asan.c 72.8 KB
Newer Older
1
/* AddressSanitizer, a fast memory error detector.
2
   Copyright (C) 2012-2013 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
   Contributed by Kostya Serebryany <kcc@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gimple.h"
#include "tree-iterator.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "asan.h"
#include "gimple-pretty-print.h"
Jakub Jelinek committed
31
#include "target.h"
32 33
#include "expr.h"
#include "optabs.h"
34
#include "output.h"
35
#include "tm_p.h"
36
#include "langhooks.h"
37 38
#include "hash-table.h"
#include "alloc-pool.h"
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* AddressSanitizer finds out-of-bounds and use-after-free bugs
   with <2x slowdown on average.

   The tool consists of two parts:
   instrumentation module (this file) and a run-time library.
   The instrumentation module adds a run-time check before every memory insn.
     For a 8- or 16- byte load accessing address X:
       ShadowAddr = (X >> 3) + Offset
       ShadowValue = *(char*)ShadowAddr;  // *(short*) for 16-byte access.
       if (ShadowValue)
	 __asan_report_load8(X);
     For a load of N bytes (N=1, 2 or 4) from address X:
       ShadowAddr = (X >> 3) + Offset
       ShadowValue = *(char*)ShadowAddr;
       if (ShadowValue)
	 if ((X & 7) + N - 1 > ShadowValue)
	   __asan_report_loadN(X);
   Stores are instrumented similarly, but using __asan_report_storeN functions.
   A call too __asan_init() is inserted to the list of module CTORs.

   The run-time library redefines malloc (so that redzone are inserted around
   the allocated memory) and free (so that reuse of free-ed memory is delayed),
   provides __asan_report* and __asan_init functions.

   Read more:
   http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm

   The current implementation supports detection of out-of-bounds and
   use-after-free in the heap, on the stack and for global variables.

   [Protection of stack variables]

   To understand how detection of out-of-bounds and use-after-free works
   for stack variables, lets look at this example on x86_64 where the
   stack grows downward:
75 76 77 78 79 80 81 82 83 84 85 86 87

     int
     foo ()
     {
       char a[23] = {0};
       int b[2] = {0};

       a[5] = 1;
       b[1] = 2;

       return a[5] + b[1];
     }

88 89
   For this function, the stack protected by asan will be organized as
   follows, from the top of the stack to the bottom:
90

91
   Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
92

93 94 95
   Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
	   the next slot be 32 bytes aligned; this one is called Partial
	   Redzone; this 32 bytes alignment is an asan constraint]
96

97
   Slot 3/ [24 bytes for variable 'a']
98

99
   Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
100

101
   Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
102

103
   Slot 6/ [8 bytes for variable 'b']
104

105 106
   Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
	    'LEFT RedZone']
107

108 109
   The 32 bytes of LEFT red zone at the bottom of the stack can be
   decomposed as such:
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

     1/ The first 8 bytes contain a magical asan number that is always
     0x41B58AB3.

     2/ The following 8 bytes contains a pointer to a string (to be
     parsed at runtime by the runtime asan library), which format is
     the following:

      "<function-name> <space> <num-of-variables-on-the-stack>
      (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
      <length-of-var-in-bytes> ){n} "

	where '(...){n}' means the content inside the parenthesis occurs 'n'
	times, with 'n' being the number of variables on the stack.

      3/ The following 16 bytes of the red zone have no particular
      format.

128
   The shadow memory for that stack layout is going to look like this:
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

     - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
       The F1 byte pattern is a magic number called
       ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
       the memory for that shadow byte is part of a the LEFT red zone
       intended to seat at the bottom of the variables on the stack.

     - content of shadow memory 8 bytes for slots 6 and 5:
       0xF4F4F400.  The F4 byte pattern is a magic number
       called ASAN_STACK_MAGIC_PARTIAL.  It flags the fact that the
       memory region for this shadow byte is a PARTIAL red zone
       intended to pad a variable A, so that the slot following
       {A,padding} is 32 bytes aligned.

       Note that the fact that the least significant byte of this
       shadow memory content is 00 means that 8 bytes of its
       corresponding memory (which corresponds to the memory of
       variable 'b') is addressable.

     - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
       The F2 byte pattern is a magic number called
       ASAN_STACK_MAGIC_MIDDLE.  It flags the fact that the memory
       region for this shadow byte is a MIDDLE red zone intended to
       seat between two 32 aligned slots of {variable,padding}.

     - content of shadow memory 8 bytes for slot 3 and 2:
155
       0xF4000000.  This represents is the concatenation of
156 157 158 159
       variable 'a' and the partial red zone following it, like what we
       had for variable 'b'.  The least significant 3 bytes being 00
       means that the 3 bytes of variable 'a' are addressable.

160
     - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
161 162 163 164 165
       The F3 byte pattern is a magic number called
       ASAN_STACK_MAGIC_RIGHT.  It flags the fact that the memory
       region for this shadow byte is a RIGHT red zone intended to seat
       at the top of the variables of the stack.

166 167 168 169 170 171 172 173
   Note that the real variable layout is done in expand_used_vars in
   cfgexpand.c.  As far as Address Sanitizer is concerned, it lays out
   stack variables as well as the different red zones, emits some
   prologue code to populate the shadow memory as to poison (mark as
   non-accessible) the regions of the red zones and mark the regions of
   stack variables as accessible, and emit some epilogue code to
   un-poison (mark as accessible) the regions of red zones right before
   the function exits.
174

175
   [Protection of global variables]
176

177 178 179
   The basic idea is to insert a red zone between two global variables
   and install a constructor function that calls the asan runtime to do
   the populating of the relevant shadow memory regions at load time.
180

181 182 183
   So the global variables are laid out as to insert a red zone between
   them. The size of the red zones is so that each variable starts on a
   32 bytes boundary.
184

185 186 187
   Then a constructor function is installed so that, for each global
   variable, it calls the runtime asan library function
   __asan_register_globals_with an instance of this type:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

     struct __asan_global
     {
       // Address of the beginning of the global variable.
       const void *__beg;

       // Initial size of the global variable.
       uptr __size;

       // Size of the global variable + size of the red zone.  This
       //   size is 32 bytes aligned.
       uptr __size_with_redzone;

       // Name of the global variable.
       const void *__name;

       // This is always set to NULL for now.
       uptr __has_dynamic_init;
     }

208 209
   A destructor function that calls the runtime asan library function
   _asan_unregister_globals is also installed.  */
210 211

alias_set_type asan_shadow_set = -1;
212

213 214 215 216
/* Pointer types to 1 resp. 2 byte integers in shadow memory.  A separate
   alias set is used for all shadow memory accesses.  */
static GTY(()) tree shadow_ptr_types[2];

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/* Hashtable support for memory references used by gimple
   statements.  */

/* This type represents a reference to a memory region.  */
struct asan_mem_ref
{
  /* The expression of the begining of the memory region.  */
  tree start;

  /* The size of the access (can be 1, 2, 4, 8, 16 for now).  */
  char access_size;
};

static alloc_pool asan_mem_ref_alloc_pool;

/* This creates the alloc pool used to store the instances of
   asan_mem_ref that are stored in the hash table asan_mem_ref_ht.  */

static alloc_pool
asan_mem_ref_get_alloc_pool ()
{
  if (asan_mem_ref_alloc_pool == NULL)
    asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
						 sizeof (asan_mem_ref),
						 10);
  return asan_mem_ref_alloc_pool;
    
}

/* Initializes an instance of asan_mem_ref.  */

static void
asan_mem_ref_init (asan_mem_ref *ref, tree start, char access_size)
{
  ref->start = start;
  ref->access_size = access_size;
}

/* Allocates memory for an instance of asan_mem_ref into the memory
   pool returned by asan_mem_ref_get_alloc_pool and initialize it.
   START is the address of (or the expression pointing to) the
   beginning of memory reference.  ACCESS_SIZE is the size of the
   access to the referenced memory.  */

static asan_mem_ref*
asan_mem_ref_new (tree start, char access_size)
{
  asan_mem_ref *ref =
    (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());

  asan_mem_ref_init (ref, start, access_size);
  return ref;
}

/* This builds and returns a pointer to the end of the memory region
   that starts at START and of length LEN.  */

tree
asan_mem_ref_get_end (tree start, tree len)
{
  if (len == NULL_TREE || integer_zerop (len))
    return start;

  return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
}

/*  Return a tree expression that represents the end of the referenced
    memory region.  Beware that this function can actually build a new
    tree expression.  */

tree
asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
{
  return asan_mem_ref_get_end (ref->start, len);
}

struct asan_mem_ref_hasher
  : typed_noop_remove <asan_mem_ref>
{
  typedef asan_mem_ref value_type;
  typedef asan_mem_ref compare_type;

  static inline hashval_t hash (const value_type *);
  static inline bool equal (const value_type *, const compare_type *);
};

/* Hash a memory reference.  */

inline hashval_t
asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
{
  hashval_t h = iterative_hash_expr (mem_ref->start, 0);
  h = iterative_hash_hashval_t (h, mem_ref->access_size);
  return h;
}

/* Compare two memory references.  We accept the length of either
   memory references to be NULL_TREE.  */

inline bool
asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
			    const asan_mem_ref *m2)
{
  return (m1->access_size == m2->access_size
	  && operand_equal_p (m1->start, m2->start, 0));
}

static hash_table <asan_mem_ref_hasher> asan_mem_ref_ht;

/* Returns a reference to the hash table containing memory references.
   This function ensures that the hash table is created.  Note that
   this hash table is updated by the function
   update_mem_ref_hash_table.  */

static hash_table <asan_mem_ref_hasher> &
get_mem_ref_hash_table ()
{
  if (!asan_mem_ref_ht.is_created ())
    asan_mem_ref_ht.create (10);

  return asan_mem_ref_ht;
}

/* Clear all entries from the memory references hash table.  */

static void
empty_mem_ref_hash_table ()
{
  if (asan_mem_ref_ht.is_created ())
    asan_mem_ref_ht.empty ();
}

