early-remat.c 79.8 KB
Newer Older
1
/* Early (pre-RA) rematerialization
2
   Copyright (C) 2017-2020 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "insn-config.h"
#include "recog.h"
/* FIXME: The next two are only needed for gen_move_insn.  */
#include "tree.h"
#include "expr.h"
#include "target.h"
#include "inchash.h"
#include "rtlhash.h"
#include "print-rtl.h"
#include "rtl-iter.h"
39 40
#include "regs.h"
#include "function-abi.h"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

/* This pass runs before register allocation and implements an aggressive
   form of rematerialization.  It looks for pseudo registers R of mode M
   for which:

     (a) there are no call-preserved registers of mode M; and
     (b) spilling R to the stack is expensive.

   The assumption is that it's better to recompute R after each call instead
   of spilling it, even if this extends the live ranges of other registers.

   The motivating example for which these conditions hold are AArch64 SVE
   vectors and predicates.  Spilling them to the stack makes the frame
   variable-sized, which we'd like to avoid if possible.  It's also very
   rare for SVE values to be "naturally" live across a call: usually this
   happens as a result of CSE or other code motion.

   The pass is split into the following phases:

   Collection phase
   ================

   First we go through all pseudo registers looking for any that meet
   the conditions above.  For each such register R, we go through each
   instruction that defines R to see whether any of them are suitable
   rematerialization candidates.  If at least one is, we treat all the
   instructions that define R as candidates, but record which ones are
   not in fact suitable.  These unsuitable candidates exist only for the
   sake of calculating reaching definitions (see below).

   A "candidate" is a single instruction that we want to rematerialize
   and a "candidate register" is a register that is set by at least one
   candidate.

   Candidate sorting
   =================

   Next we sort the candidates based on the cfg postorder, so that if
   candidate C1 uses candidate C2, C1 has a lower index than C2.
   This is useful when iterating through candidate bitmaps.

   Reaching definition calculation
   ===============================

   We then compute standard reaching-definition sets for each candidate.
   Each set specifies which candidates might provide the current definition
   of a live candidate register.

   From here on, a candidate C is "live" at a point P if the candidate
   register defined by C is live at P and if C's definition reaches P.
   An instruction I "uses" a candidate C if I takes the register defined by
   C as input and if C is one of the reaching definitions of that register.

   Candidate validation and value numbering
   ========================================

   Next we simultaneously decide which candidates are valid and look
   for candidates that are equivalent to each other, assigning numbers
   to each unique candidate value.  A candidate C is invalid if:

     (a) C uses an invalid candidate;

     (b) there is a cycle of candidate uses involving C; or

     (c) C takes a candidate register R as input and the reaching
         definitions of R do not have the same value number.

   We assign a "representative" candidate C to each value number and from
   here on replace references to other candidates with that value number
   with references to C.  It is then only possible to rematerialize a
   register R at point P if (after this replacement) there is a single
   reaching definition of R at P.

   Local phase
   ===========

   During this phase we go through each block and look for cases in which:

     (a) an instruction I comes between two call instructions CI1 and CI2;

     (b) I uses a candidate register R;

     (c) a candidate C provides the only reaching definition of R; and

     (d) C does not come between CI1 and I.

   We then emit a copy of C after CI1, as well as the transitive closure
   TC of the candidates used by C.  The copies of TC might use the original
   candidate registers or new temporary registers, depending on circumstances.

   For example, if elsewhere we have:

       C3: R3 <- f3 (...)
	   ...
       C2: R2 <- f2 (...)
	   ...
       C1: R1 <- f1 (R2, R3, ...)  // uses C2 and C3

   then for a block containing:

      CI1: call
	   ...
	I: use R1  // uses C1
	   ...
      CI2: call

   we would emit:

      CI1: call
      C3': R3' <- f3 (...)
      C2': R2' <- f2 (...)
      C1': R1 <- f1 (R2', R3', ...)
	   ...
	I: use R1
	   ...
      CI2: call

   where R2' and R3' might be fresh registers.  If instead we had:

      CI1: call
	   ...
       I1: use R1  // uses C1
	   ...
       I2: use R3  // uses C3
	   ...
      CI2: call

   we would keep the original R3:

      CI1: call
      C3': R3 <- f3 (...)
      C2': R2' <- f2 (...)
      C1': R1 <- f1 (R2', R3, ...)
	   ...
       I1: use R1  // uses C1
	   ...
       I2: use R3  // uses C3
	   ...
      CI2: call

   We also record the last call in each block (if any) and compute:

     rd_after_call:
       The set of candidates that either (a) are defined outside the block
       and are live after the last call or (b) are defined within the block
       and reach the end of the last call.  (We don't track whether the
       latter values are live or not.)

     required_after_call:
       The set of candidates that need to be rematerialized after the
       last call in order to satisfy uses in the block itself.

     required_in:
       The set of candidates that are live on entry to the block and are
       used without an intervening call.

   In addition, we compute the initial values of the sets required by
   the global phase below.

   Global phase
   ============

   We next compute a maximal solution to the following availability
   problem:

     available_in:
       The set of candidates that are live on entry to a block and can
       be used at that point without rematerialization.

     available_out:
       The set of candidates that are live on exit from a block and can
       be used at that point without rematerialization.

     available_locally:
       The subset of available_out that is due to code in the block itself.
       It contains candidates that are defined or used in the block and
       not invalidated by a later call.

   We then go through each block B and look for an appropriate place
   to insert copies of required_in - available_in.  Conceptually we
   start by placing the copies at the head of B, but then move the
   copy of a candidate C to predecessors if:

     (a) that seems cheaper;

     (b) there is more than one reaching definition of C's register at
	 the head of B; or

     (c) copying C would clobber a hard register that is live on entry to B.

   Moving a copy of C to a predecessor block PB involves:

     (1) adding C to PB's required_after_call, if PB contains a call; or

     (2) adding C PB's required_in otherwise.

   C is then available on output from each PB and on input to B.

   Once all this is done, we emit instructions for the final required_in
   and required_after_call sets.  */

namespace {

/* An invalid candidate index, used to indicate that there is more than
   one reaching definition.  */
const unsigned int MULTIPLE_CANDIDATES = -1U;

/* Pass-specific information about one basic block.  */
struct remat_block_info {
  /* The last call instruction in the block.  */
  rtx_insn *last_call;

  /* The set of candidates that are live on entry to the block.  NULL is
     equivalent to an empty set.  */
  bitmap rd_in;

  /* The set of candidates that are live on exit from the block.  This might
     reuse rd_in.  NULL is equivalent to an empty set.  */
  bitmap rd_out;

  /* The subset of RD_OUT that comes from local definitions.  NULL is
     equivalent to an empty set.  */
  bitmap rd_gen;

  /* The set of candidates that the block invalidates (because it defines
     the register to something else, or because the register's value is
     no longer important).  NULL is equivalent to an empty set.  */
  bitmap rd_kill;

  /* The set of candidates that either (a) are defined outside the block
     and are live after LAST_CALL or (b) are defined within the block
     and reach the instruction after LAST_CALL.  (We don't track whether
     the latter values are live or not.)

     Only used if LAST_CALL is nonnull.  NULL is equivalent to an
     empty set.  */
  bitmap rd_after_call;

  /* Candidates that are live and available without rematerialization
     on entry to the block.  NULL is equivalent to an empty set.  */
  bitmap available_in;

  /* Candidates that become available without rematerialization within the
     block, and remain so on exit.  NULL is equivalent to an empty set.  */
  bitmap available_locally;

  /* Candidates that are available without rematerialization on exit from
     the block.  This might reuse available_in or available_locally.  */
  bitmap available_out;

  /* Candidates that need to be rematerialized either at the start of the
     block or before entering the block.  */
  bitmap required_in;

  /* Candidates that need to be rematerialized after LAST_CALL.
     Only used if LAST_CALL is nonnull.  */
  bitmap required_after_call;

  /* The number of candidates in the block.  */
  unsigned int num_candidates;

  /* The earliest candidate in the block (i.e. the one with the
     highest index).  Only valid if NUM_CANDIDATES is nonzero.  */
  unsigned int first_candidate;

  /* The best (lowest) execution frequency for rematerializing REQUIRED_IN.
     This is the execution frequency of the block if LOCAL_REMAT_CHEAPER_P,
     otherwise it is the sum of the execution frequencies of whichever
     predecessor blocks would do the rematerialization.  */
  int remat_frequency;

  /* True if the block ends with an abnormal call.  */
  unsigned int abnormal_call_p : 1;

