* Flip sign bit.  */
	decimal128FlipSign ((decimal128 *) r->sig);
Jon Grimm committed
639 640 641
	/* Keep sign field in sync.  */
	r->sign ^= 1;
      }
642
      return false;
Jon Grimm committed
643 644 645 646

    case ABS_EXPR:
      {
        *r = *op0;
647 648
	/* Clear sign bit.  */
	decimal128ClearSign ((decimal128 *) r->sig);
Jon Grimm committed
649 650 651
	/* Keep sign field in sync.  */
	r->sign = 0;
      }
652
      return false;
Jon Grimm committed
653 654 655

    case FIX_TRUNC_EXPR:
      decimal_do_fix_trunc (r, op0);
656
      return false;
Jon Grimm committed
657 658 659 660 661 662 663 664 665 666 667 668

    default:
      gcc_unreachable ();
    }
}

/* Fills R with the largest finite value representable in mode MODE.
   If SIGN is nonzero, R is set to the most negative finite value.  */

void
decimal_real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
{ 
669
  const char *max;
Jon Grimm committed
670 671 672 673

  switch (mode)
    {
    case SDmode:
674
      max = "9.999999E96";
Jon Grimm committed
675 676
      break;
    case DDmode:
677
      max = "9.999999999999999E384";
Jon Grimm committed
678 679
      break;
    case TDmode:
680
      max = "9.999999999999999999999999999999999E6144";
Jon Grimm committed
681 682 683 684 685 686 687
      break;
    default:
      gcc_unreachable ();
    }

  decimal_real_from_string (r, max);
  if (sign)
688
    decimal128SetSign ((decimal128 *) r->sig, 1);
Jon Grimm committed
689
}