/* Free the memory references hash table.  */

static void
free_mem_ref_resources ()
{
  if (asan_mem_ref_ht.is_created ())
    asan_mem_ref_ht.dispose ();

  if (asan_mem_ref_alloc_pool)
    {
      free_alloc_pool (asan_mem_ref_alloc_pool);
      asan_mem_ref_alloc_pool = NULL;
    }
}

/* Return true iff the memory reference REF has been instrumented.  */

static bool
has_mem_ref_been_instrumented (tree ref, char access_size)
{
  asan_mem_ref r;
  asan_mem_ref_init (&r, ref, access_size);

  return (get_mem_ref_hash_table ().find (&r) != NULL);
}

/* Return true iff the memory reference REF has been instrumented.  */

static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref)
{
  return has_mem_ref_been_instrumented (ref->start, ref->access_size);
}

/* Return true iff access to memory region starting at REF and of
   length LEN has been instrumented.  */

static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
{
  /* First let's see if the address of the beginning of REF has been
     instrumented.  */
  if (!has_mem_ref_been_instrumented (ref))
    return false;

  if (len != 0)
    {
      /* Let's see if the end of the region has been instrumented.  */
      if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
					  ref->access_size))
	return false;
    }
  return true;
}

/* Set REF to the memory reference present in a gimple assignment
   ASSIGNMENT.  Return true upon successful completion, false
   otherwise.  */

static bool
get_mem_ref_of_assignment (const gimple assignment,
			   asan_mem_ref *ref,
			   bool *ref_is_store)
{
  gcc_assert (gimple_assign_single_p (assignment));

  if (gimple_store_p (assignment))
    {
      ref->start = gimple_assign_lhs (assignment);
      *ref_is_store = true;
    }
  else if (gimple_assign_load_p (assignment))
    {
      ref->start = gimple_assign_rhs1 (assignment);
      *ref_is_store = false;
    }
  else
    return false;

  ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
  return true;
}

/* Return the memory references contained in a gimple statement
   representing a builtin call that has to do with memory access.  */

static bool
get_mem_refs_of_builtin_call (const gimple call,
			      asan_mem_ref *src0,
			      tree *src0_len,
			      bool *src0_is_store,
			      asan_mem_ref *src1,
			      tree *src1_len,
			      bool *src1_is_store,
			      asan_mem_ref *dst,
			      tree *dst_len,
			      bool *dst_is_store,
			      bool *dest_is_deref)
{
  gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));

  tree callee = gimple_call_fndecl (call);
  tree source0 = NULL_TREE, source1 = NULL_TREE,
    dest = NULL_TREE, len = NULL_TREE;
  bool is_store = true, got_reference_p = false;
  char access_size = 1;

  switch (DECL_FUNCTION_CODE (callee))
    {
      /* (s, s, n) style memops.  */
    case BUILT_IN_BCMP:
    case BUILT_IN_MEMCMP:
      source0 = gimple_call_arg (call, 0);
      source1 = gimple_call_arg (call, 1);
      len = gimple_call_arg (call, 2);
      break;

      /* (src, dest, n) style memops.  */
    case BUILT_IN_BCOPY:
      source0 = gimple_call_arg (call, 0);
      dest = gimple_call_arg (call, 1);
      len = gimple_call_arg (call, 2);
      break;

      /* (dest, src, n) style memops.  */
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMMOVE:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMPCPY_CHK:
      dest = gimple_call_arg (call, 0);
      source0 = gimple_call_arg (call, 1);
      len = gimple_call_arg (call, 2);
      break;

      /* (dest, n) style memops.  */
    case BUILT_IN_BZERO:
      dest = gimple_call_arg (call, 0);
      len = gimple_call_arg (call, 1);
      break;

      /* (dest, x, n) style memops*/
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET_CHK:
      dest = gimple_call_arg (call, 0);
      len = gimple_call_arg (call, 2);
      break;

    case BUILT_IN_STRLEN:
      source0 = gimple_call_arg (call, 0);
      len = gimple_call_lhs (call);
      break ;

    /* And now the __atomic* and __sync builtins.
       These are handled differently from the classical memory memory
       access builtins above.  */

    case BUILT_IN_ATOMIC_LOAD_1:
    case BUILT_IN_ATOMIC_LOAD_2:
    case BUILT_IN_ATOMIC_LOAD_4:
    case BUILT_IN_ATOMIC_LOAD_8:
    case BUILT_IN_ATOMIC_LOAD_16:
      is_store = false;
      /* fall through.  */

    case BUILT_IN_SYNC_FETCH_AND_ADD_1:
    case BUILT_IN_SYNC_FETCH_AND_ADD_2:
    case BUILT_IN_SYNC_FETCH_AND_ADD_4:
    case BUILT_IN_SYNC_FETCH_AND_ADD_8:
    case BUILT_IN_SYNC_FETCH_AND_ADD_16:

    case BUILT_IN_SYNC_FETCH_AND_SUB_1:
    case BUILT_IN_SYNC_FETCH_AND_SUB_2:
    case BUILT_IN_SYNC_FETCH_AND_SUB_4:
    case BUILT_IN_SYNC_FETCH_AND_SUB_8:
    case BUILT_IN_SYNC_FETCH_AND_SUB_16:

    case BUILT_IN_SYNC_FETCH_AND_OR_1:
    case BUILT_IN_SYNC_FETCH_AND_OR_2:
    case BUILT_IN_SYNC_FETCH_AND_OR_4:
    case BUILT_IN_SYNC_FETCH_AND_OR_8:
    case BUILT_IN_SYNC_FETCH_AND_OR_16:

    case BUILT_IN_SYNC_FETCH_AND_AND_1:
    case BUILT_IN_SYNC_FETCH_AND_AND_2:
    case BUILT_IN_SYNC_FETCH_AND_AND_4:
    case BUILT_IN_SYNC_FETCH_AND_AND_8:
    case BUILT_IN_SYNC_FETCH_AND_AND_16:

    case BUILT_IN_SYNC_FETCH_AND_XOR_1:
    case BUILT_IN_SYNC_FETCH_AND_XOR_2:
    case BUILT_IN_SYNC_FETCH_AND_XOR_4:
    case BUILT_IN_SYNC_FETCH_AND_XOR_8:
    case BUILT_IN_SYNC_FETCH_AND_XOR_16:

    case BUILT_IN_SYNC_FETCH_AND_NAND_1:
    case BUILT_IN_SYNC_FETCH_AND_NAND_2:
    case BUILT_IN_SYNC_FETCH_AND_NAND_4:
    case BUILT_IN_SYNC_FETCH_AND_NAND_8:

    case BUILT_IN_SYNC_ADD_AND_FETCH_1:
    case BUILT_IN_SYNC_ADD_AND_FETCH_2:
    case BUILT_IN_SYNC_ADD_AND_FETCH_4:
    case BUILT_IN_SYNC_ADD_AND_FETCH_8:
    case BUILT_IN_SYNC_ADD_AND_FETCH_16:

    case BUILT_IN_SYNC_SUB_AND_FETCH_1:
    case BUILT_IN_SYNC_SUB_AND_FETCH_2:
    case BUILT_IN_SYNC_SUB_AND_FETCH_4:
    case BUILT_IN_SYNC_SUB_AND_FETCH_8:
    case BUILT_IN_SYNC_SUB_AND_FETCH_16:

    case BUILT_IN_SYNC_OR_AND_FETCH_1:
    case BUILT_IN_SYNC_OR_AND_FETCH_2:
    case BUILT_IN_SYNC_OR_AND_FETCH_4:
    case BUILT_IN_SYNC_OR_AND_FETCH_8:
    case BUILT_IN_SYNC_OR_AND_FETCH_16:

    case BUILT_IN_SYNC_AND_AND_FETCH_1:
    case BUILT_IN_SYNC_AND_AND_FETCH_2:
    case BUILT_IN_SYNC_AND_AND_FETCH_4:
    case BUILT_IN_SYNC_AND_AND_FETCH_8:
    case BUILT_IN_SYNC_AND_AND_FETCH_16:

    case BUILT_IN_SYNC_XOR_AND_FETCH_1:
    case BUILT_IN_SYNC_XOR_AND_FETCH_2:
    case BUILT_IN_SYNC_XOR_AND_FETCH_4:
    case BUILT_IN_SYNC_XOR_AND_FETCH_8:
    case BUILT_IN_SYNC_XOR_AND_FETCH_16:

    case BUILT_IN_SYNC_NAND_AND_FETCH_1:
    case BUILT_IN_SYNC_NAND_AND_FETCH_2:
    case BUILT_IN_SYNC_NAND_AND_FETCH_4:
    case BUILT_IN_SYNC_NAND_AND_FETCH_8:

    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:

    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:

    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:

    case BUILT_IN_SYNC_LOCK_RELEASE_1:
    case BUILT_IN_SYNC_LOCK_RELEASE_2:
    case BUILT_IN_SYNC_LOCK_RELEASE_4:
    case BUILT_IN_SYNC_LOCK_RELEASE_8:
    case BUILT_IN_SYNC_LOCK_RELEASE_16:

    case BUILT_IN_ATOMIC_EXCHANGE_1:
    case BUILT_IN_ATOMIC_EXCHANGE_2:
    case BUILT_IN_ATOMIC_EXCHANGE_4:
    case BUILT_IN_ATOMIC_EXCHANGE_8:
    case BUILT_IN_ATOMIC_EXCHANGE_16:

    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:

    case BUILT_IN_ATOMIC_STORE_1:
    case BUILT_IN_ATOMIC_STORE_2:
    case BUILT_IN_ATOMIC_STORE_4:
    case BUILT_IN_ATOMIC_STORE_8:
    case BUILT_IN_ATOMIC_STORE_16:

    case BUILT_IN_ATOMIC_ADD_FETCH_1:
    case BUILT_IN_ATOMIC_ADD_FETCH_2:
    case BUILT_IN_ATOMIC_ADD_FETCH_4:
    case BUILT_IN_ATOMIC_ADD_FETCH_8:
    case BUILT_IN_ATOMIC_ADD_FETCH_16:

    case BUILT_IN_ATOMIC_SUB_FETCH_1:
    case BUILT_IN_ATOMIC_SUB_FETCH_2:
    case BUILT_IN_ATOMIC_SUB_FETCH_4:
    case BUILT_IN_ATOMIC_SUB_FETCH_8:
    case BUILT_IN_ATOMIC_SUB_FETCH_16:

    case BUILT_IN_ATOMIC_AND_FETCH_1:
    case BUILT_IN_ATOMIC_AND_FETCH_2:
    case BUILT_IN_ATOMIC_AND_FETCH_4:
    case BUILT_IN_ATOMIC_AND_FETCH_8:
    case BUILT_IN_ATOMIC_AND_FETCH_16:

    case BUILT_IN_ATOMIC_NAND_FETCH_1:
    case BUILT_IN_ATOMIC_NAND_FETCH_2:
    case BUILT_IN_ATOMIC_NAND_FETCH_4:
    case BUILT_IN_ATOMIC_NAND_FETCH_8:
    case BUILT_IN_ATOMIC_NAND_FETCH_16:

    case BUILT_IN_ATOMIC_XOR_FETCH_1:
    case BUILT_IN_ATOMIC_XOR_FETCH_2:
    case BUILT_IN_ATOMIC_XOR_FETCH_4:
    case BUILT_IN_ATOMIC_XOR_FETCH_8:
    case BUILT_IN_ATOMIC_XOR_FETCH_16:

    case BUILT_IN_ATOMIC_OR_FETCH_1:
    case BUILT_IN_ATOMIC_OR_FETCH_2:
    case BUILT_IN_ATOMIC_OR_FETCH_4:
    case BUILT_IN_ATOMIC_OR_FETCH_8:
    case BUILT_IN_ATOMIC_OR_FETCH_16:

    case BUILT_IN_ATOMIC_FETCH_ADD_1:
    case BUILT_IN_ATOMIC_FETCH_ADD_2:
    case BUILT_IN_ATOMIC_FETCH_ADD_4:
    case BUILT_IN_ATOMIC_FETCH_ADD_8:
    case BUILT_IN_ATOMIC_FETCH_ADD_16:

    case BUILT_IN_ATOMIC_FETCH_SUB_1:
    case BUILT_IN_ATOMIC_FETCH_SUB_2:
    case BUILT_IN_ATOMIC_FETCH_SUB_4:
    case BUILT_IN_ATOMIC_FETCH_SUB_8:
    case BUILT_IN_ATOMIC_FETCH_SUB_16:

    case BUILT_IN_ATOMIC_FETCH_AND_1:
    case BUILT_IN_ATOMIC_FETCH_AND_2:
    case BUILT_IN_ATOMIC_FETCH_AND_4:
    case BUILT_IN_ATOMIC_FETCH_AND_8:
    case BUILT_IN_ATOMIC_FETCH_AND_16:

    case BUILT_IN_ATOMIC_FETCH_NAND_1:
    case BUILT_IN_ATOMIC_FETCH_NAND_2:
    case BUILT_IN_ATOMIC_FETCH_NAND_4:
    case BUILT_IN_ATOMIC_FETCH_NAND_8:
    case BUILT_IN_ATOMIC_FETCH_NAND_16:

    case BUILT_IN_ATOMIC_FETCH_XOR_1:
    case BUILT_IN_ATOMIC_FETCH_XOR_2:
    case BUILT_IN_ATOMIC_FETCH_XOR_4:
    case BUILT_IN_ATOMIC_FETCH_XOR_8:
    case BUILT_IN_ATOMIC_FETCH_XOR_16:

    case BUILT_IN_ATOMIC_FETCH_OR_1:
    case BUILT_IN_ATOMIC_FETCH_OR_2:
    case BUILT_IN_ATOMIC_FETCH_OR_4:
    case BUILT_IN_ATOMIC_FETCH_OR_8:
    case BUILT_IN_ATOMIC_FETCH_OR_16:
      {
	dest = gimple_call_arg (call, 0);
	/* DEST represents the address of a memory location.
	   instrument_derefs wants the memory location, so lets
	   dereference the address DEST before handing it to
	   instrument_derefs.  */
	if (TREE_CODE (dest) == ADDR_EXPR)
	  dest = TREE_OPERAND (dest, 0);
	else if (TREE_CODE (dest) == SSA_NAME)
	  dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
			 dest, build_int_cst (TREE_TYPE (dest), 0));
	else
	  gcc_unreachable ();

	access_size = int_size_in_bytes (TREE_TYPE (dest));
      }

    default:
      /* The other builtins memory access are not instrumented in this
	 function because they either don't have any length parameter,
	 or their length parameter is just a limit.  */
      break;
    }

  if (len != NULL_TREE)
    {
      if (source0 != NULL_TREE)
	{
	  src0->start = source0;
	  src0->access_size = access_size;
	  *src0_len = len;
	  *src0_is_store = false;
	}

      if (source1 != NULL_TREE)
	{
	  src1->start = source1;
	  src1->access_size = access_size;
	  *src1_len = len;
	  *src1_is_store = false;
	}

      if (dest != NULL_TREE)
	{
	  dst->start = dest;
	  dst->access_size = access_size;
	  *dst_len = len;
	  *dst_is_store = true;
	}

      got_reference_p = true;
    }
750 751 752 753 754 755 756 757 758
  else if (dest)
    {
      dst->start = dest;
      dst->access_size = access_size;
      *dst_len = NULL_TREE;
      *dst_is_store = is_store;
      *dest_is_deref = true;
      got_reference_p = true;
    }
759

760
  return got_reference_p;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
}

/* Return true iff a given gimple statement has been instrumented.
   Note that the statement is "defined" by the memory references it
   contains.  */

static bool
has_stmt_been_instrumented_p (gimple stmt)
{
  if (gimple_assign_single_p (stmt))
    {
      bool r_is_store;
      asan_mem_ref r;
      asan_mem_ref_init (&r, NULL, 1);

      if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
	return has_mem_ref_been_instrumented (&r);
    }
  else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
    {
      asan_mem_ref src0, src1, dest;
      asan_mem_ref_init (&src0, NULL, 1);
      asan_mem_ref_init (&src1, NULL, 1);
      asan_mem_ref_init (&dest, NULL, 1);

      tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
      bool src0_is_store = false, src1_is_store = false,
	dest_is_store = false, dest_is_deref = false;
      if (get_mem_refs_of_builtin_call (stmt,
					&src0, &src0_len, &src0_is_store,
					&src1, &src1_len, &src1_is_store,
					&dest, &dest_len, &dest_is_store,
					&dest_is_deref))
	{
	  if (src0.start != NULL_TREE
	      && !has_mem_ref_been_instrumented (&src0, src0_len))
	    return false;

	  if (src1.start != NULL_TREE
	      && !has_mem_ref_been_instrumented (&src1, src1_len))
	    return false;

	  if (dest.start != NULL_TREE
	      && !has_mem_ref_been_instrumented (&dest, dest_len))
	    return false;

	  return true;
	}
    }
  return false;
}

/*  Insert a memory reference into the hash table.  */

static void
update_mem_ref_hash_table (tree ref, char access_size)
{
  hash_table <asan_mem_ref_hasher> ht = get_mem_ref_hash_table ();

  asan_mem_ref r;
  asan_mem_ref_init (&r, ref, access_size);

  asan_mem_ref **slot = ht.find_slot (&r, INSERT);
  if (*slot == NULL)
    *slot = asan_mem_ref_new (ref, access_size);
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/* Initialize shadow_ptr_types array.  */

static void
asan_init_shadow_ptr_types (void)
{
  asan_shadow_set = new_alias_set ();
  shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
  TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
  shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
  shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
  TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
  shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
  initialize_sanitizer_builtins ();
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/* Asan pretty-printer, used for buidling of the description STRING_CSTs.  */
static pretty_printer asan_pp;
static bool asan_pp_initialized;

/* Initialize asan_pp.  */

static void
asan_pp_initialize (void)
{
  pp_construct (&asan_pp, /* prefix */NULL, /* line-width */0);
  asan_pp_initialized = true;
}

/* Create ADDR_EXPR of STRING_CST with asan_pp text.  */

static tree
asan_pp_string (void)
{
  const char *buf = pp_base_formatted_text (&asan_pp);
  size_t len = strlen (buf);
  tree ret = build_string (len + 1, buf);
  TREE_TYPE (ret)
865 866
    = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
			build_index_type (size_int (len)));
867 868
  TREE_READONLY (ret) = 1;
  TREE_STATIC (ret) = 1;
869
  return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
870 871
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885
/* Return a CONST_INT representing 4 subsequent shadow memory bytes.  */

static rtx
asan_shadow_cst (unsigned char shadow_bytes[4])
{
  int i;
  unsigned HOST_WIDE_INT val = 0;
  gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
  for (i = 0; i < 4; i++)
    val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
	   << (BITS_PER_UNIT * i);
  return GEN_INT (trunc_int_for_mode (val, SImode));
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/* Clear shadow memory at SHADOW_MEM, LEN bytes.  Can't call a library call here
   though.  */

static void
asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
{
  rtx insn, insns, top_label, end, addr, tmp, jump;

  start_sequence ();
  clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
  insns = get_insns ();
  end_sequence ();
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (CALL_P (insn))
      break;
  if (insn == NULL_RTX)
    {
      emit_insn (insns);
      return;
    }

  gcc_assert ((len & 3) == 0);
  top_label = gen_label_rtx ();
  addr = force_reg (Pmode, XEXP (shadow_mem, 0));
  shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
  end = force_reg (Pmode, plus_constant (Pmode, addr, len));
  emit_label (top_label);

  emit_move_insn (shadow_mem, const0_rtx);
  tmp = expand_simple_binop (Pmode, PLUS, addr, GEN_INT (4), addr,
                             true, OPTAB_LIB_WIDEN);
  if (tmp != addr)
    emit_move_insn (addr, tmp);
  emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
  jump = get_last_insn ();
  gcc_assert (JUMP_P (jump));
  add_reg_note (jump, REG_BR_PROB, GEN_INT (REG_BR_PROB_BASE * 80 / 100));
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/* Insert code to protect stack vars.  The prologue sequence should be emitted
   directly, epilogue sequence returned.  BASE is the register holding the
   stack base, against which OFFSETS array offsets are relative to, OFFSETS
   array contains pairs of offsets in reverse order, always the end offset
   of some gap that needs protection followed by starting offset,
   and DECLS is an array of representative decls for each var partition.
   LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
   elements long (OFFSETS include gap before the first variable as well
   as gaps after each stack variable).  */

rtx
asan_emit_stack_protection (rtx base, HOST_WIDE_INT *offsets, tree *decls,
			    int length)
{
  rtx shadow_base, shadow_mem, ret, mem;
  unsigned char shadow_bytes[4];
  HOST_WIDE_INT base_offset = offsets[length - 1], offset, prev_offset;
  HOST_WIDE_INT last_offset, last_size;
  int l;
  unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
  tree str_cst;

