profile-count.h 37.2 KB
Newer Older
1
/* Profile counter container type.
2
   Copyright (C) 2017-2019 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_PROFILE_COUNT_H
#define GCC_PROFILE_COUNT_H

24
struct function;
25
class profile_count;
26

27 28
/* Quality of the profile count.  Because gengtype does not support enums
   inside of classes, this is in global namespace.  */
29
enum profile_quality {
30 31
  /* Uninitialized value.  */
  profile_uninitialized,
32
  /* Profile is based on static branch prediction heuristics and may
33
     or may not match reality.  It is local to function and cannot be compared
34 35
     inter-procedurally.  Never used by probabilities (they are always local).
   */
36
  profile_guessed_local,
37 38 39
  /* Profile was read by feedback and was 0, we used local heuristics to guess
     better.  This is the case of functions not run in profile fedback.
     Never used by probabilities.  */
40
  profile_guessed_global0,
41

42
  /* Same as profile_guessed_global0 but global count is adjusted 0.  */
43
  profile_guessed_global0adjusted,
44

45
  /* Profile is based on static branch prediction heuristics.  It may or may
46 47 48 49
     not reflect the reality but it can be compared interprocedurally
     (for example, we inlined function w/o profile feedback into function
      with feedback and propagated from that).
     Never used by probablities.  */
50
  profile_guessed,
51
  /* Profile was determined by autofdo.  */
52
  profile_afdo,
53
  /* Profile was originally based on feedback but it was adjusted
54 55
     by code duplicating optimization.  It may not precisely reflect the
     particular code path.  */
56
  profile_adjusted,
57 58
  /* Profile was read from profile feedback or determined by accurate static
     method.  */
59
  profile_precise
60
};
61

62 63
extern const char *profile_quality_as_string (enum profile_quality);

64 65 66 67 68
/* The base value for branch probability notes and edge probabilities.  */
#define REG_BR_PROB_BASE  10000

#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
bool slow_safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res);

/* Compute RES=(a*b + c/2)/c capping and return false if overflow happened.  */

inline bool
safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res)
{
#if (GCC_VERSION >= 5000)
  uint64_t tmp;
  if (!__builtin_mul_overflow (a, b, &tmp)
      && !__builtin_add_overflow (tmp, c/2, &tmp))
    {
      *res = tmp / c;
      return true;
    }
  if (c == 1)
    {
      *res = (uint64_t) -1;
      return false;
    }
#else
  if (a < ((uint64_t)1 << 31)
      && b < ((uint64_t)1 << 31)
      && c < ((uint64_t)1 << 31))
93 94 95 96
    {
      *res = (a * b + (c / 2)) / c;
      return true;
    }
97 98 99 100
#endif
  return slow_safe_scale_64bit (a, b, c, res);
}

101
/* Data type to hold probabilities.  It implements fixed point arithmetics
102 103 104 105 106
   with capping so probability is always in range [0,1] and scaling requiring
   values greater than 1 needs to be represented otherwise.

   In addition to actual value the quality of profile is tracked and propagated
   through all operations.  Special value UNINITIALIZED is used for probabilities
107
   that has not been determined yet (for example bacause of
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
   -fno-guess-branch-probability)

   Typically probabilities are derived from profile feedback (via
   probability_in_gcov_type), autoFDO or guessed statically and then propagated
   thorough the compilation.

   Named probabilities are available:
     - never           (0 probability)
     - guessed_never
     - very_unlikely   (1/2000 probability)
     - unlikely        (1/5 probablity)
     - even            (1/2 probability)
     - likely          (4/5 probability)
     - very_likely     (1999/2000 probability)
     - guessed_always
     - always

   Named probabilities except for never/always are assumed to be statically
126 127
   guessed and thus not necessarily accurate.  The difference between never
   and guessed_never is that the first one should be used only in case that
128 129 130
   well behaving program will very likely not execute the "never" path.
   For example if the path is going to abort () call or it exception handling.

131
   Always and guessed_always probabilities are symmetric.
132 133

   For legacy code we support conversion to/from REG_BR_PROB_BASE based fixpoint
134
   integer arithmetics. Once the code is converted to branch probabilities,
135 136 137 138 139
   these conversions will probably go away because they are lossy.
*/

class GTY((user)) profile_probability
{
140
  static const int n_bits = 29;
141 142 143
  /* We can technically use ((uint32_t) 1 << (n_bits - 1)) - 2 but that
     will lead to harder multiplication sequences.  */
  static const uint32_t max_probability = (uint32_t) 1 << (n_bits - 2);
144 145
  static const uint32_t uninitialized_probability
		 = ((uint32_t) 1 << (n_bits - 1)) - 1;
146