  /* Used to record whether a graph traversal has visited this block.  */
  unsigned int visited_p : 1;

  /* True if we have calculated REMAT_FREQUENCY.  */
  unsigned int remat_frequency_valid_p : 1;

  /* True if it is cheaper to rematerialize candidates at the start of
     the block, rather than moving them to predecessor blocks.  */
  unsigned int local_remat_cheaper_p : 1;
};

/* Information about a group of candidates with the same value number.  */
struct remat_equiv_class {
  /* The candidates that have the same value number.  */
  bitmap members;

  /* The candidate that was first added to MEMBERS.  */
  unsigned int earliest;

  /* The candidate that represents the others.  This is always the one
     with the highest index.  */
  unsigned int representative;
};

/* Information about an instruction that we might want to rematerialize.  */
struct remat_candidate {
  /* The pseudo register that the instruction sets.  */
  unsigned int regno;

  /* A temporary register used when rematerializing uses of this candidate,
     if REGNO doesn't have the right value or isn't worth using.  */
  unsigned int copy_regno;

  /* True if we intend to rematerialize this instruction by emitting
     a move of a constant into REGNO, false if we intend to emit a
     copy of the original instruction.  */
  unsigned int constant_p : 1;

  /* True if we still think it's possible to rematerialize INSN.  */
  unsigned int can_copy_p : 1;

  /* Used to record whether a graph traversal has visited this candidate.  */
  unsigned int visited_p : 1;

  /* True if we have verified that it's possible to rematerialize INSN.
     Once this is true, both it and CAN_COPY_P remain true.  */
  unsigned int validated_p : 1;

  /* True if we have "stabilized" INSN, i.e. ensured that all non-candidate
     registers read by INSN will have the same value when rematerializing INSN.
     Only ever true if CAN_COPY_P.  */
  unsigned int stabilized_p : 1;

  /* Hash value used for value numbering.  */
  hashval_t hash;

  /* The instruction that sets REGNO.  */
  rtx_insn *insn;

  /* If CONSTANT_P, the value that should be moved into REGNO when
     rematerializing, otherwise the pattern of the instruction that
     should be used.  */
  rtx remat_rtx;

  /* The set of candidates that INSN takes as input.  NULL is equivalent
     to the empty set.  All candidates in this set have a higher index
     than the current candidate.  */
  bitmap uses;

  /* The set of hard registers that would be clobbered by rematerializing
     the candidate, including (transitively) all those that would be
     clobbered by rematerializing USES.  */
  bitmap clobbers;

  /* The equivalence class to which the candidate belongs, or null if none.  */
  remat_equiv_class *equiv_class;
};

/* Hash functions used for value numbering.  */
struct remat_candidate_hasher : nofree_ptr_hash <remat_candidate>
{
  typedef value_type compare_type;
  static hashval_t hash (const remat_candidate *);
  static bool equal (const remat_candidate *, const remat_candidate *);
};

/* Main class for this pass.  */
class early_remat {
public:
  early_remat (function *, sbitmap);
  ~early_remat ();

  void run (void);

private:
  bitmap alloc_bitmap (void);
  bitmap get_bitmap (bitmap *);
  void init_temp_bitmap (bitmap *);
  void copy_temp_bitmap (bitmap *, bitmap *);

  void dump_insn_id (rtx_insn *);
  void dump_candidate_bitmap (bitmap);
  void dump_all_candidates (void);
  void dump_edge_list (basic_block, bool);
  void dump_block_info (basic_block);
  void dump_all_blocks (void);

  bool interesting_regno_p (unsigned int);
  remat_candidate *add_candidate (rtx_insn *, unsigned int, bool);
  bool maybe_add_candidate (rtx_insn *, unsigned int);
  bool collect_candidates (void);
  void init_block_info (void);
  void sort_candidates (void);
  void finalize_candidate_indices (void);
  void record_equiv_candidates (unsigned int, unsigned int);
  static bool rd_confluence_n (edge);
  static bool rd_transfer (int);
  void compute_rd (void);
  unsigned int canon_candidate (unsigned int);
  void canon_bitmap (bitmap *);
  unsigned int resolve_reaching_def (bitmap);
  bool check_candidate_uses (unsigned int);
  void compute_clobbers (unsigned int);
  void assign_value_number (unsigned int);
  void decide_candidate_validity (void);
440 441
  void restrict_remat_for_unavail_regs (bitmap, const_bitmap);
  void restrict_remat_for_call (bitmap, rtx_insn *);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
  bool stable_use_p (unsigned int);
  void emit_copy_before (unsigned int, rtx, rtx);
  void stabilize_pattern (unsigned int);
  void replace_dest_with_copy (unsigned int);
  void stabilize_candidate_uses (unsigned int, bitmap, bitmap, bitmap,
				 bitmap);
  void emit_remat_insns (bitmap, bitmap, bitmap, rtx_insn *);
  bool set_available_out (remat_block_info *);
  void process_block (basic_block);
  void local_phase (void);
  static bool avail_confluence_n (edge);
  static bool avail_transfer (int);
  void compute_availability (void);
  void unshare_available_sets (remat_block_info *);
  bool can_move_across_edge_p (edge);
  bool local_remat_cheaper_p (unsigned int);
  bool need_to_move_candidate_p (unsigned int, unsigned int);
  void compute_minimum_move_set (unsigned int, bitmap);
  void move_to_predecessors (unsigned int, bitmap, bitmap);
  void choose_rematerialization_points (void);
  void emit_remat_insns_for_block (basic_block);
  void global_phase (void);

  /* The function that we're optimizing.  */
  function *m_fn;

  /* The modes that we want to rematerialize.  */
  sbitmap m_selected_modes;

  /* All rematerialization candidates, identified by their index into the
     vector.  */
  auto_vec<remat_candidate> m_candidates;

  /* The set of candidate registers.  */
  bitmap_head m_candidate_regnos;

  /* Temporary sets.  */
  bitmap_head m_tmp_bitmap;
  bitmap m_available;
  bitmap m_required;

  /* Information about each basic block.  */
  auto_vec<remat_block_info> m_block_info;

  /* A mapping from register numbers to the set of associated candidates.
     Only valid for registers in M_CANDIDATE_REGNOS.  */
  auto_vec<bitmap> m_regno_to_candidates;

  /* An obstack used for allocating bitmaps, so that we can free them all
     in one go.  */
  bitmap_obstack m_obstack;

  /* A hash table of candidates used for value numbering.  If a candidate
     in the table is in an equivalence class, the candidate is marked as
     the earliest member of the class.  */
  hash_table<remat_candidate_hasher> m_value_table;

  /* Used temporarily by callback functions.  */
  static early_remat *er;
};

}

early_remat *early_remat::er;

/* rtx_equal_p_cb callback that treats any two SCRATCHes as equal.
   This allows us to compare two copies of a pattern, even though their
   SCRATCHes are always distinct.  */

static int
scratch_equal (const_rtx *x, const_rtx *y, rtx *nx, rtx *ny)
{
  if (GET_CODE (*x) == SCRATCH && GET_CODE (*y) == SCRATCH)
    {
      *nx = const0_rtx;
      *ny = const0_rtx;
      return 1;
    }
  return 0;
}

/* Hash callback functions for remat_candidate.  */

hashval_t
remat_candidate_hasher::hash (const remat_candidate *cand)
{
  return cand->hash;
}

bool
remat_candidate_hasher::equal (const remat_candidate *cand1,
			       const remat_candidate *cand2)
{
  return (cand1->regno == cand2->regno
	  && cand1->constant_p == cand2->constant_p
	  && (cand1->constant_p
	      ? rtx_equal_p (cand1->remat_rtx, cand2->remat_rtx)
	      : rtx_equal_p_cb (cand1->remat_rtx, cand2->remat_rtx,
				scratch_equal))
	  && (!cand1->uses || bitmap_equal_p (cand1->uses, cand2->uses)));
}

/* Return true if B is null or empty.  */

inline bool
empty_p (bitmap b)
{
  return !b || bitmap_empty_p (b);
}

/* Allocate a new bitmap.  It will be automatically freed at the end of
   the pass.  */

inline bitmap
early_remat::alloc_bitmap (void)
{
  return bitmap_alloc (&m_obstack);
}

/* Initialize *PTR to an empty bitmap if it is currently null.  */

inline bitmap
early_remat::get_bitmap (bitmap *ptr)
{
  if (!*ptr)
    *ptr = alloc_bitmap ();
  return *ptr;
}