947 948 949
  if (shadow_ptr_types[0] == NULL_TREE)
    asan_init_shadow_ptr_types ();

950
  /* First of all, prepare the description string.  */
951 952 953 954
  if (!asan_pp_initialized)
    asan_pp_initialize ();

  pp_clear_output_area (&asan_pp);
955
  if (DECL_NAME (current_function_decl))
956
    pp_base_tree_identifier (&asan_pp, DECL_NAME (current_function_decl));
957
  else
958 959 960 961
    pp_string (&asan_pp, "<unknown>");
  pp_space (&asan_pp);
  pp_decimal_int (&asan_pp, length / 2 - 1);
  pp_space (&asan_pp);
962 963 964
  for (l = length - 2; l; l -= 2)
    {
      tree decl = decls[l / 2 - 1];
965 966 967 968
      pp_wide_integer (&asan_pp, offsets[l] - base_offset);
      pp_space (&asan_pp);
      pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
      pp_space (&asan_pp);
969 970
      if (DECL_P (decl) && DECL_NAME (decl))
	{
971 972 973
	  pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
	  pp_space (&asan_pp);
	  pp_base_tree_identifier (&asan_pp, DECL_NAME (decl));
974 975
	}
      else
976 977
	pp_string (&asan_pp, "9 <unknown>");
      pp_space (&asan_pp);
978
    }
979
  str_cst = asan_pp_string ();
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

  /* Emit the prologue sequence.  */
  base = expand_binop (Pmode, add_optab, base, GEN_INT (base_offset),
		       NULL_RTX, 1, OPTAB_DIRECT);
  mem = gen_rtx_MEM (ptr_mode, base);
  emit_move_insn (mem, GEN_INT (ASAN_STACK_FRAME_MAGIC));
  mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
  emit_move_insn (mem, expand_normal (str_cst));
  shadow_base = expand_binop (Pmode, lshr_optab, base,
			      GEN_INT (ASAN_SHADOW_SHIFT),
			      NULL_RTX, 1, OPTAB_DIRECT);
  shadow_base = expand_binop (Pmode, add_optab, shadow_base,
			      GEN_INT (targetm.asan_shadow_offset ()),
			      NULL_RTX, 1, OPTAB_DIRECT);
  gcc_assert (asan_shadow_set != -1
	      && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
  shadow_mem = gen_rtx_MEM (SImode, shadow_base);
  set_mem_alias_set (shadow_mem, asan_shadow_set);
  prev_offset = base_offset;
  for (l = length; l; l -= 2)
    {
      if (l == 2)
	cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
      offset = offsets[l - 1];
      if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
	{
	  int i;
	  HOST_WIDE_INT aoff
	    = base_offset + ((offset - base_offset)
			     & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
	  shadow_mem = adjust_address (shadow_mem, VOIDmode,
				       (aoff - prev_offset)
				       >> ASAN_SHADOW_SHIFT);
	  prev_offset = aoff;
	  for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
	    if (aoff < offset)
	      {
		if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
		  shadow_bytes[i] = 0;
		else
		  shadow_bytes[i] = offset - aoff;
	      }
	    else
	      shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
	  emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
	  offset = aoff;
	}
      while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
	{
	  shadow_mem = adjust_address (shadow_mem, VOIDmode,
				       (offset - prev_offset)
				       >> ASAN_SHADOW_SHIFT);
	  prev_offset = offset;
	  memset (shadow_bytes, cur_shadow_byte, 4);
	  emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
	  offset += ASAN_RED_ZONE_SIZE;
	}
      cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
    }
  do_pending_stack_adjust ();

  /* Construct epilogue sequence.  */
  start_sequence ();

  shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
  set_mem_alias_set (shadow_mem, asan_shadow_set);
  prev_offset = base_offset;
  last_offset = base_offset;
  last_size = 0;
  for (l = length; l; l -= 2)
    {
      offset = base_offset + ((offsets[l - 1] - base_offset)
			     & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
      if (last_offset + last_size != offset)
	{
	  shadow_mem = adjust_address (shadow_mem, VOIDmode,
				       (last_offset - prev_offset)
				       >> ASAN_SHADOW_SHIFT);
	  prev_offset = last_offset;
1059
	  asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	  last_offset = offset;
	  last_size = 0;
	}
      last_size += base_offset + ((offsets[l - 2] - base_offset)
				  & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
		   - offset;
    }
  if (last_size)
    {
      shadow_mem = adjust_address (shadow_mem, VOIDmode,
				   (last_offset - prev_offset)
				   >> ASAN_SHADOW_SHIFT);
1072
      asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1073 1074 1075 1076 1077 1078 1079 1080 1081
    }

  do_pending_stack_adjust ();

  ret = get_insns ();
  end_sequence ();
  return ret;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/* Return true if DECL, a global var, might be overridden and needs
   therefore a local alias.  */

static bool
asan_needs_local_alias (tree decl)
{
  return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
}

/* Return true if DECL is a VAR_DECL that should be protected
   by Address Sanitizer, by appending a red zone with protected
   shadow memory after it and aligning it to at least
   ASAN_RED_ZONE_SIZE bytes.  */

bool
asan_protect_global (tree decl)
{
  rtx rtl, symbol;

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
  if (TREE_CODE (decl) == STRING_CST)
    {
      /* Instrument all STRING_CSTs except those created
	 by asan_pp_string here.  */
      if (shadow_ptr_types[0] != NULL_TREE
	  && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
	  && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
	return false;
      return true;
    }
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  if (TREE_CODE (decl) != VAR_DECL
      /* TLS vars aren't statically protectable.  */
      || DECL_THREAD_LOCAL_P (decl)
      /* Externs will be protected elsewhere.  */
      || DECL_EXTERNAL (decl)
      || !DECL_RTL_SET_P (decl)
      /* Comdat vars pose an ABI problem, we can't know if
	 the var that is selected by the linker will have
	 padding or not.  */
      || DECL_ONE_ONLY (decl)
      /* Similarly for common vars.  People can use -fno-common.  */
1122
      || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
      /* Don't protect if using user section, often vars placed
	 into user section from multiple TUs are then assumed
	 to be an array of such vars, putting padding in there
	 breaks this assumption.  */
      || (DECL_SECTION_NAME (decl) != NULL_TREE
	  && !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
      || DECL_SIZE (decl) == 0
      || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
      || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
      || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
    return false;

  rtl = DECL_RTL (decl);
  if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
    return false;
  symbol = XEXP (rtl, 0);

  if (CONSTANT_POOL_ADDRESS_P (symbol)
      || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
    return false;

  if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
    return false;

#ifndef ASM_OUTPUT_DEF
  if (asan_needs_local_alias (decl))
    return false;
#endif

1152
  return true;
1153 1154
}

1155 1156 1157 1158 1159
/* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16}.
   IS_STORE is either 1 (for a store) or 0 (for a load).
   SIZE_IN_BYTES is one of 1, 2, 4, 8, 16.  */

static tree
1160
report_error_func (bool is_store, int size_in_bytes)
1161
{
1162 1163 1164 1165 1166 1167 1168 1169
  static enum built_in_function report[2][5]
    = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
	  BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
	  BUILT_IN_ASAN_REPORT_LOAD16 },
	{ BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
	  BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
	  BUILT_IN_ASAN_REPORT_STORE16 } };
  return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1170 1171
}

1172 1173 1174
#define PROB_VERY_UNLIKELY	(REG_BR_PROB_BASE / 2000 - 1)
#define PROB_ALWAYS		(REG_BR_PROB_BASE)

1175
/* Split the current basic block and create a condition statement
1176 1177 1178
   insertion point right before or after the statement pointed to by
   ITER.  Return an iterator to the point at which the caller might
   safely insert the condition statement.
1179 1180 1181 1182 1183 1184

   THEN_BLOCK must be set to the address of an uninitialized instance
   of basic_block.  The function will then set *THEN_BLOCK to the
   'then block' of the condition statement to be inserted by the
   caller.

1185 1186 1187
   If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
   *THEN_BLOCK to *FALLTHROUGH_BLOCK.

1188 1189 1190 1191 1192 1193 1194
   Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
   block' of the condition statement to be inserted by the caller.

   Note that *FALLTHROUGH_BLOCK is a new block that contains the
   statements starting from *ITER, and *THEN_BLOCK is a new empty
   block.