147 148
  uint32_t m_val : 29;
  enum profile_quality m_quality : 3;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

  friend class profile_count;
public:

  /* Named probabilities.  */
  static profile_probability never ()
    {
      profile_probability ret;
      ret.m_val = 0;
      ret.m_quality = profile_precise;
      return ret;
    }
  static profile_probability guessed_never ()
    {
      profile_probability ret;
      ret.m_val = 0;
      ret.m_quality = profile_guessed;
      return ret;
    }
  static profile_probability very_unlikely ()
    {
      /* Be consistent with PROB_VERY_UNLIKELY in predict.h.  */
      profile_probability r
172
	 = profile_probability::guessed_always ().apply_scale (1, 2000);
173 174 175 176 177 178 179
      r.m_val--;
      return r;
    }
  static profile_probability unlikely ()
    {
      /* Be consistent with PROB_VERY_LIKELY in predict.h.  */
      profile_probability r
180
	 = profile_probability::guessed_always ().apply_scale (1, 5);
181 182 183 184 185
      r.m_val--;
      return r;
    }
  static profile_probability even ()
    {
186
      return profile_probability::guessed_always ().apply_scale (1, 2);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    }
  static profile_probability very_likely ()
    {
      return profile_probability::always () - very_unlikely ();
    }
  static profile_probability likely ()
    {
      return profile_probability::always () - unlikely ();
    }
  static profile_probability guessed_always ()
    {
      profile_probability ret;
      ret.m_val = max_probability;
      ret.m_quality = profile_guessed;
      return ret;
    }
  static profile_probability always ()
    {
      profile_probability ret;
      ret.m_val = max_probability;
      ret.m_quality = profile_precise;
      return ret;
    }
  /* Probabilities which has not been initialized. Either because
     initialization did not happen yet or because profile is unknown.  */
  static profile_probability uninitialized ()
    {
      profile_probability c;
      c.m_val = uninitialized_probability;
      c.m_quality = profile_guessed;
      return c;
    }


  /* Return true if value has been initialized.  */
  bool initialized_p () const
    {
      return m_val != uninitialized_probability;
    }
  /* Return true if value can be trusted.  */
  bool reliable_p () const
    {
229
      return m_quality >= profile_adjusted;
230 231 232
    }

  /* Conversion from and to REG_BR_PROB_BASE integer fixpoint arithmetics.
233
     this is mostly to support legacy code and should go away.  */
234 235 236 237
  static profile_probability from_reg_br_prob_base (int v)
    {
      profile_probability ret;
      gcc_checking_assert (v >= 0 && v <= REG_BR_PROB_BASE);
238
      ret.m_val = RDIV (v * (uint64_t) max_probability, REG_BR_PROB_BASE);
239 240 241 242 243 244
      ret.m_quality = profile_guessed;
      return ret;
    }
  int to_reg_br_prob_base () const
    {
      gcc_checking_assert (initialized_p ());
245
      return RDIV (m_val * (uint64_t) REG_BR_PROB_BASE, max_probability);
246 247
    }

248 249 250 251
  /* Conversion to and from RTL representation of profile probabilities.  */
  static profile_probability from_reg_br_prob_note (int v)
    {
      profile_probability ret;
252 253
      ret.m_val = ((unsigned int)v) / 8;
      ret.m_quality = (enum profile_quality)(v & 7);
254 255 256 257 258
      return ret;
    }
  int to_reg_br_prob_note () const
    {
      gcc_checking_assert (initialized_p ());
259
      int ret = m_val * 8 + m_quality;
260 261 262 263 264
      gcc_checking_assert (profile_probability::from_reg_br_prob_note (ret)
			   == *this);
      return ret;
    }

265 266 267 268 269 270 271 272 273
  /* Return VAL1/VAL2.  */
  static profile_probability probability_in_gcov_type
				 (gcov_type val1, gcov_type val2)
    {
      profile_probability ret;
      gcc_checking_assert (val1 >= 0 && val2 > 0);
      if (val1 > val2)
	ret.m_val = max_probability;
      else
274 275 276 277 278 279
	{
	  uint64_t tmp;
	  safe_scale_64bit (val1, max_probability, val2, &tmp);
	  gcc_checking_assert (tmp <= max_probability);
	  ret.m_val = tmp;
	}
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
      ret.m_quality = profile_precise;
      return ret;
    }