/* *PTR is either null or empty.  If it is null, initialize it to an
   empty bitmap.  */

inline void
early_remat::init_temp_bitmap (bitmap *ptr)
{
  if (!*ptr)
    *ptr = alloc_bitmap ();
  else
    gcc_checking_assert (bitmap_empty_p (*ptr));
}

/* Move *SRC to *DEST and leave *SRC empty.  */

inline void
early_remat::copy_temp_bitmap (bitmap *dest, bitmap *src)
{
  if (!empty_p (*src))
    {
      *dest = *src;
      *src = NULL;
    }
  else
    *dest = NULL;
}

/* Print INSN's identifier to the dump file.  */

void
early_remat::dump_insn_id (rtx_insn *insn)
{
  fprintf (dump_file, "%d[bb:%d]", INSN_UID (insn),
	   BLOCK_FOR_INSN (insn)->index);
}

/* Print candidate set CANDIDATES to the dump file, with a leading space.  */

void
early_remat::dump_candidate_bitmap (bitmap candidates)
{
  if (empty_p (candidates))
    {
      fprintf (dump_file, " none");
      return;
    }

  unsigned int cand_index;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (candidates, 0, cand_index, bi)
    fprintf (dump_file, " %d", cand_index);
}

/* Print information about all candidates to the dump file.  */

void
early_remat::dump_all_candidates (void)
{
  fprintf (dump_file, "\n;; Candidates:\n;;\n");
  fprintf (dump_file, ";; %5s %5s %8s %s\n", "#", "reg", "mode", "insn");
  fprintf (dump_file, ";; %5s %5s %8s %s\n", "=", "===", "====", "====");
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT (m_candidates, cand_index, cand)
    {
      fprintf (dump_file, ";; %5d %5d %8s ", cand_index, cand->regno,
	       GET_MODE_NAME (GET_MODE (regno_reg_rtx[cand->regno])));
      dump_insn_id (cand->insn);
      if (!cand->can_copy_p)
	fprintf (dump_file, "   -- can't copy");
      fprintf (dump_file, "\n");
    }

  fprintf (dump_file, "\n;; Register-to-candidate mapping:\n;;\n");
  unsigned int regno;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (&m_candidate_regnos, 0, regno, bi)
    {
      fprintf (dump_file, ";; %5d:", regno);
      dump_candidate_bitmap (m_regno_to_candidates[regno]);
      fprintf (dump_file, "\n");
    }
}

/* Print the predecessors or successors of BB to the dump file, with a
   leading space.  DO_SUCC is true to print successors and false to print
   predecessors.  */

void
early_remat::dump_edge_list (basic_block bb, bool do_succ)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, do_succ ? bb->succs : bb->preds)
664
    dump_edge_info (dump_file, e, TDF_NONE, do_succ);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
}

/* Print information about basic block BB to the dump file.  */

void
early_remat::dump_block_info (basic_block bb)
{
  remat_block_info *info = &m_block_info[bb->index];
  fprintf (dump_file, ";;\n;; Block %d:", bb->index);
  int width = 25;

  fprintf (dump_file, "\n;;%*s:", width, "predecessors");
  dump_edge_list (bb, false);

  fprintf (dump_file, "\n;;%*s:", width, "successors");
  dump_edge_list (bb, true);

  fprintf (dump_file, "\n;;%*s: %d", width, "frequency",
	   bb->count.to_frequency (m_fn));

  if (info->last_call)
    fprintf (dump_file, "\n;;%*s: %d", width, "last call",
	     INSN_UID (info->last_call));

  if (!empty_p (info->rd_in))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD in");
      dump_candidate_bitmap (info->rd_in);
    }
  if (!empty_p (info->rd_kill))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD kill");
      dump_candidate_bitmap (info->rd_kill);
    }
  if (!empty_p (info->rd_gen))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD gen");
      dump_candidate_bitmap (info->rd_gen);
    }
  if (!empty_p (info->rd_after_call))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD after call");
      dump_candidate_bitmap (info->rd_after_call);
    }
  if (!empty_p (info->rd_out))
    {
      fprintf (dump_file, "\n;;%*s:", width, "RD out");
      if (info->rd_in == info->rd_out)
	fprintf (dump_file, " RD in");
      else
	dump_candidate_bitmap (info->rd_out);
    }
  if (!empty_p (info->available_in))
    {
      fprintf (dump_file, "\n;;%*s:", width, "available in");
      dump_candidate_bitmap (info->available_in);
    }
  if (!empty_p (info->available_locally))
    {
      fprintf (dump_file, "\n;;%*s:", width, "available locally");
      dump_candidate_bitmap (info->available_locally);
    }
  if (!empty_p (info->available_out))
    {
      fprintf (dump_file, "\n;;%*s:", width, "available out");
      if (info->available_in == info->available_out)
	fprintf (dump_file, " available in");
      else if (info->available_locally == info->available_out)
	fprintf (dump_file, " available locally");
      else
	dump_candidate_bitmap (info->available_out);
    }
  if (!empty_p (info->required_in))
    {
      fprintf (dump_file, "\n;;%*s:", width, "required in");
      dump_candidate_bitmap (info->required_in);
    }
  if (!empty_p (info->required_after_call))
    {
      fprintf (dump_file, "\n;;%*s:", width, "required after call");
      dump_candidate_bitmap (info->required_after_call);
    }
  fprintf (dump_file, "\n");
}

/* Print information about all basic blocks to the dump file.  */

void
early_remat::dump_all_blocks (void)
{
  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    dump_block_info (bb);
}

/* Return true if REGNO is worth rematerializing.  */

bool
early_remat::interesting_regno_p (unsigned int regno)
{
  /* Ignore unused registers.  */
  rtx reg = regno_reg_rtx[regno];
  if (!reg || DF_REG_DEF_COUNT (regno) == 0)
    return false;

  /* Make sure the register has a mode that we want to rematerialize.  */
  if (!bitmap_bit_p (m_selected_modes, GET_MODE (reg)))
    return false;

  /* Ignore values that might sometimes be used uninitialized.  We could
     instead add dummy candidates for the entry block definition, and so
     handle uses that are definitely not uninitialized, but the combination
     of the two should be rare in practice.  */
  if (bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (m_fn)), regno))
    return false;

  return true;
}

/* Record the set of register REGNO in instruction INSN as a
   rematerialization candidate.  CAN_COPY_P is true unless we already
   know that rematerialization is impossible (in which case the candidate
   only exists for the reaching definition calculation).

   The candidate's index is not fixed at this stage.  */

remat_candidate *
early_remat::add_candidate (rtx_insn *insn, unsigned int regno,
			    bool can_copy_p)
{
  remat_candidate cand;
  memset (&cand, 0, sizeof (cand));
  cand.regno = regno;
  cand.insn = insn;
  cand.remat_rtx = PATTERN (insn);
  cand.can_copy_p = can_copy_p;
  m_candidates.safe_push (cand);

  bitmap_set_bit (&m_candidate_regnos, regno);

  return &m_candidates.last ();
}

/* Return true if we can rematerialize the set of register REGNO in
   instruction INSN, and add it as a candidate if so.  When returning
   false, print the reason to the dump file.  */

bool
early_remat::maybe_add_candidate (rtx_insn *insn, unsigned int regno)
{
#define FAILURE_FORMAT ";; Can't rematerialize set of reg %d in %d[bb:%d]: "
#define FAILURE_ARGS regno, INSN_UID (insn), BLOCK_FOR_INSN (insn)->index

  /* The definition must come from an ordinary instruction.  */
  basic_block bb = BLOCK_FOR_INSN (insn);
  if (!NONJUMP_INSN_P (insn)
      || (insn == BB_END (bb)
	  && has_abnormal_or_eh_outgoing_edge_p (bb)))
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "insn alters control flow\n",
		 FAILURE_ARGS);
      return false;
    }

  /* Prefer to rematerialize constants directly -- it's much easier.  */
  machine_mode mode = GET_MODE (regno_reg_rtx[regno]);
  if (rtx note = find_reg_equal_equiv_note (insn))
    {
      rtx val = XEXP (note, 0);
      if (CONSTANT_P (val)
	  && targetm.legitimate_constant_p (mode, val))
	{
	  remat_candidate *cand = add_candidate (insn, regno, true);
	  cand->constant_p = true;
	  cand->remat_rtx = val;
	  return true;
	}
    }

  /* See whether the target has reasons to prevent a copy.  */
  if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (insn))
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "target forbids copying\n",
		 FAILURE_ARGS);
      return false;
    }

  /* We can't copy trapping instructions.  */
  rtx pat = PATTERN (insn);
  if (may_trap_p (pat))
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "insn might trap\n", FAILURE_ARGS);
      return false;
    }