1195 1196 1197 1198
   *ITER is adjusted to point to always point to the first statement
    of the basic block * FALLTHROUGH_BLOCK.  That statement is the
    same as what ITER was pointing to prior to calling this function,
    if BEFORE_P is true; otherwise, it is its following statement.  */
1199 1200

static gimple_stmt_iterator
1201 1202 1203
create_cond_insert_point (gimple_stmt_iterator *iter,
			  bool before_p,
			  bool then_more_likely_p,
1204
			  bool create_then_fallthru_edge,
1205 1206
			  basic_block *then_block,
			  basic_block *fallthrough_block)
1207 1208 1209
{
  gimple_stmt_iterator gsi = *iter;

1210
  if (!gsi_end_p (gsi) && before_p)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    gsi_prev (&gsi);

  basic_block cur_bb = gsi_bb (*iter);

  edge e = split_block (cur_bb, gsi_stmt (gsi));

  /* Get a hold on the 'condition block', the 'then block' and the
     'else block'.  */
  basic_block cond_bb = e->src;
  basic_block fallthru_bb = e->dest;
  basic_block then_bb = create_empty_bb (cond_bb);

  /* Set up the newly created 'then block'.  */
  e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
  int fallthrough_probability
    = then_more_likely_p
    ? PROB_VERY_UNLIKELY
    : PROB_ALWAYS - PROB_VERY_UNLIKELY;
  e->probability = PROB_ALWAYS - fallthrough_probability;
1230 1231
  if (create_then_fallthru_edge)
    make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

  /* Set up the fallthrough basic block.  */
  e = find_edge (cond_bb, fallthru_bb);
  e->flags = EDGE_FALSE_VALUE;
  e->count = cond_bb->count;
  e->probability = fallthrough_probability;

  /* Update dominance info for the newly created then_bb; note that
     fallthru_bb's dominance info has already been updated by
     split_bock.  */
  if (dom_info_available_p (CDI_DOMINATORS))
    set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);

  *then_block = then_bb;
  *fallthrough_block = fallthru_bb;
  *iter = gsi_start_bb (fallthru_bb);

  return gsi_last_bb (cond_bb);
}

1252 1253 1254 1255 1256 1257
/* Insert an if condition followed by a 'then block' right before the
   statement pointed to by ITER.  The fallthrough block -- which is the
   else block of the condition as well as the destination of the
   outcoming edge of the 'then block' -- starts with the statement
   pointed to by ITER.

1258
   COND is the condition of the if.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

   If THEN_MORE_LIKELY_P is true, the probability of the edge to the
   'then block' is higher than the probability of the edge to the
   fallthrough block.

   Upon completion of the function, *THEN_BB is set to the newly
   inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
   fallthrough block.

   *ITER is adjusted to still point to the same statement it was
   pointing to initially.  */

static void
insert_if_then_before_iter (gimple cond,
			    gimple_stmt_iterator *iter,
			    bool then_more_likely_p,
			    basic_block *then_bb,
			    basic_block *fallthrough_bb)
{
  gimple_stmt_iterator cond_insert_point =
    create_cond_insert_point (iter,
			      /*before_p=*/true,
			      then_more_likely_p,
1282
			      /*create_then_fallthru_edge=*/true,
1283 1284 1285 1286 1287
			      then_bb,
			      fallthrough_bb);
  gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
}

1288
/* Instrument the memory access instruction BASE.  Insert new
1289
   statements before or after ITER.
1290 1291 1292 1293

   Note that the memory access represented by BASE can be either an
   SSA_NAME, or a non-SSA expression.  LOCATION is the source code
   location.  IS_STORE is TRUE for a store, FALSE for a load.
1294 1295 1296 1297 1298 1299 1300
   BEFORE_P is TRUE for inserting the instrumentation code before
   ITER, FALSE for inserting it after ITER.  SIZE_IN_BYTES is one of
   1, 2, 4, 8, 16.

   If BEFORE_P is TRUE, *ITER is arranged to still point to the
   statement it was pointing to prior to calling this function,
   otherwise, it points to the statement logically following it.  */
1301 1302

static void
1303 1304
build_check_stmt (location_t location, tree base, gimple_stmt_iterator *iter,
		  bool before_p, bool is_store, int size_in_bytes)
1305 1306
{
  gimple_stmt_iterator gsi;
1307
  basic_block then_bb, else_bb;
1308
  tree t, base_addr, shadow;
1309
  gimple g;
1310 1311 1312 1313
  tree shadow_ptr_type = shadow_ptr_types[size_in_bytes == 16 ? 1 : 0];
  tree shadow_type = TREE_TYPE (shadow_ptr_type);
  tree uintptr_type
    = build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (base)), 1);
1314
  tree base_ssa = base;
1315

1316 1317
  /* Get an iterator on the point where we can add the condition
     statement for the instrumentation.  */
1318 1319
  gsi = create_cond_insert_point (iter, before_p,
				  /*then_more_likely_p=*/false,
1320
				  /*create_then_fallthru_edge=*/false,
1321 1322
				  &then_bb,
				  &else_bb);
1323

1324
  base = unshare_expr (base);
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
  /* BASE can already be an SSA_NAME; in that case, do not create a
     new SSA_NAME for it.  */
  if (TREE_CODE (base) != SSA_NAME)
    {
      g = gimple_build_assign_with_ops (TREE_CODE (base),
					make_ssa_name (TREE_TYPE (base), NULL),
					base, NULL_TREE);
      gimple_set_location (g, location);
      gsi_insert_after (&gsi, g, GSI_NEW_STMT);
      base_ssa = gimple_assign_lhs (g);
    }
1337

1338 1339
  g = gimple_build_assign_with_ops (NOP_EXPR,
				    make_ssa_name (uintptr_type, NULL),
1340
				    base_ssa, NULL_TREE);
1341
  gimple_set_location (g, location);
1342 1343
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
  base_addr = gimple_assign_lhs (g);
1344

1345 1346
  /* Build
     (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset ().  */
1347

1348 1349 1350 1351
  t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
  g = gimple_build_assign_with_ops (RSHIFT_EXPR,
				    make_ssa_name (uintptr_type, NULL),
				    base_addr, t);
1352
  gimple_set_location (g, location);
1353 1354 1355 1356 1357 1358
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);

  t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
  g = gimple_build_assign_with_ops (PLUS_EXPR,
				    make_ssa_name (uintptr_type, NULL),
				    gimple_assign_lhs (g), t);
1359
  gimple_set_location (g, location);
1360
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1361

1362 1363 1364 1365 1366
  g = gimple_build_assign_with_ops (NOP_EXPR,
				    make_ssa_name (shadow_ptr_type, NULL),
				    gimple_assign_lhs (g), NULL_TREE);
  gimple_set_location (g, location);
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
  t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
	      build_int_cst (shadow_ptr_type, 0));
  g = gimple_build_assign_with_ops (MEM_REF,
				    make_ssa_name (shadow_type, NULL),
				    t, NULL_TREE);
  gimple_set_location (g, location);
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
  shadow = gimple_assign_lhs (g);

  if (size_in_bytes < 8)
    {
      /* Slow path for 1, 2 and 4 byte accesses.
	 Test (shadow != 0)
	      & ((base_addr & 7) + (size_in_bytes - 1)) >= shadow).  */
      g = gimple_build_assign_with_ops (NE_EXPR,
					make_ssa_name (boolean_type_node,
						       NULL),
					shadow,
					build_int_cst (shadow_type, 0));
      gimple_set_location (g, location);
      gsi_insert_after (&gsi, g, GSI_NEW_STMT);
      t = gimple_assign_lhs (g);

      g = gimple_build_assign_with_ops (BIT_AND_EXPR,
					make_ssa_name (uintptr_type,
						       NULL),
					base_addr,
					build_int_cst (uintptr_type, 7));
      gimple_set_location (g, location);
      gsi_insert_after (&gsi, g, GSI_NEW_STMT);

      g = gimple_build_assign_with_ops (NOP_EXPR,
					make_ssa_name (shadow_type,
						       NULL),
					gimple_assign_lhs (g), NULL_TREE);
      gimple_set_location (g, location);
      gsi_insert_after (&gsi, g, GSI_NEW_STMT);

      if (size_in_bytes > 1)
	{
	  g = gimple_build_assign_with_ops (PLUS_EXPR,
					    make_ssa_name (shadow_type,
							   NULL),
					    gimple_assign_lhs (g),
					    build_int_cst (shadow_type,
							   size_in_bytes - 1));
	  gimple_set_location (g, location);
	  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
	}

      g = gimple_build_assign_with_ops (GE_EXPR,
					make_ssa_name (boolean_type_node,
						       NULL),
					gimple_assign_lhs (g),
					shadow);
      gimple_set_location (g, location);
      gsi_insert_after (&gsi, g, GSI_NEW_STMT);

      g = gimple_build_assign_with_ops (BIT_AND_EXPR,
					make_ssa_name (boolean_type_node,
						       NULL),
					t, gimple_assign_lhs (g));
      gimple_set_location (g, location);
      gsi_insert_after (&gsi, g, GSI_NEW_STMT);
      t = gimple_assign_lhs (g);
    }
  else
    t = shadow;
1436

1437 1438 1439 1440
  g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
			 NULL_TREE, NULL_TREE);
  gimple_set_location (g, location);
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1441

1442
  /* Generate call to the run-time library (e.g. __asan_report_load8).  */
1443
  gsi = gsi_start_bb (then_bb);
1444 1445 1446 1447
  g = gimple_build_call (report_error_func (is_store, size_in_bytes),
			 1, base_addr);
  gimple_set_location (g, location);
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1448

Jakub Jelinek committed
1449
  *iter = gsi_start_bb (else_bb);
1450 1451 1452 1453
}

/* If T represents a memory access, add instrumentation code before ITER.
   LOCATION is source code location.
1454
   IS_STORE is either TRUE (for a store) or FALSE (for a load).  */
1455 1456 1457

static void
instrument_derefs (gimple_stmt_iterator *iter, tree t,
1458
		   location_t location, bool is_store)
1459 1460
{
  tree type, base;
1461
  HOST_WIDE_INT size_in_bytes;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

  type = TREE_TYPE (t);
  switch (TREE_CODE (t))
    {
    case ARRAY_REF:
    case COMPONENT_REF:
    case INDIRECT_REF:
    case MEM_REF:
      break;
    default:
      return;
    }
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

  size_in_bytes = int_size_in_bytes (type);
  if ((size_in_bytes & (size_in_bytes - 1)) != 0
      || (unsigned HOST_WIDE_INT) size_in_bytes - 1 >= 16)
    return;