  /* Basic operations.  */
  bool operator== (const profile_probability &other) const
    {
      return m_val == other.m_val && m_quality == other.m_quality;
    }
  profile_probability operator+ (const profile_probability &other) const
    {
      if (other == profile_probability::never ())
	return *this;
      if (*this == profile_probability::never ())
	return other;
      if (!initialized_p () || !other.initialized_p ())
	return profile_probability::uninitialized ();

      profile_probability ret;
      ret.m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
      ret.m_quality = MIN (m_quality, other.m_quality);
      return ret;
    }
  profile_probability &operator+= (const profile_probability &other)
    {
      if (other == profile_probability::never ())
	return *this;
      if (*this == profile_probability::never ())
	{
	  *this = other;
	  return *this;
	}
      if (!initialized_p () || !other.initialized_p ())
	return *this = profile_probability::uninitialized ();
      else
	{
	  m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
317
	  m_quality = MIN (m_quality, other.m_quality);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	}
      return *this;
    }
  profile_probability operator- (const profile_probability &other) const
    {
      if (*this == profile_probability::never ()
	  || other == profile_probability::never ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return profile_probability::uninitialized ();
      profile_probability ret;
      ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
      ret.m_quality = MIN (m_quality, other.m_quality);
      return ret;
    }
  profile_probability &operator-= (const profile_probability &other)
    {
      if (*this == profile_probability::never ()
	  || other == profile_probability::never ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return *this = profile_probability::uninitialized ();
      else
	{
	  m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
343
	  m_quality = MIN (m_quality, other.m_quality);
344 345 346 347 348 349 350 351 352 353 354 355
	}
      return *this;
    }
  profile_probability operator* (const profile_probability &other) const
    {
      if (*this == profile_probability::never ()
	  || other == profile_probability::never ())
	return profile_probability::never ();
      if (!initialized_p () || !other.initialized_p ())
	return profile_probability::uninitialized ();
      profile_probability ret;
      ret.m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
356
      ret.m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
357 358 359 360 361 362 363 364 365 366 367
      return ret;
    }
  profile_probability &operator*= (const profile_probability &other)
    {
      if (*this == profile_probability::never ()
	  || other == profile_probability::never ())
	return *this = profile_probability::never ();
      if (!initialized_p () || !other.initialized_p ())
	return *this = profile_probability::uninitialized ();
      else
	{
368
	  m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
369
	  m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
370 371 372 373 374 375 376 377 378 379
	}
      return *this;
    }
  profile_probability operator/ (const profile_probability &other) const
    {
      if (*this == profile_probability::never ())
	return profile_probability::never ();
      if (!initialized_p () || !other.initialized_p ())
	return profile_probability::uninitialized ();
      profile_probability ret;
380
      /* If we get probability above 1, mark it as unreliable and return 1. */
381
      if (m_val >= other.m_val)
382 383 384 385 386 387
	{
	  ret.m_val = max_probability;
          ret.m_quality = MIN (MIN (m_quality, other.m_quality),
			       profile_guessed);
	  return ret;
	}
388 389 390 391 392
      else if (!m_val)
	ret.m_val = 0;
      else
	{
	  gcc_checking_assert (other.m_val);
393
	  ret.m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
394 395 396
				 other.m_val),
			   max_probability);
	}
397
      ret.m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
398 399 400 401 402 403 404 405 406 407
      return ret;
    }
  profile_probability &operator/= (const profile_probability &other)
    {
      if (*this == profile_probability::never ())
	return *this = profile_probability::never ();
      if (!initialized_p () || !other.initialized_p ())
	return *this = profile_probability::uninitialized ();
      else
	{
408 409
          /* If we get probability above 1, mark it as unreliable
	     and return 1. */
410
	  if (m_val > other.m_val)
411 412 413 414 415 416
	    {
	      m_val = max_probability;
              m_quality = MIN (MIN (m_quality, other.m_quality),
			       profile_guessed);
	      return *this;
	    }
417 418 419 420 421
	  else if (!m_val)
	    ;
	  else
	    {
	      gcc_checking_assert (other.m_val);
422
	      m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
423 424 425
				 other.m_val),
			   max_probability);
	    }
426
	  m_quality = MIN (MIN (m_quality, other.m_quality), profile_adjusted);
427 428 429 430
	}
      return *this;
    }

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
  /* Split *THIS (ORIG) probability into 2 probabilities, such that
     the returned one (FIRST) is *THIS * CPROB and *THIS is
     adjusted (SECOND) so that FIRST + FIRST.invert () * SECOND
     == ORIG.  This is useful e.g. when splitting a conditional
     branch like:
     if (cond)
       goto lab; // ORIG probability
     into
     if (cond1)
       goto lab; // FIRST = ORIG * CPROB probability
     if (cond2)
       goto lab; // SECOND probability
     such that the overall probability of jumping to lab remains
     the same.  CPROB gives the relative probability between the
     branches.  */
  profile_probability split (const profile_probability &cprob)
    {
      profile_probability ret = *this * cprob;
      /* The following is equivalent to:
450 451 452 453 454 455
         *this = cprob.invert () * *this / ret.invert ();
	 Avoid scaling when overall outcome is supposed to be always.
	 Without knowing that one is inverse of toher, the result would be
	 conservative.  */
      if (!(*this == profile_probability::always ()))
        *this = (*this - ret) / ret.invert ();
456 457 458
      return ret;
    }