  /* We can't copy instructions that read memory, unless we know that
     the contents never change.  */
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, pat, ALL)
    if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
      {
	if (dump_file)
	  fprintf (dump_file, FAILURE_FORMAT "insn references non-constant"
		   " memory\n", FAILURE_ARGS);
	return false;
      }

  /* Check each defined register.  */
  df_ref ref;
  FOR_EACH_INSN_DEF (ref, insn)
    {
      unsigned int def_regno = DF_REF_REGNO (ref);
      if (def_regno == regno)
	{
	  /* Make sure the definition is write-only.  (Partial definitions,
	     such as setting the low part and clobbering the high part,
	     are otherwise OK.)  */
	  if (DF_REF_FLAGS_IS_SET (ref, DF_REF_READ_WRITE))
	    {
	      if (dump_file)
		fprintf (dump_file, FAILURE_FORMAT "destination is"
			 " read-modify-write\n", FAILURE_ARGS);
	      return false;
	    }
	}
      else
	{
	  /* The instruction can set additional registers, provided that
896 897
	     they're hard registers.  This is useful for instructions
	     that alter the condition codes.  */
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	  if (!HARD_REGISTER_NUM_P (def_regno))
	    {
	      if (dump_file)
		fprintf (dump_file, FAILURE_FORMAT "insn also sets"
			 " pseudo reg %d\n", FAILURE_ARGS, def_regno);
	      return false;
	    }
	}
    }

  /* If the instruction uses fixed hard registers, check that those
     registers have the same value throughout the function.  If the
     instruction uses non-fixed hard registers, check that we can
     replace them with pseudos.  */
  FOR_EACH_INSN_USE (ref, insn)
    {
      unsigned int use_regno = DF_REF_REGNO (ref);
      if (HARD_REGISTER_NUM_P (use_regno) && fixed_regs[use_regno])
	{
	  if (rtx_unstable_p (DF_REF_REAL_REG (ref)))
	    {
	      if (dump_file)
		fprintf (dump_file, FAILURE_FORMAT "insn uses fixed hard reg"
			 " %d\n", FAILURE_ARGS, use_regno);
	      return false;
	    }
	}
      else if (HARD_REGISTER_NUM_P (use_regno))
	{
	  /* Allocate a dummy pseudo register and temporarily install it.
	     Make the register number depend on the mode, which should
	     provide enough sharing for match_dup while also weeding
	     out cases in which operands with different modes are
	     explicitly tied.  */
	  rtx *loc = DF_REF_REAL_LOC (ref);
	  unsigned int size = RTX_CODE_SIZE (REG);
	  rtx new_reg = (rtx) alloca (size);
	  memset (new_reg, 0, size);
	  PUT_CODE (new_reg, REG);
	  set_mode_and_regno (new_reg, GET_MODE (*loc),
			      LAST_VIRTUAL_REGISTER + 1 + GET_MODE (*loc));
	  validate_change (insn, loc, new_reg, 1);
	}
    }
  bool ok_p = verify_changes (0);
  cancel_changes (0);
  if (!ok_p)
    {
      if (dump_file)
	fprintf (dump_file, FAILURE_FORMAT "insn does not allow hard"
		 " register inputs to be replaced\n", FAILURE_ARGS);
      return false;
    }

#undef FAILURE_ARGS
#undef FAILURE_FORMAT

  add_candidate (insn, regno, true);
  return true;
}

/* Calculate the set of rematerialization candidates.  Return true if
   we find at least one.  */

bool
early_remat::collect_candidates (void)
{
  unsigned int nregs = DF_REG_SIZE (df);
  for (unsigned int regno = FIRST_PSEUDO_REGISTER; regno < nregs; ++regno)
    if (interesting_regno_p (regno))
      {
	/* Create candidates for all suitable definitions.  */
	bitmap_clear (&m_tmp_bitmap);
	unsigned int bad = 0;
	unsigned int id = 0;
	for (df_ref ref = DF_REG_DEF_CHAIN (regno); ref;
	     ref = DF_REF_NEXT_REG (ref))
	  {
	    rtx_insn *insn = DF_REF_INSN (ref);
	    if (maybe_add_candidate (insn, regno))
	      bitmap_set_bit (&m_tmp_bitmap, id);
	    else
	      bad += 1;
	    id += 1;
	  }

	/* If we found at least one suitable definition, add dummy
	   candidates for the rest, so that we can see which definitions
	   are live where.  */
	if (!bitmap_empty_p (&m_tmp_bitmap) && bad)
	  {
	    id = 0;
	    for (df_ref ref = DF_REG_DEF_CHAIN (regno); ref;
		 ref = DF_REF_NEXT_REG (ref))
	      {
		if (!bitmap_bit_p (&m_tmp_bitmap, id))
		  add_candidate (DF_REF_INSN (ref), regno, false);
		id += 1;
	      }
	  }
      }


  return !m_candidates.is_empty ();
}

/* Initialize the m_block_info array.  */

void
early_remat::init_block_info (void)
{
  unsigned int n_blocks = last_basic_block_for_fn (m_fn);
  m_block_info.safe_grow_cleared (n_blocks);
}

/* Maps basic block indices to their position in the post order.  */
static unsigned int *postorder_index;

/* Order remat_candidates X_IN and Y_IN according to the cfg postorder.  */

static int
compare_candidates (const void *x_in, const void *y_in)
{
  const remat_candidate *x = (const remat_candidate *) x_in;
  const remat_candidate *y = (const remat_candidate *) y_in;
  basic_block x_bb = BLOCK_FOR_INSN (x->insn);
  basic_block y_bb = BLOCK_FOR_INSN (y->insn);
  if (x_bb != y_bb)
    /* Make X and Y follow block postorder.  */
    return postorder_index[x_bb->index] - postorder_index[y_bb->index];

  /* Make X and Y follow a backward traversal of the containing block.  */
  return DF_INSN_LUID (y->insn) - DF_INSN_LUID (x->insn);
}

/* Sort the collected rematerialization candidates so that they follow
   cfg postorder.  */

void
early_remat::sort_candidates (void)
{
  /* Make sure the DF LUIDs are up-to-date for all the blocks we
     care about.  */
  bitmap_clear (&m_tmp_bitmap);
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT (m_candidates, cand_index, cand)
    {
      basic_block bb = BLOCK_FOR_INSN (cand->insn);
      if (bitmap_set_bit (&m_tmp_bitmap, bb->index))
	df_recompute_luids (bb);
    }

  /* Create a mapping from block numbers to their position in the
     postorder.  */
  unsigned int n_blocks = last_basic_block_for_fn (m_fn);
  int *postorder = df_get_postorder (DF_BACKWARD);
  unsigned int postorder_len = df_get_n_blocks (DF_BACKWARD);
  postorder_index = new unsigned int[n_blocks];
  for (unsigned int i = 0; i < postorder_len; ++i)
    postorder_index[postorder[i]] = i;

  m_candidates.qsort (compare_candidates);

  delete postorder_index;
}

/* Commit to the current candidate indices and initialize cross-references.  */

void
early_remat::finalize_candidate_indices (void)
{
  /* Create a bitmap for each candidate register.  */
  m_regno_to_candidates.safe_grow (max_reg_num ());
  unsigned int regno;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (&m_candidate_regnos, 0, regno, bi)
    m_regno_to_candidates[regno] = alloc_bitmap ();

  /* Go through each candidate and record its index.  */
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT (m_candidates, cand_index, cand)
    {
      basic_block bb = BLOCK_FOR_INSN (cand->insn);
      remat_block_info *info = &m_block_info[bb->index];
      info->num_candidates += 1;
      info->first_candidate = cand_index;
      bitmap_set_bit (m_regno_to_candidates[cand->regno], cand_index);
    }
}

/* Record that candidates CAND1_INDEX and CAND2_INDEX are equivalent.
   CAND1_INDEX might already have an equivalence class, but CAND2_INDEX
   doesn't.  */

void
early_remat::record_equiv_candidates (unsigned int cand1_index,
				      unsigned int cand2_index)
{
  if (dump_file)
    fprintf (dump_file, ";; Candidate %d is equivalent to candidate %d\n",
	     cand2_index, cand1_index);

  remat_candidate *cand1 = &m_candidates[cand1_index];
  remat_candidate *cand2 = &m_candidates[cand2_index];
  gcc_checking_assert (!cand2->equiv_class);

  remat_equiv_class *ec = cand1->equiv_class;
  if (!ec)
    {
      ec = XOBNEW (&m_obstack.obstack, remat_equiv_class);
      ec->members = alloc_bitmap ();
      bitmap_set_bit (ec->members, cand1_index);
      ec->earliest = cand1_index;
      ec->representative = cand1_index;
      cand1->equiv_class = ec;
    }
  cand2->equiv_class = ec;
  bitmap_set_bit (ec->members, cand2_index);
  if (cand2_index > ec->representative)
    ec->representative = cand2_index;
}