  HOST_WIDE_INT bitsize, bitpos;
  tree offset;
  enum machine_mode mode;
  int volatilep = 0, unsignedp = 0;
  get_inner_reference (t, &bitsize, &bitpos, &offset,
		       &mode, &unsignedp, &volatilep, false);
1486 1487
  if (bitpos % (size_in_bytes * BITS_PER_UNIT)
      || bitsize != size_in_bytes * BITS_PER_UNIT)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    {
      if (TREE_CODE (t) == COMPONENT_REF
	  && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
	{
	  tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
	  instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
					   TREE_OPERAND (t, 0), repr,
					   NULL_TREE), location, is_store);
	}
      return;
    }
1499 1500

  base = build_fold_addr_expr (t);
1501 1502 1503 1504 1505 1506 1507 1508
  if (!has_mem_ref_been_instrumented (base, size_in_bytes))
    {
      build_check_stmt (location, base, iter, /*before_p=*/true,
			is_store, size_in_bytes);
      update_mem_ref_hash_table (base, size_in_bytes);
      update_mem_ref_hash_table (t, size_in_bytes);
    }

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

/* Instrument an access to a contiguous memory region that starts at
   the address pointed to by BASE, over a length of LEN (expressed in
   the sizeof (*BASE) bytes).  ITER points to the instruction before
   which the instrumentation instructions must be inserted.  LOCATION
   is the source location that the instrumentation instructions must
   have.  If IS_STORE is true, then the memory access is a store;
   otherwise, it's a load.  */

static void
instrument_mem_region_access (tree base, tree len,
			      gimple_stmt_iterator *iter,
			      location_t location, bool is_store)
{
1524 1525 1526
  if (!POINTER_TYPE_P (TREE_TYPE (base))
      || !INTEGRAL_TYPE_P (TREE_TYPE (len))
      || integer_zerop (len))
1527 1528 1529 1530 1531
    return;

  gimple_stmt_iterator gsi = *iter;

  basic_block fallthrough_bb = NULL, then_bb = NULL;
1532 1533 1534

  /* If the beginning of the memory region has already been
     instrumented, do not instrument it.  */
1535 1536 1537 1538 1539 1540 1541 1542 1543
  bool start_instrumented = has_mem_ref_been_instrumented (base, 1);

  /* If the end of the memory region has already been instrumented, do
     not instrument it. */
  tree end = asan_mem_ref_get_end (base, len);
  bool end_instrumented = has_mem_ref_been_instrumented (end, 1);

  if (start_instrumented && end_instrumented)
    return;
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553
  if (!is_gimple_constant (len))
    {
      /* So, the length of the memory area to asan-protect is
	 non-constant.  Let's guard the generated instrumentation code
	 like:

	 if (len != 0)
	   {
	     //asan instrumentation code goes here.
1554
	   }
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	   // falltrough instructions, starting with *ITER.  */

      gimple g = gimple_build_cond (NE_EXPR,
				    len,
				    build_int_cst (TREE_TYPE (len), 0),
				    NULL_TREE, NULL_TREE);
      gimple_set_location (g, location);
      insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
				  &then_bb, &fallthrough_bb);
      /* Note that fallthrough_bb starts with the statement that was
	 pointed to by ITER.  */

      /* The 'then block' of the 'if (len != 0) condition is where
	 we'll generate the asan instrumentation code now.  */
1569
      gsi = gsi_last_bb (then_bb);
1570 1571
    }

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  if (!start_instrumented)
    {
      /* Instrument the beginning of the memory region to be accessed,
	 and arrange for the rest of the intrumentation code to be
	 inserted in the then block *after* the current gsi.  */
      build_check_stmt (location, base, &gsi, /*before_p=*/true, is_store, 1);

      if (then_bb)
	/* We are in the case where the length of the region is not
	   constant; so instrumentation code is being generated in the
	   'then block' of the 'if (len != 0) condition.  Let's arrange
	   for the subsequent instrumentation statements to go in the
	   'then block'.  */
	gsi = gsi_last_bb (then_bb);
      else
        {
          *iter = gsi;
	  /* Don't remember this access as instrumented, if length
	     is unknown.  It might be zero and not being actually
	     instrumented, so we can't rely on it being instrumented.  */
          update_mem_ref_hash_table (base, 1);
	}
    }
1595

1596 1597
  if (end_instrumented)
    return;
1598

1599 1600 1601 1602 1603
  /* We want to instrument the access at the end of the memory region,
     which is at (base + len - 1).  */

  /* offset = len - 1;  */
  len = unshare_expr (len);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
  tree offset;
  gimple_seq seq = NULL;
  if (TREE_CODE (len) == INTEGER_CST)
    offset = fold_build2 (MINUS_EXPR, size_type_node,
			  fold_convert (size_type_node, len),
			  build_int_cst (size_type_node, 1));
  else
    {
      gimple g;
      tree t;

      if (TREE_CODE (len) != SSA_NAME)
	{
	  t = make_ssa_name (TREE_TYPE (len), NULL);
	  g = gimple_build_assign_with_ops (TREE_CODE (len), t, len, NULL);
	  gimple_set_location (g, location);
	  gimple_seq_add_stmt_without_update (&seq, g);
	  len = t;
	}
      if (!useless_type_conversion_p (size_type_node, TREE_TYPE (len)))
	{
	  t = make_ssa_name (size_type_node, NULL);
	  g = gimple_build_assign_with_ops (NOP_EXPR, t, len, NULL);
	  gimple_set_location (g, location);
	  gimple_seq_add_stmt_without_update (&seq, g);
	  len = t;
	}

      t = make_ssa_name (size_type_node, NULL);
      g = gimple_build_assign_with_ops (MINUS_EXPR, t, len,
					build_int_cst (size_type_node, 1));
      gimple_set_location (g, location);
1636 1637 1638
      gimple_seq_add_stmt_without_update (&seq, g);
      offset = gimple_assign_lhs (g);
    }
1639

1640 1641 1642 1643 1644 1645 1646 1647
  /* _1 = base;  */
  base = unshare_expr (base);
  gimple region_end =
    gimple_build_assign_with_ops (TREE_CODE (base),
				  make_ssa_name (TREE_TYPE (base), NULL),
				  base, NULL);
  gimple_set_location (region_end, location);
  gimple_seq_add_stmt_without_update (&seq, region_end);
1648

1649 1650 1651 1652 1653 1654 1655
  /* _2 = _1 + offset;  */
  region_end =
    gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
				  make_ssa_name (TREE_TYPE (base), NULL),
				  gimple_assign_lhs (region_end),
				  offset);
  gimple_set_location (region_end, location);
1656 1657
  gimple_seq_add_stmt_without_update (&seq, region_end);
  gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
1658

1659
  /* instrument access at _2;  */
1660
  gsi = gsi_for_stmt (region_end);
1661 1662
  build_check_stmt (location, gimple_assign_lhs (region_end),
		    &gsi, /*before_p=*/false, is_store, 1);
1663

1664 1665 1666 1667
  if (then_bb == NULL)
    update_mem_ref_hash_table (end, 1);

  *iter = gsi_for_stmt (gsi_stmt (*iter));
1668
}
1669

1670 1671
/* Instrument the call (to the builtin strlen function) pointed to by
   ITER.
1672

1673 1674 1675 1676
   This function instruments the access to the first byte of the
   argument, right before the call.  After the call it instruments the
   access to the last byte of the argument; it uses the result of the
   call to deduce the offset of that last byte.
1677

1678 1679 1680 1681 1682
   Upon completion, iff the call has actullay been instrumented, this
   function returns TRUE and *ITER points to the statement logically
   following the built-in strlen function call *ITER was initially
   pointing to.  Otherwise, the function returns FALSE and *ITER
   remains unchanged.  */
1683

1684 1685 1686 1687 1688
static bool
instrument_strlen_call (gimple_stmt_iterator *iter)
{
  gimple call = gsi_stmt (*iter);
  gcc_assert (is_gimple_call (call));
1689

1690 1691 1692 1693
  tree callee = gimple_call_fndecl (call);
  gcc_assert (is_builtin_fn (callee)
	      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
	      && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1694

1695 1696 1697 1698 1699 1700 1701
  tree len = gimple_call_lhs (call);
  if (len == NULL)
    /* Some passes might clear the return value of the strlen call;
       bail out in that case.  Return FALSE as we are not advancing
       *ITER.  */
    return false;
  gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1702

1703 1704
  location_t loc = gimple_location (call);
  tree str_arg = gimple_call_arg (call, 0);
1705

1706
  /* Instrument the access to the first byte of str_arg.  i.e:
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
     _1 = str_arg; instrument (_1); */
  gimple str_arg_ssa =
    gimple_build_assign_with_ops (NOP_EXPR,
				  make_ssa_name (build_pointer_type
						 (char_type_node), NULL),
				  str_arg, NULL);
  gimple_set_location (str_arg_ssa, loc);
  gimple_stmt_iterator gsi = *iter;
  gsi_insert_before (&gsi, str_arg_ssa, GSI_NEW_STMT);
  build_check_stmt (loc, gimple_assign_lhs (str_arg_ssa), &gsi,
		    /*before_p=*/false, /*is_store=*/false, 1);
1719

1720
  /* If we initially had an instruction like:
1721

1722
	 int n = strlen (str)
1723

1724 1725
     we now want to instrument the access to str[n], after the
     instruction above.*/
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
  /* So let's build the access to str[n] that is, access through the
     pointer_plus expr: (_1 + len).  */
  gimple stmt =
    gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
				  make_ssa_name (TREE_TYPE (str_arg),
						 NULL),
				  gimple_assign_lhs (str_arg_ssa),
				  len);
  gimple_set_location (stmt, loc);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1737