459 460 461 462 463 464 465 466 467 468 469 470 471
  gcov_type apply (gcov_type val) const
    {
      if (*this == profile_probability::uninitialized ())
	return val / 2;
      return RDIV (val * m_val, max_probability);
    }

  /* Return 1-*THIS.  */
  profile_probability invert () const
    {
      return profile_probability::always() - *this;
    }

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  /* Return THIS with quality dropped to GUESSED.  */
  profile_probability guessed () const
    {
      profile_probability ret = *this;
      ret.m_quality = profile_guessed;
      return ret;
    }

  /* Return THIS with quality dropped to AFDO.  */
  profile_probability afdo () const
    {
      profile_probability ret = *this;
      ret.m_quality = profile_afdo;
      return ret;
    }

488 489 490 491 492 493 494 495
  /* Return *THIS * NUM / DEN.  */
  profile_probability apply_scale (int64_t num, int64_t den) const
    {
      if (*this == profile_probability::never ())
	return *this;
      if (!initialized_p ())
	return profile_probability::uninitialized ();
      profile_probability ret;
496 497 498
      uint64_t tmp;
      safe_scale_64bit (m_val, num, den, &tmp);
      ret.m_val = MIN (tmp, max_probability);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
      ret.m_quality = MIN (m_quality, profile_adjusted);
      return ret;
    }

  /* Return true when the probability of edge is reliable.

     The profile guessing code is good at predicting branch outcome (ie.
     taken/not taken), that is predicted right slightly over 75% of time.
     It is however notoriously poor on predicting the probability itself.
     In general the profile appear a lot flatter (with probabilities closer
     to 50%) than the reality so it is bad idea to use it to drive optimization
     such as those disabling dynamic branch prediction for well predictable
     branches.

     There are two exceptions - edges leading to noreturn edges and edges
     predicted by number of iterations heuristics are predicted well.  This macro
     should be able to distinguish those, but at the moment it simply check for
     noreturn heuristic that is only one giving probability over 99% or bellow
     1%.  In future we might want to propagate reliability information across the
     CFG if we find this information useful on multiple places.   */

  bool probably_reliable_p () const
    {
      if (m_quality >= profile_adjusted)
	return true;
      if (!initialized_p ())
	return false;
      return m_val < max_probability / 100
	     || m_val > max_probability - max_probability / 100;
    }

  /* Return false if profile_probability is bogus.  */
  bool verify () const
    {
533
      gcc_checking_assert (m_quality != profile_uninitialized);
534 535
      if (m_val == uninitialized_probability)
	return m_quality == profile_guessed;
536 537 538
      else if (m_quality < profile_guessed)
	return false;
      return m_val <= max_probability;
539 540 541
    }

  /* Comparsions are three-state and conservative.  False is returned if
542
     the inequality cannot be decided.  */
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  bool operator< (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val < other.m_val;
    }
  bool operator> (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val > other.m_val;
    }

  bool operator<= (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val <= other.m_val;
    }
  bool operator>= (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val >= other.m_val;
    }

  /* Output THIS to F.  */
  void dump (FILE *f) const;

  /* Print THIS to stderr.  */
  void debug () const;

  /* Return true if THIS is known to differ significantly from OTHER.  */
  bool differs_from_p (profile_probability other) const;
  /* Return if difference is greater than 50%.  */
  bool differs_lot_from_p (profile_probability other) const;
571 572 573 574 575 576
  /* COUNT1 times event happens with *THIS probability, COUNT2 times OTHER
     happens with COUNT2 probablity. Return probablity that either *THIS or
     OTHER happens.  */
  profile_probability combine_with_count (profile_count count1,
					  profile_probability other,
					  profile_count count2) const;
577 578 579 580 581 582 583

  /* LTO streaming support.  */
  static profile_probability stream_in (struct lto_input_block *);
  void stream_out (struct output_block *);
  void stream_out (struct lto_output_stream *);
};

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/* Main data type to hold profile counters in GCC. Profile counts originate
   either from profile feedback, static profile estimation or both.  We do not
   perform whole program profile propagation and thus profile estimation
   counters are often local to function, while counters from profile feedback
   (or special cases of profile estimation) can be used inter-procedurally.

   There are 3 basic types
     1) local counters which are result of intra-procedural static profile
        estimation.
     2) ipa counters which are result of profile feedback or special case
        of static profile estimation (such as in function main).
     3) counters which counts as 0 inter-procedurally (beause given function
        was never run in train feedback) but they hold local static profile
        estimate.