/* Propagate information from the rd_out set of E->src to the rd_in set
   of E->dest, when computing global reaching definitions.  Return true
   if something changed.  */

bool
early_remat::rd_confluence_n (edge e)
{
  remat_block_info *src = &er->m_block_info[e->src->index];
  remat_block_info *dest = &er->m_block_info[e->dest->index];

  /* available_in temporarily contains the set of candidates whose
     registers are live on entry.  */
  if (empty_p (src->rd_out) || empty_p (dest->available_in))
    return false;

  return bitmap_ior_and_into (er->get_bitmap (&dest->rd_in),
			      src->rd_out, dest->available_in);
}

/* Propagate information from the rd_in set of block BB_INDEX to rd_out.
   Return true if something changed.  */

bool
early_remat::rd_transfer (int bb_index)
{
  remat_block_info *info = &er->m_block_info[bb_index];

  if (empty_p (info->rd_in))
    return false;

  if (empty_p (info->rd_kill))
    {
      gcc_checking_assert (empty_p (info->rd_gen));
      if (!info->rd_out)
	info->rd_out = info->rd_in;
      else
	gcc_checking_assert (info->rd_out == info->rd_in);
      /* Assume that we only get called if something changed.  */
      return true;
    }

  if (empty_p (info->rd_gen))
    return bitmap_and_compl (er->get_bitmap (&info->rd_out),
			     info->rd_in, info->rd_kill);

  return bitmap_ior_and_compl (er->get_bitmap (&info->rd_out), info->rd_gen,
			       info->rd_in, info->rd_kill);
}

/* Calculate the rd_* sets for each block.  */

void
early_remat::compute_rd (void)
{
  /* First calculate the rd_kill and rd_gen sets, using the fact
     that m_candidates is sorted in order of decreasing LUID.  */
  unsigned int cand_index;
  remat_candidate *cand;
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand_index, cand)
    {
      rtx_insn *insn = cand->insn;
      basic_block bb = BLOCK_FOR_INSN (insn);
      remat_block_info *info = &m_block_info[bb->index];
      bitmap kill = m_regno_to_candidates[cand->regno];
      bitmap_ior_into (get_bitmap (&info->rd_kill), kill);
      if (bitmap_bit_p (DF_LR_OUT (bb), cand->regno))
	{
	  bitmap_and_compl_into (get_bitmap (&info->rd_gen), kill);
	  bitmap_set_bit (info->rd_gen, cand_index);
	}
    }

  /* Set up the initial values of the other sets.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    {
      remat_block_info *info = &m_block_info[bb->index];
      unsigned int regno;
      bitmap_iterator bi;
      EXECUTE_IF_AND_IN_BITMAP (DF_LR_IN (bb), &m_candidate_regnos,
				0, regno, bi)
	{
	  /* Use available_in to record the set of candidates whose
	     registers are live on entry (i.e. a maximum bound on rd_in).  */
	  bitmap_ior_into (get_bitmap (&info->available_in),
			   m_regno_to_candidates[regno]);

	  /* Add registers that die in a block to the block's kill set,
	     so that we don't needlessly propagate them through the rest
	     of the function.  */
	  if (!bitmap_bit_p (DF_LR_OUT (bb), regno))
	    bitmap_ior_into (get_bitmap (&info->rd_kill),
			     m_regno_to_candidates[regno]);
	}

      /* Initialize each block's rd_out to the minimal set (the set of
	 local definitions).  */
      if (!empty_p (info->rd_gen))
	bitmap_copy (get_bitmap (&info->rd_out), info->rd_gen);
    }

  /* Iterate until we reach a fixed point.  */
  er = this;
  bitmap_clear (&m_tmp_bitmap);
  bitmap_set_range (&m_tmp_bitmap, 0, last_basic_block_for_fn (m_fn));
  df_simple_dataflow (DF_FORWARD, NULL, NULL, rd_confluence_n, rd_transfer,
		      &m_tmp_bitmap, df_get_postorder (DF_FORWARD),
		      df_get_n_blocks (DF_FORWARD));
  er = 0;

  /* Work out which definitions reach which candidates, again taking
     advantage of the candidate order.  */
  bitmap_head reaching;
  bitmap_initialize (&reaching, &m_obstack);
  basic_block old_bb = NULL;
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand_index, cand)
    {
      bb = BLOCK_FOR_INSN (cand->insn);
      if (bb != old_bb)
	{
	  /* Get the definitions that reach the start of the new block.  */
	  remat_block_info *info = &m_block_info[bb->index];
	  if (info->rd_in)
	    bitmap_copy (&reaching, info->rd_in);
	  else
	    bitmap_clear (&reaching);
	  old_bb = bb;
	}
      else
	{
	  /* Process the definitions of the previous instruction.  */
	  bitmap kill = m_regno_to_candidates[cand[1].regno];
	  bitmap_and_compl_into (&reaching, kill);
	  bitmap_set_bit (&reaching, cand_index + 1);
	}

      if (cand->can_copy_p && !cand->constant_p)
	{
	  df_ref ref;
	  FOR_EACH_INSN_USE (ref, cand->insn)
	    {
	      unsigned int regno = DF_REF_REGNO (ref);
	      if (bitmap_bit_p (&m_candidate_regnos, regno))
		{
		  bitmap defs = m_regno_to_candidates[regno];
		  bitmap_and (&m_tmp_bitmap, defs, &reaching);
		  bitmap_ior_into (get_bitmap (&cand->uses), &m_tmp_bitmap);
		}
	    }
	}
    }
  bitmap_clear (&reaching);
}

/* If CAND_INDEX is in an equivalence class, return the representative
   of the class, otherwise return CAND_INDEX.  */

inline unsigned int
early_remat::canon_candidate (unsigned int cand_index)
{
  if (remat_equiv_class *ec = m_candidates[cand_index].equiv_class)
    return ec->representative;
  return cand_index;
}

/* Make candidate set *PTR refer to candidates using the representative
   of each equivalence class.  */

void
early_remat::canon_bitmap (bitmap *ptr)
{
  bitmap old_set = *ptr;
  if (empty_p (old_set))
    return;

  bitmap new_set = NULL;
  unsigned int old_index;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (old_set, 0, old_index, bi)
    {
      unsigned int new_index = canon_candidate (old_index);
      if (old_index != new_index)
	{
	  if (!new_set)
	    {
	      new_set = alloc_bitmap ();
	      bitmap_copy (new_set, old_set);
	    }
	  bitmap_clear_bit (new_set, old_index);
	  bitmap_set_bit (new_set, new_index);
	}
    }
  if (new_set)
    {
      BITMAP_FREE (*ptr);
      *ptr = new_set;
    }
}

/* If the candidates in REACHING all have the same value, return the
   earliest instance of that value (i.e. the first one to be added
   to m_value_table), otherwise return MULTIPLE_CANDIDATES.  */

unsigned int
early_remat::resolve_reaching_def (bitmap reaching)
{
  unsigned int cand_index = bitmap_first_set_bit (reaching);
  if (remat_equiv_class *ec = m_candidates[cand_index].equiv_class)
    {
      if (!bitmap_intersect_compl_p (reaching, ec->members))
	return ec->earliest;
    }
  else if (bitmap_single_bit_set_p (reaching))
    return cand_index;

  return MULTIPLE_CANDIDATES;
}

/* Check whether all candidate registers used by candidate CAND_INDEX have
   unique definitions.  Return true if so, replacing the candidate's uses
   set with the appropriate form for value numbering.  */

bool
early_remat::check_candidate_uses (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];

  /* Process the uses for each register in turn.  */
  bitmap_head uses;
  bitmap_initialize (&uses, &m_obstack);
  bitmap_copy (&uses, cand->uses);
  bitmap uses_ec = alloc_bitmap ();
  while (!bitmap_empty_p (&uses))
    {
      /* Get the register for the lowest-indexed candidate remaining,
	 and the reaching definitions of that register.  */
      unsigned int first = bitmap_first_set_bit (&uses);
      unsigned int regno = m_candidates[first].regno;
      bitmap_and (&m_tmp_bitmap, &uses, m_regno_to_candidates[regno]);