1738 1739
  build_check_stmt (loc, gimple_assign_lhs (stmt), &gsi,
		    /*before_p=*/false, /*is_store=*/false, 1);
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749
  /* Ensure that iter points to the statement logically following the
     one it was initially pointing to.  */
  *iter = gsi;
  /* As *ITER has been advanced to point to the next statement, let's
     return true to inform transform_statements that it shouldn't
     advance *ITER anymore; otherwises it will skip that next
     statement, which wouldn't be instrumented.  */
  return true;
}
1750

1751 1752
/* Instrument the call to a built-in memory access function that is
   pointed to by the iterator ITER.
1753

1754 1755
   Upon completion, return TRUE iff *ITER has been advanced to the
   statement following the one it was originally pointing to.  */
1756

1757 1758 1759 1760 1761
static bool
instrument_builtin_call (gimple_stmt_iterator *iter)
{
  bool iter_advanced_p = false;
  gimple call = gsi_stmt (*iter);
1762

1763
  gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1764

1765 1766
  tree callee = gimple_call_fndecl (call);
  location_t loc = gimple_location (call);
1767

1768 1769 1770
  if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
    iter_advanced_p = instrument_strlen_call (iter);
  else
1771
    {
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
      asan_mem_ref src0, src1, dest;
      asan_mem_ref_init (&src0, NULL, 1);
      asan_mem_ref_init (&src1, NULL, 1);
      asan_mem_ref_init (&dest, NULL, 1);

      tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
      bool src0_is_store = false, src1_is_store = false,
	dest_is_store = false, dest_is_deref = false;

      if (get_mem_refs_of_builtin_call (call,
					&src0, &src0_len, &src0_is_store,
1783
					&src1, &src1_len, &src1_is_store,
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
					&dest, &dest_len, &dest_is_store,
					&dest_is_deref))
	{
	  if (dest_is_deref)
	    {
	      instrument_derefs (iter, dest.start, loc, dest_is_store);
	      gsi_next (iter);
	      iter_advanced_p = true;
	    }
	  else if (src0_len || src1_len || dest_len)
	    {
1795
	      if (src0.start != NULL_TREE)
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
		instrument_mem_region_access (src0.start, src0_len,
					      iter, loc, /*is_store=*/false);
	      if (src1.start != NULL_TREE)
		instrument_mem_region_access (src1.start, src1_len,
					      iter, loc, /*is_store=*/false);
	      if (dest.start != NULL_TREE)
		instrument_mem_region_access (dest.start, dest_len,
					      iter, loc, /*is_store=*/true);
	      *iter = gsi_for_stmt (call);
	      gsi_next (iter);
	      iter_advanced_p = true;
	    }
	}
1809
    }
1810
  return iter_advanced_p;
1811 1812 1813
}

/*  Instrument the assignment statement ITER if it is subject to
1814 1815 1816 1817 1818
    instrumentation.  Return TRUE iff instrumentation actually
    happened.  In that case, the iterator ITER is advanced to the next
    logical expression following the one initially pointed to by ITER,
    and the relevant memory reference that which access has been
    instrumented is added to the memory references hash table.  */
1819

1820 1821
static bool
maybe_instrument_assignment (gimple_stmt_iterator *iter)
1822 1823 1824 1825 1826
{
  gimple s = gsi_stmt (*iter);

  gcc_assert (gimple_assign_single_p (s));

1827 1828 1829
  tree ref_expr = NULL_TREE;
  bool is_store, is_instrumented = false;

1830
  if (gimple_store_p (s))
1831 1832 1833 1834 1835 1836 1837 1838 1839
    {
      ref_expr = gimple_assign_lhs (s);
      is_store = true;
      instrument_derefs (iter, ref_expr,
			 gimple_location (s),
			 is_store);
      is_instrumented = true;
    }
 
1840
  if (gimple_assign_load_p (s))
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    {
      ref_expr = gimple_assign_rhs1 (s);
      is_store = false;
      instrument_derefs (iter, ref_expr,
			 gimple_location (s),
			 is_store);
      is_instrumented = true;
    }

  if (is_instrumented)
    gsi_next (iter);

  return is_instrumented;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
}

/* Instrument the function call pointed to by the iterator ITER, if it
   is subject to instrumentation.  At the moment, the only function
   calls that are instrumented are some built-in functions that access
   memory.  Look at instrument_builtin_call to learn more.

   Upon completion return TRUE iff *ITER was advanced to the statement
   following the one it was originally pointing to.  */

static bool
maybe_instrument_call (gimple_stmt_iterator *iter)
{
1867
  gimple stmt = gsi_stmt (*iter);
1868 1869 1870
  bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);

  if (is_builtin && instrument_builtin_call (iter))
1871
    return true;
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
  if (gimple_call_noreturn_p (stmt))
    {
      if (is_builtin)
	{
	  tree callee = gimple_call_fndecl (stmt);
	  switch (DECL_FUNCTION_CODE (callee))
	    {
	    case BUILT_IN_UNREACHABLE:
	    case BUILT_IN_TRAP:
	      /* Don't instrument these.  */
	      return false;
	    }
	}
      tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
      gimple g = gimple_build_call (decl, 0);
      gimple_set_location (g, gimple_location (stmt));
      gsi_insert_before (iter, g, GSI_SAME_STMT);
    }
1891
  return false;
1892 1893
}

1894 1895 1896 1897
/* Walk each instruction of all basic block and instrument those that
   represent memory references: loads, stores, or function calls.
   In a given basic block, this function avoids instrumenting memory
   references that have already been instrumented.  */
1898 1899 1900 1901

static void
transform_statements (void)
{
1902
  basic_block bb, last_bb = NULL;
1903 1904 1905 1906 1907
  gimple_stmt_iterator i;
  int saved_last_basic_block = last_basic_block;

  FOR_EACH_BB (bb)
    {
1908
      basic_block prev_bb = bb;
1909

1910
      if (bb->index >= saved_last_basic_block) continue;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

      /* Flush the mem ref hash table, if current bb doesn't have
	 exactly one predecessor, or if that predecessor (skipping
	 over asan created basic blocks) isn't the last processed
	 basic block.  Thus we effectively flush on extended basic
	 block boundaries.  */
      while (single_pred_p (prev_bb))
	{
	  prev_bb = single_pred (prev_bb);
	  if (prev_bb->index < saved_last_basic_block)
	    break;
	}
      if (prev_bb != last_bb)
	empty_mem_ref_hash_table ();
      last_bb = bb;

1927
      for (i = gsi_start_bb (bb); !gsi_end_p (i);)
1928
	{
1929 1930
	  gimple s = gsi_stmt (i);

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	  if (has_stmt_been_instrumented_p (s))
	    gsi_next (&i);
	  else if (gimple_assign_single_p (s)
		   && maybe_instrument_assignment (&i))
	    /*  Nothing to do as maybe_instrument_assignment advanced
		the iterator I.  */;
	  else if (is_gimple_call (s) && maybe_instrument_call (&i))
	    /*  Nothing to do as maybe_instrument_call
		advanced the iterator I.  */;
	  else
1941
	    {
1942 1943
	      /* No instrumentation happened.

1944 1945 1946 1947 1948
		 If the current instruction is a function call that
		 might free something, let's forget about the memory
		 references that got instrumented.  Otherwise we might
		 miss some instrumentation opportunities.  */
	      if (is_gimple_call (s) && !nonfreeing_call_p (s))
1949 1950 1951
		empty_mem_ref_hash_table ();

	      gsi_next (&i);
1952
	    }
1953
	}
1954
    }
1955
  free_mem_ref_resources ();
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/* Build
   struct __asan_global
   {
     const void *__beg;
     uptr __size;
     uptr __size_with_redzone;
     const void *__name;
     uptr __has_dynamic_init;
   } type.  */

static tree
asan_global_struct (void)
{
  static const char *field_names[5]
    = { "__beg", "__size", "__size_with_redzone",
	"__name", "__has_dynamic_init" };
  tree fields[5], ret;
  int i;

  ret = make_node (RECORD_TYPE);
  for (i = 0; i < 5; i++)
    {
      fields[i]
	= build_decl (UNKNOWN_LOCATION, FIELD_DECL,
		      get_identifier (field_names[i]),
		      (i == 0 || i == 3) ? const_ptr_type_node
		      : build_nonstandard_integer_type (POINTER_SIZE, 1));
      DECL_CONTEXT (fields[i]) = ret;
      if (i)
	DECL_CHAIN (fields[i - 1]) = fields[i];
    }
  TYPE_FIELDS (ret) = fields[0];
  TYPE_NAME (ret) = get_identifier ("__asan_global");
  layout_type (ret);
  return ret;
}

/* Append description of a single global DECL into vector V.
   TYPE is __asan_global struct type as returned by asan_global_struct.  */

static void
1999
asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2000 2001 2002 2003
{
  tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
  unsigned HOST_WIDE_INT size;
  tree str_cst, refdecl = decl;
2004
  vec<constructor_elt, va_gc> *vinner = NULL;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

  if (!asan_pp_initialized)
    asan_pp_initialize ();

  pp_clear_output_area (&asan_pp);
  if (DECL_NAME (decl))
    pp_base_tree_identifier (&asan_pp, DECL_NAME (decl));
  else
    pp_string (&asan_pp, "<unknown>");
  pp_space (&asan_pp);
  pp_left_paren (&asan_pp);
  pp_string (&asan_pp, main_input_filename);
  pp_right_paren (&asan_pp);
  str_cst = asan_pp_string ();

  if (asan_needs_local_alias (decl))
    {
      char buf[20];
2023
      ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
      refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
			    VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
      TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
      TREE_READONLY (refdecl) = TREE_READONLY (decl);
      TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
      DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
      DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
      DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
      TREE_STATIC (refdecl) = 1;
      TREE_PUBLIC (refdecl) = 0;
      TREE_USED (refdecl) = 1;
      assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
    }

  CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
			  fold_convert (const_ptr_type_node,
					build_fold_addr_expr (refdecl)));
  size = tree_low_cst (DECL_SIZE_UNIT (decl), 1);
  CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
  size += asan_red_zone_size (size);
  CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
  CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
			  fold_convert (const_ptr_type_node, str_cst));
  CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, 0));
  init = build_constructor (type, vinner);
  CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/* Initialize sanitizer.def builtins if the FE hasn't initialized them.  */
void
initialize_sanitizer_builtins (void)
{
  tree decl;

  if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
    return;

  tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
  tree BT_FN_VOID_PTR
    = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
  tree BT_FN_VOID_PTR_PTRMODE
    = build_function_type_list (void_type_node, ptr_type_node,
				build_nonstandard_integer_type (POINTER_SIZE,
								1), NULL_TREE);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
  tree BT_FN_VOID_INT
    = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
  tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
  tree BT_FN_IX_CONST_VPTR_INT[5];
  tree BT_FN_IX_VPTR_IX_INT[5];
  tree BT_FN_VOID_VPTR_IX_INT[5];
  tree vptr
    = build_pointer_type (build_qualified_type (void_type_node,
						TYPE_QUAL_VOLATILE));
  tree cvptr
    = build_pointer_type (build_qualified_type (void_type_node,
						TYPE_QUAL_VOLATILE
						|TYPE_QUAL_CONST));
  tree boolt
    = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
  int i;
  for (i = 0; i < 5; i++)
    {
      tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
      BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
	= build_function_type_list (boolt, vptr, ptr_type_node, ix,
				    integer_type_node, integer_type_node,
				    NULL_TREE);
      BT_FN_IX_CONST_VPTR_INT[i]
	= build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
      BT_FN_IX_VPTR_IX_INT[i]
	= build_function_type_list (ix, vptr, ix, integer_type_node,
				    NULL_TREE);
      BT_FN_VOID_VPTR_IX_INT[i]
	= build_function_type_list (void_type_node, vptr, ix,
				    integer_type_node, NULL_TREE);
    }
#define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
#define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
#define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
#define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
#define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
#define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
#define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
#define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
#define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
#define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
#define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
#define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
#define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
#define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
#define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
#define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
#define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
#define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
#define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
#define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2120 2121
#undef ATTR_NOTHROW_LEAF_LIST
#define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2122 2123
#undef ATTR_TMPURE_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2124 2125
#undef ATTR_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2126 2127 2128
#undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
  ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
#undef DEF_SANITIZER_BUILTIN
#define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
  decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM,		\
			       BUILT_IN_NORMAL, NAME, NULL_TREE);	\
  set_call_expr_flags (decl, ATTRS);					\
  set_builtin_decl (ENUM, decl, true);

#include "sanitizer.def"

#undef DEF_SANITIZER_BUILTIN
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/* Called via htab_traverse.  Count number of emitted
   STRING_CSTs in the constant hash table.  */

static int
count_string_csts (void **slot, void *data)
{
  struct constant_descriptor_tree *desc
    = (struct constant_descriptor_tree *) *slot;
  if (TREE_CODE (desc->value) == STRING_CST
      && TREE_ASM_WRITTEN (desc->value)
      && asan_protect_global (desc->value))
    ++*((unsigned HOST_WIDE_INT *) data);
  return 1;
}

/* Helper structure to pass two parameters to
   add_string_csts.  */

struct asan_add_string_csts_data
{
  tree type;
  vec<constructor_elt, va_gc> *v;
};

/* Called via htab_traverse.  Call asan_add_global
   on emitted STRING_CSTs from the constant hash table.  */

static int
add_string_csts (void **slot, void *data)
{
  struct constant_descriptor_tree *desc
    = (struct constant_descriptor_tree *) *slot;
  if (TREE_CODE (desc->value) == STRING_CST
      && TREE_ASM_WRITTEN (desc->value)
      && asan_protect_global (desc->value))
    {
      struct asan_add_string_csts_data *aascd
	= (struct asan_add_string_csts_data *) data;
      asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
		       aascd->type, aascd->v);
    }
  return 1;
}

2185 2186 2187 2188
/* Needs to be GTY(()), because cgraph_build_static_cdtor may
   invoke ggc_collect.  */
static GTY(()) tree asan_ctor_statements;

2189 2190 2191 2192 2193 2194 2195 2196
/* Module-level instrumentation.
   - Insert __asan_init() into the list of CTORs.
   - TODO: insert redzones around globals.
 */

void
asan_finish_file (void)
{
2197 2198 2199
  struct varpool_node *vnode;
  unsigned HOST_WIDE_INT gcount = 0;

2200 2201 2202 2203 2204 2205
  if (shadow_ptr_types[0] == NULL_TREE)
    asan_init_shadow_ptr_types ();
  /* Avoid instrumenting code in the asan ctors/dtors.
     We don't need to insert padding after the description strings,
     nor after .LASAN* array.  */
  flag_asan = 0;
2206 2207 2208

  tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
  append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2209
  FOR_EACH_DEFINED_VARIABLE (vnode)
2210 2211
    if (TREE_ASM_WRITTEN (vnode->symbol.decl)
	&& asan_protect_global (vnode->symbol.decl))
2212
      ++gcount;
2213 2214
  htab_t const_desc_htab = constant_pool_htab ();
  htab_traverse (const_desc_htab, count_string_csts, &gcount);
2215 2216
  if (gcount)
    {
2217
      tree type = asan_global_struct (), var, ctor;
2218 2219
      tree uptr = build_nonstandard_integer_type (POINTER_SIZE, 1);
      tree dtor_statements = NULL_TREE;
2220
      vec<constructor_elt, va_gc> *v;
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
      char buf[20];

      type = build_array_type_nelts (type, gcount);
      ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
      var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
			type);
      TREE_STATIC (var) = 1;
      TREE_PUBLIC (var) = 0;
      DECL_ARTIFICIAL (var) = 1;
      DECL_IGNORED_P (var) = 1;
2231
      vec_alloc (v, gcount);
2232
      FOR_EACH_DEFINED_VARIABLE (vnode)
2233 2234
	if (TREE_ASM_WRITTEN (vnode->symbol.decl)
	    && asan_protect_global (vnode->symbol.decl))
2235
	  asan_add_global (vnode->symbol.decl, TREE_TYPE (type), v);
2236 2237 2238 2239
      struct asan_add_string_csts_data aascd;
      aascd.type = TREE_TYPE (type);
      aascd.v = v;
      htab_traverse (const_desc_htab, add_string_csts, &aascd);
2240 2241 2242 2243 2244 2245
      ctor = build_constructor (type, v);
      TREE_CONSTANT (ctor) = 1;
      TREE_STATIC (ctor) = 1;
      DECL_INITIAL (var) = ctor;
      varpool_assemble_decl (varpool_node_for_decl (var));

2246 2247
      fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
      append_to_statement_list (build_call_expr (fn, 2,
2248 2249 2250 2251
						 build_fold_addr_expr (var),
						 build_int_cst (uptr, gcount)),
				&asan_ctor_statements);

2252 2253
      fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
      append_to_statement_list (build_call_expr (fn, 2,
2254 2255 2256 2257 2258 2259 2260 2261
						 build_fold_addr_expr (var),
						 build_int_cst (uptr, gcount)),
				&dtor_statements);
      cgraph_build_static_cdtor ('D', dtor_statements,
				 MAX_RESERVED_INIT_PRIORITY - 1);
    }
  cgraph_build_static_cdtor ('I', asan_ctor_statements,
			     MAX_RESERVED_INIT_PRIORITY - 1);
2262
  flag_asan = 1;
2263 2264
}

2265 2266 2267 2268 2269
/* Instrument the current function.  */

static unsigned int
asan_instrument (void)
{
2270
  if (shadow_ptr_types[0] == NULL_TREE)
2271
    asan_init_shadow_ptr_types ();
2272 2273 2274 2275 2276 2277 2278
  transform_statements ();
  return 0;
}

static bool
gate_asan (void)
{
2279
  return flag_asan != 0
2280
	  && !lookup_attribute ("no_sanitize_address",
2281
				DECL_ATTRIBUTES (current_function_decl));
2282 2283 2284 2285 2286 2287
}

struct gimple_opt_pass pass_asan =
{
 {
  GIMPLE_PASS,
2288 2289 2290 2291 2292 2293 2294 2295
  "asan",				/* name  */
  OPTGROUP_NONE,			/* optinfo_flags */
  gate_asan,				/* gate  */
  asan_instrument,			/* execute  */
  NULL,					/* sub  */
  NULL,					/* next  */
  0,					/* static_pass_number  */
  TV_NONE,				/* tv_id  */
2296
  PROP_ssa | PROP_cfg | PROP_gimple_leh,/* properties_required  */
2297 2298 2299
  0,					/* properties_provided  */
  0,					/* properties_destroyed  */
  0,					/* todo_flags_start  */
2300
  TODO_verify_flow | TODO_verify_stmts
2301
  | TODO_update_ssa			/* todo_flags_finish  */
2302 2303
 }
};
2304

Jakub Jelinek committed
2305 2306 2307
static bool
gate_asan_O0 (void)
{
2308
  return !optimize && gate_asan ();
Jakub Jelinek committed
2309 2310 2311 2312 2313 2314 2315
}

struct gimple_opt_pass pass_asan_O0 =
{
 {
  GIMPLE_PASS,
  "asan0",				/* name  */
2316
  OPTGROUP_NONE,			/* optinfo_flags */
Jakub Jelinek committed
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
  gate_asan_O0,				/* gate  */
  asan_instrument,			/* execute  */
  NULL,					/* sub  */
  NULL,					/* next  */
  0,					/* static_pass_number  */
  TV_NONE,				/* tv_id  */
  PROP_ssa | PROP_cfg | PROP_gimple_leh,/* properties_required  */
  0,					/* properties_provided  */
  0,					/* properties_destroyed  */
  0,					/* todo_flags_start  */
  TODO_verify_flow | TODO_verify_stmts
  | TODO_update_ssa			/* todo_flags_finish  */
 }
};

2332
#include "gt-asan.h"