599
   Counters of type 1 and 3 cannot be mixed with counters of different type
600 601 602 603 604 605 606 607 608 609
   within operation (because whole function should use one type of counter)
   with exception that global zero mix in most operations where outcome is
   well defined.

   To take local counter and use it inter-procedurally use ipa member function
   which strips information irelevant at the inter-procedural level.

   Counters are 61bit integers representing number of executions during the
   train run or normalized frequency within the function.

610 611 612 613 614 615
   As the profile is maintained during the compilation, many adjustments are
   made.  Not all transformations can be made precisely, most importantly
   when code is being duplicated.  It also may happen that part of CFG has
   profile counts known while other do not - for example when LTO optimizing
   partly profiled program or when profile was lost due to COMDAT merging.

616
   For this reason profile_count tracks more information than
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
   just unsigned integer and it is also ready for profile mismatches.
   The API of this data type represent operations that are natural
   on profile counts - sum, difference and operation with scales and
   probabilities.  All operations are safe by never getting negative counts
   and they do end up in uninitialized scale if any of the parameters is
   uninitialized.

   All comparsions that are three state and handling of probabilities.  Thus
   a < b is not equal to !(a >= b).

   The following pre-defined counts are available:

   profile_count::zero ()  for code that is known to execute zero times at
      runtime (this can be detected statically i.e. for paths leading to
      abort ();
   profile_count::one () for code that is known to execute once (such as
      main () function
   profile_count::uninitialized ()  for unknown execution count.

 */

638 639
class sreal;

640 641
class GTY(()) profile_count
{
642
public:
643
  /* Use 62bit to hold basic block counters.  Should be at least
644 645 646
     64bit.  Although a counter cannot be negative, we use a signed
     type to hold various extra stages.  */

647
  static const int n_bits = 61;
648
  static const uint64_t max_count = ((uint64_t) 1 << n_bits) - 2;
649
private:
650 651
  static const uint64_t uninitialized_count = ((uint64_t) 1 << n_bits) - 1;

652 653 654 655 656 657 658 659 660 661 662
#if defined (__arm__) && (__GNUC__ >= 6 && __GNUC__ <= 8)
  /* Work-around for PR88469.  A bug in the gcc-6/7/8 PCS layout code
     incorrectly detects the alignment of a structure where the only
     64-bit aligned object is a bit-field.  We force the alignment of
     the entire field to mitigate this.  */
#define UINT64_BIT_FIELD_ALIGN __attribute__ ((aligned(8)))
#else
#define UINT64_BIT_FIELD_ALIGN
#endif
  uint64_t UINT64_BIT_FIELD_ALIGN m_val : n_bits;
#undef UINT64_BIT_FIELD_ALIGN
663 664 665 666 667 668 669 670 671 672 673 674 675 676
  enum profile_quality m_quality : 3;

  /* Return true if both values can meaningfully appear in single function
     body.  We have either all counters in function local or global, otherwise
     operations between them are not really defined well.  */
  bool compatible_p (const profile_count other) const
    {
      if (!initialized_p () || !other.initialized_p ())
	return true;
      if (*this == profile_count::zero ()
	  || other == profile_count::zero ())
	return true;
      return ipa_p () == other.ipa_p ();
    }
677 678 679 680 681 682 683
public:

  /* Used for counters which are expected to be never executed.  */
  static profile_count zero ()
    {
      return from_gcov_type (0);
    }
684 685 686 687 688 689 690
  static profile_count adjusted_zero ()
    {
      profile_count c;
      c.m_val = 0;
      c.m_quality = profile_adjusted;
      return c;
    }
691 692 693 694 695 696 697
  static profile_count guessed_zero ()
    {
      profile_count c;
      c.m_val = 0;
      c.m_quality = profile_guessed;
      return c;
    }
698 699 700 701 702 703 704 705 706
  static profile_count one ()
    {
      return from_gcov_type (1);
    }
  /* Value of counters which has not been initialized. Either because
     initialization did not happen yet or because profile is unknown.  */
  static profile_count uninitialized ()
    {
      profile_count c;
707
      c.m_val = uninitialized_count;
708
      c.m_quality = profile_guessed_local;
709 710 711 712 713 714 715 716 717 718 719 720 721
      return c;
    }

  /* Conversion to gcov_type is lossy.  */
  gcov_type to_gcov_type () const
    {
      gcc_checking_assert (initialized_p ());
      return m_val;
    }

  /* Return true if value has been initialized.  */
  bool initialized_p () const
    {
722
      return m_val != uninitialized_count;
723 724 725 726
    }
  /* Return true if value can be trusted.  */
  bool reliable_p () const
    {
727
      return m_quality >= profile_adjusted;
728
    }
729 730 731 732 733
  /* Return true if vlaue can be operated inter-procedurally.  */
  bool ipa_p () const
    {
      return !initialized_p () || m_quality >= profile_guessed_global0;
    }
734 735 736 737 738
  /* Return true if quality of profile is precise.  */
  bool precise_p () const
    {
      return m_quality == profile_precise;
    }
739