      /* See whether all reaching definitions have the same value and if
	 so get the index of the first candidate we saw with that value.  */
      unsigned int def = resolve_reaching_def (&m_tmp_bitmap);
      if (def == MULTIPLE_CANDIDATES)
	{
	  if (dump_file)
	    fprintf (dump_file, ";; Removing candidate %d because there is"
		     " more than one reaching definition of reg %d\n",
		     cand_index, regno);
	  cand->can_copy_p = false;
	  break;
	}
      bitmap_set_bit (uses_ec, def);
      bitmap_and_compl_into (&uses, &m_tmp_bitmap);
    }
  BITMAP_FREE (cand->uses);
  cand->uses = uses_ec;
  return cand->can_copy_p;
}

/* Calculate the set of hard registers that would be clobbered by
   rematerializing candidate CAND_INDEX.  At this point the candidate's
   set of uses is final.  */

void
early_remat::compute_clobbers (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  if (cand->uses)
    {
      unsigned int use_index;
      bitmap_iterator bi;
      EXECUTE_IF_SET_IN_BITMAP (cand->uses, 0, use_index, bi)
	if (bitmap clobbers = m_candidates[use_index].clobbers)
	  bitmap_ior_into (get_bitmap (&cand->clobbers), clobbers);
    }

  df_ref ref;
  FOR_EACH_INSN_DEF (ref, cand->insn)
    {
      unsigned int def_regno = DF_REF_REGNO (ref);
      if (def_regno != cand->regno)
	bitmap_set_bit (get_bitmap (&cand->clobbers), def_regno);
    }
}

/* Mark candidate CAND_INDEX as validated and add it to the value table.  */

void
early_remat::assign_value_number (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  gcc_checking_assert (cand->can_copy_p && !cand->validated_p);

  compute_clobbers (cand_index);
  cand->validated_p = true;

  inchash::hash h;
  h.add_int (cand->regno);
  inchash::add_rtx (cand->remat_rtx, h);
  cand->hash = h.end ();

  remat_candidate **slot
    = m_value_table.find_slot_with_hash (cand, cand->hash, INSERT);
  if (!*slot)
    {
      *slot = cand;
      if (dump_file)
	fprintf (dump_file, ";; Candidate %d is not equivalent to"
		 " others seen so far\n", cand_index);
    }
  else
    record_equiv_candidates (*slot - m_candidates.address (), cand_index);
}

/* Make a final decision about which candidates are valid and assign
   value numbers to those that are.  */

void
early_remat::decide_candidate_validity (void)
{
  auto_vec<unsigned int, 16> stack;
  unsigned int cand1_index;
  remat_candidate *cand1;
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand1_index, cand1)
    {
      if (!cand1->can_copy_p || cand1->validated_p)
	continue;

      if (empty_p (cand1->uses))
	{
	  assign_value_number (cand1_index);
	  continue;
	}

      stack.safe_push (cand1_index);
      while (!stack.is_empty ())
	{
	  unsigned int cand2_index = stack.last ();
	  unsigned int watermark = stack.length ();
	  remat_candidate *cand2 = &m_candidates[cand2_index];
	  if (!cand2->can_copy_p || cand2->validated_p)
	    {
	      stack.pop ();
	      continue;
	    }
	  cand2->visited_p = true;
	  unsigned int cand3_index;
	  bitmap_iterator bi;
	  EXECUTE_IF_SET_IN_BITMAP (cand2->uses, 0, cand3_index, bi)
	    {
	      remat_candidate *cand3 = &m_candidates[cand3_index];
	      if (!cand3->can_copy_p)
		{
		  if (dump_file)
		    fprintf (dump_file, ";; Removing candidate %d because"
			     " it uses removed candidate %d\n", cand2_index,
			     cand3_index);
		  cand2->can_copy_p = false;
		  break;
		}
	      if (!cand3->validated_p)
		{
		  if (empty_p (cand3->uses))
		    assign_value_number (cand3_index);
		  else if (cand3->visited_p)
		    {
		      if (dump_file)
			fprintf (dump_file, ";; Removing candidate %d"
				 " because its definition is cyclic\n",
				 cand2_index);
		      cand2->can_copy_p = false;
		      break;
		    }
		  else
		    stack.safe_push (cand3_index);
		}
	    }
	  if (!cand2->can_copy_p)
	    {
	      cand2->visited_p = false;
	      stack.truncate (watermark - 1);
	    }
	  else if (watermark == stack.length ())
	    {
	      cand2->visited_p = false;
	      if (check_candidate_uses (cand2_index))
		assign_value_number (cand2_index);
	      stack.pop ();
	    }
	}
    }

  /* Ensure that the candidates always use the same candidate index
     to refer to an equivalence class.  */
  FOR_EACH_VEC_ELT_REVERSE (m_candidates, cand1_index, cand1)
    if (cand1->can_copy_p && !empty_p (cand1->uses))
      {
	canon_bitmap (&cand1->uses);
	gcc_checking_assert (bitmap_first_set_bit (cand1->uses) > cand1_index);
      }
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/* Remove any candidates in CANDIDATES that would clobber a register in
   UNAVAIL_REGS.  */

void
early_remat::restrict_remat_for_unavail_regs (bitmap candidates,
					      const_bitmap unavail_regs)
{
  bitmap_clear (&m_tmp_bitmap);
  unsigned int cand_index;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (candidates, 0, cand_index, bi)
    {
      remat_candidate *cand = &m_candidates[cand_index];
      if (cand->clobbers
	  && bitmap_intersect_p (cand->clobbers, unavail_regs))
	bitmap_set_bit (&m_tmp_bitmap, cand_index);
    }
  bitmap_and_compl_into (candidates, &m_tmp_bitmap);
}

/* Remove any candidates in CANDIDATES that would clobber a register
   that is potentially live across CALL.  */

void
early_remat::restrict_remat_for_call (bitmap candidates, rtx_insn *call)
{
  /* We don't know whether partially-clobbered registers are live
     across the call or not, so assume that they are.  */
  bitmap_view<HARD_REG_SET> call_preserved_regs
    (~insn_callee_abi (call).full_reg_clobbers ());
  restrict_remat_for_unavail_regs (candidates, call_preserved_regs);
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
/* Assuming that every path reaching a point P contains a copy of a
   use U of REGNO, return true if another copy of U at P would have
   access to the same value of REGNO.  */

bool
early_remat::stable_use_p (unsigned int regno)
{
  /* Conservatively assume not for hard registers.  */
  if (HARD_REGISTER_NUM_P (regno))
    return false;

  /* See if REGNO has a single definition and is never used uninitialized.
     In this case the definition of REGNO dominates the common dominator
     of the uses U, which in turn dominates P.  */
  if (DF_REG_DEF_COUNT (regno) == 1
      && !bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (m_fn)), regno))
    return true;

  return false;
}

/* Emit a copy from register DEST to register SRC before candidate
   CAND_INDEX's instruction.  */

void
early_remat::emit_copy_before (unsigned int cand_index, rtx dest, rtx src)
{
  remat_candidate *cand = &m_candidates[cand_index];
  if (dump_file)
    {
      fprintf (dump_file, ";; Stabilizing insn ");
      dump_insn_id (cand->insn);
      fprintf (dump_file, " by copying source reg %d:%s to temporary reg %d\n",
	       REGNO (src), GET_MODE_NAME (GET_MODE (src)), REGNO (dest));
    }
  emit_insn_before (gen_move_insn (dest, src), cand->insn);
}

/* Check whether any inputs to candidate CAND_INDEX's instruction could
   change at rematerialization points and replace them with new pseudo
   registers if so.  */

void
early_remat::stabilize_pattern (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  if (cand->stabilized_p)
    return;

  remat_equiv_class *ec = cand->equiv_class;
  gcc_checking_assert (!ec || cand_index == ec->representative);

  /* Record the replacements we've made so far, so that we don't
     create two separate registers for match_dups.  Lookup is O(n),
     but the n is very small.  */
  typedef std::pair<rtx, rtx> reg_pair;
  auto_vec<reg_pair, 16> reg_map;

  rtx_insn *insn = cand->insn;
  df_ref ref;
  FOR_EACH_INSN_USE (ref, insn)
    {
      unsigned int old_regno = DF_REF_REGNO (ref);
      rtx *loc = DF_REF_REAL_LOC (ref);

      if (HARD_REGISTER_NUM_P (old_regno) && fixed_regs[old_regno])
	{
	  /* We checked when adding the candidate that the value is stable.  */
	  gcc_checking_assert (!rtx_unstable_p (*loc));
	  continue;
	}

      if (bitmap_bit_p (&m_candidate_regnos, old_regno))
	/* We already know which candidate provides the definition
	   and will handle it during copying.  */
	continue;

      if (stable_use_p (old_regno))
	/* We can continue to use the existing register.  */
	continue;

