vec.h 42.6 KB
Newer Older
1
/* Vector API for GNU compiler.
2
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
3 4 5 6 7 8
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20 21 22 23 24 25 26 27 28 29 30

#ifndef GCC_VEC_H
#define GCC_VEC_H

/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

31 32 33 34 35 36 37 38
   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.
39

40 41 42 43 44
   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

45 46 47 48 49
   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
50 51 52 53 54 55
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.
56 57 58 59

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
60
   (it dies if there is not).  The latter will reallocate the
61 62 63
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
64 65 66 67
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
68 69
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
70
   specific size from the get go.
71 72

   You should prefer the push and pop operations, as they append and
73 74
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
75 76 77 78
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
79 80
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
81
   array using insert that will maintain sorted order.
82

83 84 85 86 87 88
   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
89
   
90 91 92 93
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
94
   
95
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
96
   get the non-memory allocation version, and then a
97
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
98 99 100 101 102
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
103 104 105 106 107 108 109 110 111 112
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.
113 114 115

   An example of their use would be,

116 117 118
   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.
119 120

   struct my_struct {
121
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
122 123 124 125
   };

   struct my_struct *s;

126
   if (VEC_length(tree,s->v)) { we have some contents }
127
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
128 129
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }
130 131 132 133 134

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
135 136 137 138 139
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */
140 141

/* Length of vector
142
   unsigned VEC_T_length(const VEC(T) *v);
143 144 145

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */
146

147
#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
148

149 150 151 152

/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

153
   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
154 155 156 157

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


158
/* Get the final element of the vector.
159
   T VEC_T_last(VEC(T) *v); // Integer
160 161 162
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

163
   Return the final element.  V must not be empty.  */
164

165
#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
166 167

/* Index into vector
168
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
169 170
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
171

172
   Return the IX'th element.  If IX must be in the domain of V.  */
173

174
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
175 176

/* Iterate over vector
177
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
178 179
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
180

181 182 183
   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,
184

185
     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
186
       continue;  */
187

188
#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
189 190

/* Allocate new vector.
191
   VEC(T,A) *VEC_T_A_alloc(int reserve);
192

193
   Allocate a new vector with space for RESERVE objects.  If RESERVE
194
   is zero, NO vector is created.  */
195

196
#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
197

198
/* Free a vector.
199
   void VEC_T_A_free(VEC(T,A) *&);
200 201 202

   Free a vector and set it to NULL.  */

203
#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
204

205 206 207
/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
   
208 209
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
210 211
   
   These allow the caller to perform the memory allocation.  */
212

213 214
#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
215

216 217 218 219
/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
220
   old vectors need not be allocated by the same mechanism.  */
221 222 223

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

224 225 226 227
/* Determine if a vector has additional capacity.
   
   int VEC_T_space (VEC(T) *v,int reserve)

228
   If V has space for RESERVE additional entries, return nonzero.  You
229 230
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
231
   nonzero in exactly the same circumstances that VEC_T_reserve
232 233
   will.  */

234 235
#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
236 237

/* Reserve space.
238
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
239

240 241 242 243
   Ensure that V has at least RESERVE slots available.  This will
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */
244

245 246
#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
247

248 249 250 251 252 253 254 255 256 257 258
/* Reserve space exactly.
   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will not
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve_exact(T,A,V,R)	\
	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

259
/* Push object with no reallocation
260
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
261 262 263 264 265
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
   
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
266 267
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */
268

269 270
#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
271 272

/* Push object with reallocation
273
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
274 275
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
276 277 278 279
   
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */
280

281 282
#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
283 284

/* Pop element off end
285
   T VEC_T_pop (VEC(T) *v);		// Integer
286 287 288 289 290
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */
291

292
#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
293

294
/* Truncate to specific length
295
   void VEC_T_truncate (VEC(T) *v, unsigned len);
296
   
297 298
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */
299

300 301 302 303 304 305 306 307 308 309 310
#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
311
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
312

313 314 315 316 317 318 319 320 321 322
/* Grow to a specific length.
   void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  */

#define VEC_safe_grow_cleared(T,A,V,I)		\
	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))

323
/* Replace element
324
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
325 326
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
327 328 329 330 331 332
   
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */
333

334 335
#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
336 337

/* Insert object with no reallocation
338
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
339 340
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
341 342 343 344
   
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
345
   place. There must be sufficient space.  */
346