740 741 742
  /* Get the quality of the count.  */
  enum profile_quality quality () const { return m_quality; }

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  /* When merging basic blocks, the two different profile counts are unified.
     Return true if this can be done without losing info about profile.
     The only case we care about here is when first BB contains something
     that makes it terminate in a way not visible in CFG.  */
  bool ok_for_merging (profile_count other) const
    {
      if (m_quality < profile_adjusted
	  || other.m_quality < profile_adjusted)
	return true;
      return !(other < *this);
    }

  /* When merging two BBs with different counts, pick common count that looks
     most representative.  */
  profile_count merge (profile_count other) const
    {
      if (*this == other || !other.initialized_p ()
	  || m_quality > other.m_quality)
	return *this;
      if (other.m_quality > m_quality
	  || other > *this)
	return other;
      return *this;
    }

768 769 770
  /* Basic operations.  */
  bool operator== (const profile_count &other) const
    {
771
      return m_val == other.m_val && m_quality == other.m_quality;
772 773 774 775 776 777 778 779 780 781 782
    }
  profile_count operator+ (const profile_count &other) const
    {
      if (other == profile_count::zero ())
	return *this;
      if (*this == profile_count::zero ())
	return other;
      if (!initialized_p () || !other.initialized_p ())
	return profile_count::uninitialized ();

      profile_count ret;
783
      gcc_checking_assert (compatible_p (other));
784
      ret.m_val = m_val + other.m_val;
785
      ret.m_quality = MIN (m_quality, other.m_quality);
786 787 788 789 790 791 792 793 794 795 796 797 798 799
      return ret;
    }
  profile_count &operator+= (const profile_count &other)
    {
      if (other == profile_count::zero ())
	return *this;
      if (*this == profile_count::zero ())
	{
	  *this = other;
	  return *this;
	}
      if (!initialized_p () || !other.initialized_p ())
	return *this = profile_count::uninitialized ();
      else
800
	{
801
          gcc_checking_assert (compatible_p (other));
802
	  m_val += other.m_val;
803
	  m_quality = MIN (m_quality, other.m_quality);
804
	}
805 806 807 808 809 810 811 812
      return *this;
    }
  profile_count operator- (const profile_count &other) const
    {
      if (*this == profile_count::zero () || other == profile_count::zero ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return profile_count::uninitialized ();
813
      gcc_checking_assert (compatible_p (other));
814
      profile_count ret;
815 816
      ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
      ret.m_quality = MIN (m_quality, other.m_quality);
817 818 819 820 821 822 823 824 825
      return ret;
    }
  profile_count &operator-= (const profile_count &other)
    {
      if (*this == profile_count::zero () || other == profile_count::zero ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return *this = profile_count::uninitialized ();
      else
826
	{
827
          gcc_checking_assert (compatible_p (other));
828
	  m_val = m_val >= other.m_val ? m_val - other.m_val: 0;
829
	  m_quality = MIN (m_quality, other.m_quality);
830
	}
831 832 833 834 835 836
      return *this;
    }

  /* Return false if profile_count is bogus.  */
  bool verify () const
    {
837
      gcc_checking_assert (m_quality != profile_uninitialized);
838
      return m_val != uninitialized_count || m_quality == profile_guessed_local;
839 840 841
    }

  /* Comparsions are three-state and conservative.  False is returned if
842
     the inequality cannot be decided.  */
843 844
  bool operator< (const profile_count &other) const
    {
845 846 847 848 849 850 851 852
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (*this == profile_count::zero ())
	return !(other == profile_count::zero ());
      if (other == profile_count::zero ())
	return false;
      gcc_checking_assert (compatible_p (other));
      return m_val < other.m_val;
853 854 855
    }
  bool operator> (const profile_count &other) const
    {
856 857 858 859 860 861 862
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (*this  == profile_count::zero ())
	return false;
      if (other == profile_count::zero ())
	return !(*this == profile_count::zero ());
      gcc_checking_assert (compatible_p (other));
863 864 865 866
      return initialized_p () && other.initialized_p () && m_val > other.m_val;
    }
  bool operator< (const gcov_type other) const
    {
867
      gcc_checking_assert (ipa_p ());
868 869
      gcc_checking_assert (other >= 0);
      return initialized_p () && m_val < (uint64_t) other;
870 871 872
    }
  bool operator> (const gcov_type other) const
    {
873
      gcc_checking_assert (ipa_p ());
874 875
      gcc_checking_assert (other >= 0);
      return initialized_p () && m_val > (uint64_t) other;
876 877 878 879
    }