      /* We need to replace the register.  See whether we've already
	 created a suitable copy.  */
      rtx old_reg = *loc;
      rtx new_reg = NULL_RTX;
      machine_mode mode = GET_MODE (old_reg);
      reg_pair *p;
      unsigned int pi;
      FOR_EACH_VEC_ELT (reg_map, pi, p)
	if (REGNO (p->first) == old_regno
	    && GET_MODE (p->first) == mode)
	  {
	    new_reg = p->second;
	    break;
	  }

      if (!new_reg)
	{
	  /* Create a new register and initialize it just before
	     the instruction.  */
	  new_reg = gen_reg_rtx (mode);
	  reg_map.safe_push (reg_pair (old_reg, new_reg));
	  if (ec)
	    {
	      unsigned int member_index;
	      bitmap_iterator bi;
	      EXECUTE_IF_SET_IN_BITMAP (ec->members, 0, member_index, bi)
		emit_copy_before (member_index, new_reg, old_reg);
	    }
	  else
	    emit_copy_before (cand_index, new_reg, old_reg);
	}
      validate_change (insn, loc, new_reg, true);
    }
  if (num_changes_pending ())
    {
      if (!apply_change_group ())
	/* We checked when adding the candidates that the pattern allows
	   hard registers to be replaced.  Nothing else should make the
	   changes invalid.  */
	gcc_unreachable ();

      if (ec)
	{
	  /* Copy the new pattern to other members of the equivalence
	     class.  */
	  unsigned int member_index;
	  bitmap_iterator bi;
	  EXECUTE_IF_SET_IN_BITMAP (ec->members, 0, member_index, bi)
	    if (cand_index != member_index)
	      {
		rtx_insn *other_insn = m_candidates[member_index].insn;
		if (!validate_change (other_insn, &PATTERN (other_insn),
				      copy_insn (PATTERN (insn)), 0))
		  /* If the original instruction was valid then the copy
		     should be too.  */
		  gcc_unreachable ();
	      }
	}
    }

  cand->stabilized_p = true;
}

/* Change CAND's instruction so that it sets CAND->copy_regno instead
   of CAND->regno.  */

void
early_remat::replace_dest_with_copy (unsigned int cand_index)
{
  remat_candidate *cand = &m_candidates[cand_index];
  df_ref def;
  FOR_EACH_INSN_DEF (def, cand->insn)
    if (DF_REF_REGNO (def) == cand->regno)
      validate_change (cand->insn, DF_REF_REAL_LOC (def),
		       regno_reg_rtx[cand->copy_regno], 1);
}

/* Make sure that the candidates used by candidate CAND_INDEX are available.
   There are two ways of doing this for an input candidate I:

   (1) Using the existing register number and ensuring that I is available.

   (2) Using a new register number (recorded in copy_regno) and adding I
       to VIA_COPY.  This guarantees that making I available does not
       conflict with other uses of the original register.

   REQUIRED is the set of candidates that are required but not available
   before the copy of CAND_INDEX.  AVAILABLE is the set of candidates
   that are already available before the copy of CAND_INDEX.  REACHING
   is the set of candidates that reach the copy of CAND_INDEX.  VIA_COPY
   is the set of candidates that will use new register numbers recorded
   in copy_regno instead of the original ones.  */

void
early_remat::stabilize_candidate_uses (unsigned int cand_index,
				       bitmap required, bitmap available,
				       bitmap reaching, bitmap via_copy)
{
  remat_candidate *cand = &m_candidates[cand_index];
  df_ref use;
  FOR_EACH_INSN_USE (use, cand->insn)
    {
      unsigned int regno = DF_REF_REGNO (use);
      if (!bitmap_bit_p (&m_candidate_regnos, regno))
	continue;

      /* Work out which candidate provides the definition.  */
      bitmap defs = m_regno_to_candidates[regno];
      bitmap_and (&m_tmp_bitmap, cand->uses, defs);
      gcc_checking_assert (bitmap_single_bit_set_p (&m_tmp_bitmap));
      unsigned int def_index = bitmap_first_set_bit (&m_tmp_bitmap);

      /* First see if DEF_INDEX is the only reaching definition of REGNO
	 at this point too and if it is or will become available.  We can
	 continue to use REGNO if so.  */
      bitmap_and (&m_tmp_bitmap, reaching, defs);
      if (bitmap_single_bit_set_p (&m_tmp_bitmap)
	  && bitmap_first_set_bit (&m_tmp_bitmap) == def_index
	  && ((available && bitmap_bit_p (available, def_index))
	      || bitmap_bit_p (required, def_index)))
	{
	  if (dump_file)
	    fprintf (dump_file, ";; Keeping reg %d for use of candidate %d"
		     " in candidate %d\n", regno, def_index, cand_index);
	  continue;
	}

      /* Otherwise fall back to using a copy.  There are other cases
	 in which we *could* continue to use REGNO, but there's not
	 really much point.  Using a separate register ought to make
	 things easier for the register allocator.  */
      remat_candidate *def_cand = &m_candidates[def_index];
      rtx *loc = DF_REF_REAL_LOC (use);
      rtx new_reg;
      if (bitmap_set_bit (via_copy, def_index))
	{
	  new_reg = gen_reg_rtx (GET_MODE (*loc));
	  def_cand->copy_regno = REGNO (new_reg);
	  if (dump_file)
	    fprintf (dump_file, ";; Creating reg %d for use of candidate %d"
		     " in candidate %d\n", REGNO (new_reg), def_index,
		     cand_index);
	}
      else
	new_reg = regno_reg_rtx[def_cand->copy_regno];
      validate_change (cand->insn, loc, new_reg, 1);
    }
}

/* Rematerialize the candidates in REQUIRED after instruction INSN,
   given that the candidates in AVAILABLE are already available
   and that REACHING is the set of candidates live after INSN.
   REQUIRED and AVAILABLE are disjoint on entry.

   Clear REQUIRED on exit.  */

void
early_remat::emit_remat_insns (bitmap required, bitmap available,
			       bitmap reaching, rtx_insn *insn)
{
  /* Quick exit if there's nothing to do.  */
  if (empty_p (required))
    return;

  /* Only reaching definitions should be available or required.  */
  gcc_checking_assert (!bitmap_intersect_compl_p (required, reaching));
  if (available)
    gcc_checking_assert (!bitmap_intersect_compl_p (available, reaching));

  bitmap_head via_copy;
  bitmap_initialize (&via_copy, &m_obstack);
  while (!bitmap_empty_p (required) || !bitmap_empty_p (&via_copy))
    {
      /* Pick the lowest-indexed candidate left.  */
      unsigned int required_index = (bitmap_empty_p (required)
				     ? ~0U : bitmap_first_set_bit (required));
      unsigned int via_copy_index = (bitmap_empty_p (&via_copy)
				     ? ~0U : bitmap_first_set_bit (&via_copy));
      unsigned int cand_index = MIN (required_index, via_copy_index);
      remat_candidate *cand = &m_candidates[cand_index];

      bool via_copy_p = (cand_index == via_copy_index);
      if (via_copy_p)
	bitmap_clear_bit (&via_copy, cand_index);
      else
	{
	  /* Remove all candidates for the same register from REQUIRED.  */
	  bitmap_and (&m_tmp_bitmap, reaching,
		      m_regno_to_candidates[cand->regno]);
	  bitmap_and_compl_into (required, &m_tmp_bitmap);
	  gcc_checking_assert (!bitmap_bit_p (required, cand_index));

	  /* Only rematerialize if we have a single reaching definition
	     of the register.  */
	  if (!bitmap_single_bit_set_p (&m_tmp_bitmap))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, ";; Can't rematerialize reg %d after ",
			   cand->regno);
		  dump_insn_id (insn);
		  fprintf (dump_file, ": more than one reaching definition\n");
		}
	      continue;
	    }

	  /* Skip candidates that can't be rematerialized.  */
	  if (!cand->can_copy_p)
	    continue;

	  /* Check the function precondition.  */
	  gcc_checking_assert (!available
			       || !bitmap_bit_p (available, cand_index));
	}

      /* Invalid candidates should have been weeded out by now.  */
      gcc_assert (cand->can_copy_p);

      rtx new_pattern;
      if (cand->constant_p)
	{
	  /* Emit a simple move.  */
	  unsigned int regno = via_copy_p ? cand->copy_regno : cand->regno;
	  new_pattern = gen_move_insn (regno_reg_rtx[regno], cand->remat_rtx);
	}
      else
	{
	  /* If this is the first time we've copied the instruction, make
	     sure that any inputs will have the same value after INSN.  */
	  stabilize_pattern (cand_index);