347 348
#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
349 350

/* Insert object with reallocation
351
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
352 353
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
354 355 356 357 358
   
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */
359

360 361
#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
362 363
     
/* Remove element retaining order
364
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
365 366
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
367 368
   
   Remove an element from the IXth position of V. Ordering of
369
   remaining elements is preserved.  For pointer vectors returns the
370
   removed object.  This is an O(N) operation due to a memmove.  */
371

372 373
#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
374 375

/* Remove element destroying order
376
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
377 378
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
379 380 381 382
   
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */
383

384 385
#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
386

387 388 389 390 391 392 393 394 395
/* Remove a block of elements
   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
   
   Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(1) operation.  */

#define VEC_block_remove(T,V,I,L)	\
	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))

396 397 398 399 400
/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */
401

402
#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
403

404 405
/* Find the first index in the vector not less than the object.
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 
406 407
                               bool (*lessthan) (const T, const T)); // Integer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 
408 409 410 411 412 413
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
   
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
414
   true if the first argument is strictly less than the second.  */
415
   
416 417
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
418

419
/* Reallocate an array of elements with prefix.  */
420
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
421
extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
422
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
423 424
extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
				     MEM_STAT_DECL);
425 426
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
427
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
428
extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
429
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
430 431
extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
				       MEM_STAT_DECL);
432
#define vec_heap_free(V) free (V)
433 434

#if ENABLE_CHECKING
435 436 437
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
438
     
439 440
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
441 442 443 444

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
445
#else
446 447 448
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
449
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
450 451
#endif

452 453 454 455
/* Note: gengtype has hardwired knowledge of the expansions of the
   VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
   expansions of these macros you may need to change gengtype too.  */

456 457
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
458

459 460
/* Base of vector type, not user visible.  */     
#define VEC_T(T,B)							  \
461 462 463 464 465 466 467 468
typedef struct VEC(T,B) 				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
469
typedef struct VEC(T,B) GTY(())				 		  \
470
{									  \
471 472
  unsigned num;								  \
  unsigned alloc;							  \
473 474 475 476
  T GTY ((length ("%h.num"))) vec[1];					  \
} VEC(T,B)

/* Derived vector type, user visible.  */
477
#define VEC_TA_GTY(T,B,A,GTY)						  \
478 479 480 481 482 483 484
typedef struct VEC(T,A) GTY						  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

/* Convert to base type.  */
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
485

486 487 488 489 490 491 492 493 494 495 496 497 498
/* Vector of integer-like object.  */
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
499
DEF_VEC_ALLOC_FUNC_I(T,A)						  \
500 501
struct vec_swallow_trailing_semi

502
/* Vector of pointer to object.  */
503
#define DEF_VEC_P(T) 							  \
504
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
505
{									  \
506
  (void)((T)1 == (void *)1);						  \
507 508
}									  \
									  \
509 510 511 512 513 514 515 516 517 518
VEC_T_GTY(T,base);							  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_P(T)						  \
519
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
520 521 522 523
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
524 525
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
526
{									  \
527
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
528
  									  \
Nathan Sidwell committed
529
  return vec_->vec[vec_->num - 1];					  \
530 531
}									  \
									  \
532 533
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
534
{									  \
535
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
536 537 538 539
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
540 541
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
542
{									  \
543 544 545 546 547 548 549 550 551 552
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
553 554
}									  \
									  \
555
static inline size_t VEC_OP (T,base,embedded_size)			  \
556
     (int alloc_)							  \
557
{									  \
558
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
559 560
}									  \
									  \
561 562
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
563 564 565
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
566 567
}									  \
									  \
568 569
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
570
{									  \
571 572
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
573 574
}									  \
									  \
575 576
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
577
{									  \
578
  T *slot_;								  \
579
  									  \
580
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
581 582 583 584 585 586
  slot_ = &vec_->vec[vec_->num++];					  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
587
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
588
{									  \
589
  T obj_;								  \
590
									  \
591
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
592 593 594 595 596
  obj_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
597 598
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
599
{									  \
600
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
601 602
  if (vec_)								  \
    vec_->num = size_;							  \
603 604
}									  \
									  \
605 606
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
607
{									  \
608
  T old_obj_;								  \
609
									  \
610
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
611 612 613 614 615 616
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
617 618 619 620 621 622 623
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
624
  slot_ = &vec_->vec[ix_];						  \
625
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
626 627 628 629 630
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
631 632
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
633
{									  \
634 635
  T *slot_;								  \
  T obj_;								  \
636
									  \
637
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
638 639
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
640
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
641 642 643 644
									  \
  return obj_;								  \
}									  \
									  \
645 646
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
647
{									  \
648 649
  T *slot_;								  \
  T obj_;								  \
650
									  \
651
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
652 653 654 655 656 657 658
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  *slot_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
659 660 661 662 663 664 665 666 667 668 669
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
670 671
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
672 673 674 675
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
700 701 702
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
703 704 705
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
706 707
  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
						 PASS_MEM_STAT);	  \
708 709 710 711 712 713 714 715 716 717
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
718 719 720 721 722 723 724
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
725 726
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
			       (NULL, len_ PASS_MEM_STAT));		  \
727 728 729 730 731 732 733
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
734 735 736
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
737
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
738 739 740 741 742 743 744 745
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
746 747 748 749 750 751 752 753 754 755 756 757 758
static inline int VEC_OP (T,A,reserve_exact)  				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
						    PASS_MEM_STAT);	  \
		  							  \
  return extend;							  \
}									  \
									  \
759 760 761 762 763 764
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
765 766 767
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
768 769 770
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
771 772 773 774 775 776 777 778 779
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
795
}
796 797