  bool operator<= (const profile_count &other) const
    {
880 881 882 883 884 885 886 887
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (*this == profile_count::zero ())
	return true;
      if (other == profile_count::zero ())
	return (*this == profile_count::zero ());
      gcc_checking_assert (compatible_p (other));
      return m_val <= other.m_val;
888 889 890
    }
  bool operator>= (const profile_count &other) const
    {
891 892 893 894 895
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (other == profile_count::zero ())
	return true;
      if (*this == profile_count::zero ())
896
	return (other == profile_count::zero ());
897 898
      gcc_checking_assert (compatible_p (other));
      return m_val >= other.m_val;
899 900 901
    }
  bool operator<= (const gcov_type other) const
    {
902
      gcc_checking_assert (ipa_p ());
903 904
      gcc_checking_assert (other >= 0);
      return initialized_p () && m_val <= (uint64_t) other;
905 906 907
    }
  bool operator>= (const gcov_type other) const
    {
908
      gcc_checking_assert (ipa_p ());
909 910
      gcc_checking_assert (other >= 0);
      return initialized_p () && m_val >= (uint64_t) other;
911
    }
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
  /* Return true when value is not zero and can be used for scaling. 
     This is different from *this > 0 because that requires counter to
     be IPA.  */
  bool nonzero_p () const
    {
      return initialized_p () && m_val != 0;
    }

  /* Make counter forcingly nonzero.  */
  profile_count force_nonzero () const
    {
      if (!initialized_p ())
	return *this;
      profile_count ret = *this;
      if (ret.m_val == 0)
927 928 929 930
	{
	  ret.m_val = 1;
          ret.m_quality = MIN (m_quality, profile_adjusted);
	}
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
      return ret;
    }

  profile_count max (profile_count other) const
    {
      if (!initialized_p ())
	return other;
      if (!other.initialized_p ())
	return *this;
      if (*this == profile_count::zero ())
	return other;
      if (other == profile_count::zero ())
	return *this;
      gcc_checking_assert (compatible_p (other));
      if (m_val < other.m_val || (m_val == other.m_val
				  && m_quality < other.m_quality))
	return other;
      return *this;
    }
950 951 952 953 954 955

  /* PROB is a probability in scale 0...REG_BR_PROB_BASE.  Scale counter
     accordingly.  */
  profile_count apply_probability (int prob) const
    {
      gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
956
      if (m_val == 0)
957
	return *this;
958 959 960 961
      if (!initialized_p ())
	return profile_count::uninitialized ();
      profile_count ret;
      ret.m_val = RDIV (m_val * prob, REG_BR_PROB_BASE);
962 963 964 965 966 967 968 969 970 971 972 973 974 975
      ret.m_quality = MIN (m_quality, profile_adjusted);
      return ret;
    }

  /* Scale counter according to PROB.  */
  profile_count apply_probability (profile_probability prob) const
    {
      if (*this == profile_count::zero ())
	return *this;
      if (prob == profile_probability::never ())
	return profile_count::zero ();
      if (!initialized_p ())
	return profile_count::uninitialized ();
      profile_count ret;
976 977 978 979
      uint64_t tmp;
      safe_scale_64bit (m_val, prob.m_val, profile_probability::max_probability,
			&tmp);
      ret.m_val = tmp;
980
      ret.m_quality = MIN (m_quality, prob.m_quality);
981 982 983 984 985
      return ret;
    }
  /* Return *THIS * NUM / DEN.  */
  profile_count apply_scale (int64_t num, int64_t den) const
    {
986
      if (m_val == 0)
987
	return *this;
988 989 990
      if (!initialized_p ())
	return profile_count::uninitialized ();
      profile_count ret;
991 992
      uint64_t tmp;

993
      gcc_checking_assert (num >= 0 && den > 0);
994 995
      safe_scale_64bit (m_val, num, den, &tmp);
      ret.m_val = MIN (tmp, max_count);
996
      ret.m_quality = MIN (m_quality, profile_adjusted);
997 998 999 1000
      return ret;
    }
  profile_count apply_scale (profile_count num, profile_count den) const
    {
1001
      if (*this == profile_count::zero ())
1002
	return *this;
1003
      if (num == profile_count::zero ())
1004
	return num;
1005 1006
      if (!initialized_p () || !num.initialized_p () || !den.initialized_p ())
	return profile_count::uninitialized ();
1007 1008
      if (num == den)
	return *this;
1009
      gcc_checking_assert (den.m_val);
1010 1011

      profile_count ret;
1012 1013 1014
      uint64_t val;
      safe_scale_64bit (m_val, num.m_val, den.m_val, &val);
      ret.m_val = MIN (val, max_count);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
      ret.m_quality = MIN (MIN (MIN (m_quality, profile_adjusted),
			        num.m_quality), den.m_quality);
      if (num.ipa_p () && !ret.ipa_p ())
	ret.m_quality = MIN (num.m_quality, profile_guessed);
      return ret;
    }