/* Vector of object.  */
798
#define DEF_VEC_O(T)							  \
799 800 801 802 803 804 805 806 807 808
VEC_T_GTY(T,base);							  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_O(T)						  \
809
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
810 811 812 813
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
814
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
815
{									  \
816
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
817 818 819 820
  									  \
  return &vec_->vec[vec_->num - 1];					  \
}									  \
									  \
821 822
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
823
{									  \
824
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
825 826 827 828
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
829 830
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
831
{									  \
832 833 834 835 836 837 838 839 840 841
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
842 843
}									  \
									  \
844
static inline size_t VEC_OP (T,base,embedded_size)			  \
845
     (int alloc_)							  \
846
{									  \
847
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
848 849
}									  \
									  \
850 851
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
852
{									  \
853 854
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
855 856
}									  \
									  \
857 858
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
859
{									  \
860 861
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
862 863
}									  \
									  \
864 865
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
866
{									  \
867
  T *slot_;								  \
868
  									  \
869
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
870 871 872 873 874 875 876
  slot_ = &vec_->vec[vec_->num++];					  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
877
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
878
{									  \
879
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
880 881 882
  --vec_->num;								  \
}									  \
									  \
883 884
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
885
{									  \
886
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
887 888
  if (vec_)								  \
    vec_->num = size_;							  \
889 890
}									  \
									  \
891 892
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
893
{									  \
894
  T *slot_;								  \
895
									  \
896
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
897 898 899 900 901 902 903
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
904 905 906 907 908 909 910
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
911
  slot_ = &vec_->vec[ix_];						  \
912
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
913 914 915 916 917 918
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
919 920
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
921
{									  \
922
  T *slot_;								  \
923
									  \
924 925 926
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
927 928
}									  \
									  \
929 930
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
931
{									  \
932 933 934
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
}									  \
935
									  \
936 937 938 939 940 941 942 943 944 945 946
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
947 948 949 950
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
951 952
}									  \
									  \
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
977
}
978

979
#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
980 981
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
982
{									  \
983 984 985 986
  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
						 offsetof (VEC(T,A),base.vec), \
						 sizeof (T)		  \
						 PASS_MEM_STAT);	  \
987 988
}									  \
									  \
989 990 991 992 993 994 995
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
996 997
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
998 999 1000 1001 1002 1003 1004 1005 1006
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
1007 1008
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
1009
{									  \
1010 1011 1012 1013 1014 1015 1016 1017
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1018
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_,				  \
			  offsetof (VEC(T,A),base.vec),			  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1045 1046 1047 1048 1049 1050
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1051 1052 1053
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1054 1055 1056
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1057 1058 1059 1060 1061 1062 1063 1064 1065
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
1082
}
1083 1084 1085 1086 1087

#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
1088 1089 1090
  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
		       sizeof (T) PASS_MEM_STAT);			  \
1091 1092 1093 1094 1095 1096 1097 1098 1099
}									  \
									  \
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1100 1101
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1122
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1148 1149 1150 1151 1152 1153
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1154 1155 1156
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1157 1158 1159
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1160 1161 1162 1163 1164 1165 1166 1167 1168
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

1187
#endif /* GCC_VEC_H */