  /* Return THIS with quality dropped to GUESSED_LOCAL.  */
  profile_count guessed_local () const
    {
      profile_count ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = profile_guessed_local;
      return ret;
    }

1032
  /* We know that profile is globally 0 but keep local profile if present.  */
1033 1034 1035 1036 1037 1038
  profile_count global0 () const
    {
      profile_count ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = profile_guessed_global0;
1039 1040 1041
      return ret;
    }

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
  /* We know that profile is globally adjusted 0 but keep local profile
     if present.  */
  profile_count global0adjusted () const
    {
      profile_count ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = profile_guessed_global0adjusted;
      return ret;
    }

1053 1054 1055 1056
  /* Return THIS with quality dropped to GUESSED.  */
  profile_count guessed () const
    {
      profile_count ret = *this;
1057
      ret.m_quality = MIN (ret.m_quality, profile_guessed);
1058 1059 1060
      return ret;
    }

1061 1062 1063 1064
  /* Return variant of profile counte which is always safe to compare
     acorss functions.  */
  profile_count ipa () const
    {
1065
      if (m_quality > profile_guessed_global0adjusted)
1066 1067 1068
	return *this;
      if (m_quality == profile_guessed_global0)
	return profile_count::zero ();
1069 1070
      if (m_quality == profile_guessed_global0adjusted)
	return profile_count::adjusted_zero ();
1071 1072 1073
      return profile_count::uninitialized ();
    }

1074 1075 1076 1077 1078 1079 1080 1081
  /* Return THIS with quality dropped to AFDO.  */
  profile_count afdo () const
    {
      profile_count ret = *this;
      ret.m_quality = profile_afdo;
      return ret;
    }

1082 1083
  /* Return probability of event with counter THIS within event with counter
     OVERALL.  */
1084
  profile_probability probability_in (const profile_count overall) const
1085
    {
1086 1087
      if (*this == profile_count::zero ()
	  && !(overall == profile_count::zero ()))
1088 1089 1090 1091
	return profile_probability::never ();
      if (!initialized_p () || !overall.initialized_p ()
	  || !overall.m_val)
	return profile_probability::uninitialized ();
1092 1093
      if (*this == overall && m_quality == profile_precise)
	return profile_probability::always ();
1094
      profile_probability ret;
1095 1096 1097
      gcc_checking_assert (compatible_p (overall));

      if (overall.m_val < m_val)
1098 1099 1100 1101 1102
	{
	  ret.m_val = profile_probability::max_probability;
	  ret.m_quality = profile_guessed;
	  return ret;
	}
1103
      else
1104
	ret.m_val = RDIV (m_val * profile_probability::max_probability,
1105
			  overall.m_val);
1106 1107
      ret.m_quality = MIN (MAX (MIN (m_quality, overall.m_quality),
				profile_guessed), profile_adjusted);
1108
      return ret;
1109 1110
    }

1111 1112
  int to_frequency (struct function *fun) const;
  int to_cgraph_frequency (profile_count entry_bb_count) const;
1113
  sreal to_sreal_scale (profile_count in, bool *known = NULL) const;
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123
  /* Output THIS to F.  */
  void dump (FILE *f) const;

  /* Print THIS to stderr.  */
  void debug () const;

  /* Return true if THIS is known to differ significantly from OTHER.  */
  bool differs_from_p (profile_count other) const;

1124 1125 1126 1127 1128
  /* We want to scale profile across function boundary from NUM to DEN.
     Take care of the side case when NUM and DEN are zeros of incompatible
     kinds.  */
  static void adjust_for_ipa_scaling (profile_count *num, profile_count *den);

1129 1130 1131 1132 1133 1134 1135
  /* THIS is a count of bb which is known to be executed IPA times.
     Combine this information into bb counter.  This means returning IPA
     if it is nonzero, not changing anything if IPA is uninitialized
     and if IPA is zero, turning THIS into corresponding local profile with
     global0.  */
  profile_count combine_with_ipa_count (profile_count ipa);

1136 1137 1138 1139 1140
  /* The profiling runtime uses gcov_type, which is usually 64bit integer.
     Conversions back and forth are used to read the coverage and get it
     into internal representation.  */
  static profile_count from_gcov_type (gcov_type v);

1141 1142 1143 1144 1145 1146
  /* LTO streaming support.  */
  static profile_count stream_in (struct lto_input_block *);
  void stream_out (struct output_block *);
  void stream_out (struct lto_output_stream *);
};
#endif