	  /* Temporarily adjust the original instruction so that it has
	     the right form for the copy.  */
	  if (via_copy_p)
	    replace_dest_with_copy (cand_index);
	  if (cand->uses)
	    stabilize_candidate_uses (cand_index, required, available,
				      reaching, &via_copy);

	  /* Get the new instruction pattern.  */
	  new_pattern = copy_insn (cand->remat_rtx);

	  /* Undo the temporary changes.  */
	  cancel_changes (0);
	}

      /* Emit the new instruction.  */
      rtx_insn *new_insn = emit_insn_after (new_pattern, insn);

      if (dump_file)
	{
	  fprintf (dump_file, ";; Rematerializing candidate %d after ",
		   cand_index);
	  dump_insn_id (insn);
	  if (via_copy_p)
	    fprintf (dump_file, " with new destination reg %d",
		     cand->copy_regno);
	  fprintf (dump_file, ":\n\n");
	  print_rtl_single (dump_file, new_insn);
	  fprintf (dump_file, "\n");
	}
    }
}

/* Recompute INFO's available_out set, given that it's distinct from
   available_in and available_locally.  */

bool
early_remat::set_available_out (remat_block_info *info)
{
  if (empty_p (info->available_locally))
    return bitmap_and_compl (get_bitmap (&info->available_out),
			     info->available_in, info->rd_kill);

  if (empty_p (info->rd_kill))
    return bitmap_ior (get_bitmap (&info->available_out),
		       info->available_locally, info->available_in);

  return bitmap_ior_and_compl (get_bitmap (&info->available_out),
			       info->available_locally, info->available_in,
			       info->rd_kill);
}

/* If BB has more than one call, decide which candidates should be
   rematerialized after the non-final calls and emit the associated
   instructions.  Record other information about the block in preparation
   for the global phase.  */

void
early_remat::process_block (basic_block bb)
{
  remat_block_info *info = &m_block_info[bb->index];
  rtx_insn *last_call = NULL;
  rtx_insn *insn;

  /* Ensure that we always use the same candidate index to refer to an
     equivalence class.  */
  if (info->rd_out == info->rd_in)
    {
      canon_bitmap (&info->rd_in);
      info->rd_out = info->rd_in;
    }
  else
    {
      canon_bitmap (&info->rd_in);
      canon_bitmap (&info->rd_out);
    }
  canon_bitmap (&info->rd_kill);
  canon_bitmap (&info->rd_gen);

  /* The set of candidates that should be rematerialized on entry to the
     block or after the previous call (whichever is more recent).  */
  init_temp_bitmap (&m_required);

  /* The set of candidates that reach the current instruction (i.e. are
     live just before the instruction).  */
  bitmap_head reaching;
  bitmap_initialize (&reaching, &m_obstack);
  if (info->rd_in)
    bitmap_copy (&reaching, info->rd_in);

  /* The set of candidates that are live and available without
     rematerialization just before the current instruction.  This only
     accounts for earlier candidates in the block, or those that become
     available by being added to M_REQUIRED.  */
  init_temp_bitmap (&m_available);

  /* Get the range of candidates in the block.  */
  unsigned int next_candidate = info->first_candidate;
  unsigned int num_candidates = info->num_candidates;
  remat_candidate *next_def = (num_candidates > 0
			       ? &m_candidates[next_candidate]
			       : NULL);

  FOR_BB_INSNS (bb, insn)
    {
      if (!NONDEBUG_INSN_P (insn))
	continue;

      /* First process uses, since this is a forward walk.  */
      df_ref ref;
      FOR_EACH_INSN_USE (ref, insn)
	{
	  unsigned int regno = DF_REF_REGNO (ref);
	  if (bitmap_bit_p (&m_candidate_regnos, regno))
	    {
	      bitmap defs = m_regno_to_candidates[regno];
	      bitmap_and (&m_tmp_bitmap, defs, &reaching);
	      gcc_checking_assert (!bitmap_empty_p (&m_tmp_bitmap));
	      if (!bitmap_intersect_p (defs, m_available))
		{
		  /* There has been no definition of the register since
		     the last call or the start of the block (whichever
		     is most recent).  Mark the reaching definitions
		     as required at that point and thus available here.  */
		  bitmap_ior_into (m_required, &m_tmp_bitmap);
		  bitmap_ior_into (m_available, &m_tmp_bitmap);
		}
	    }
	}

      if (CALL_P (insn))
	{
	  if (!last_call)
	    {
	      /* The first call in the block.  Record which candidates are
		 required at the start of the block.  */
	      copy_temp_bitmap (&info->required_in, &m_required);
	      init_temp_bitmap (&m_required);
	    }
	  else
2010 2011 2012 2013 2014 2015 2016
	    {
	      /* The fully-local case: candidates that need to be
		 rematerialized after a previous call in the block.  */
	      restrict_remat_for_call (m_required, last_call);
	      emit_remat_insns (m_required, NULL, info->rd_after_call,
				last_call);
	    }
2017 2018 2019 2020 2021 2022
	  last_call = insn;
	  bitmap_clear (m_available);
	  gcc_checking_assert (empty_p (m_required));
	}

      /* Now process definitions.  */
2023
      while (next_def && insn == next_def->insn)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	{
	  unsigned int gen = canon_candidate (next_candidate);

	  /* Other candidates with the same regno are not available
	     any more.  */
	  bitmap kill = m_regno_to_candidates[next_def->regno];
	  bitmap_and_compl_into (m_available, kill);
	  bitmap_and_compl_into (&reaching, kill);

	  /* Record that this candidate is available without
	     rematerialization.  */
	  bitmap_set_bit (m_available, gen);
	  bitmap_set_bit (&reaching, gen);

	  /* Find the next candidate in the block.  */
	  num_candidates -= 1;
	  next_candidate -= 1;
	  if (num_candidates > 0)
	    next_def -= 1;
	  else
	    next_def = NULL;
	}

      if (insn == last_call)
	bitmap_copy (get_bitmap (&info->rd_after_call), &reaching);
    }
  bitmap_clear (&reaching);
  gcc_checking_assert (num_candidates == 0);

  /* Remove values from the available set if they aren't live (and so
     aren't interesting to successor blocks).  */
  if (info->rd_out)
    bitmap_and_into (m_available, info->rd_out);

  /* Record the accumulated information.  */
  info->last_call = last_call;
  info->abnormal_call_p = (last_call
			   && last_call == BB_END (bb)
			   && has_abnormal_or_eh_outgoing_edge_p (bb));
  copy_temp_bitmap (&info->available_locally, &m_available);
  if (last_call)
    copy_temp_bitmap (&info->required_after_call, &m_required);
  else
    copy_temp_bitmap (&info->required_in, &m_required);

  /* Assume at first that all live-in values are available without
     rematerialization (i.e. start with the most optimistic assumption).  */
  if (info->available_in)
    {
      if (info->rd_in)
	bitmap_copy (info->available_in, info->rd_in);
      else
	BITMAP_FREE (info->available_in);
    }

  if (last_call || empty_p (info->available_in))
    /* The values available on exit from the block are exactly those that
       are available locally.  This set doesn't change.  */
    info->available_out = info->available_locally;
  else if (empty_p (info->available_locally) && empty_p (info->rd_kill))
    /* The values available on exit are the same as those available on entry.
       Updating one updates the other.  */
    info->available_out = info->available_in;
  else
    set_available_out (info);
}

/* Process each block as for process_block, visiting dominators before
   the blocks they dominate.  */

void
early_remat::local_phase (void)
{
  if (dump_file)
    fprintf (dump_file, "\n;; Local phase:\n");

  int *postorder = df_get_postorder (DF_BACKWARD);
  unsigned int postorder_len = df_get_n_blocks (DF_BACKWARD);
  for (unsigned int i = postorder_len; i-- > 0; )
    if (postorder[i] >= NUM_FIXED_BLOCKS)
      process_block (BASIC_BLOCK_FOR_FN (m_fn, postorder[i]));
}

/* Return true if available values survive across edge E.  */

static inline bool
available_across_edge_p (edge e)
{
  return (e->flags & EDGE_EH) == 0;
}

/* Propagate information from the available_out set of E->src to the
   available_in set of E->dest, when computing global availability.
   Return true if something changed.  */

bool
early_remat::avail_confluence_n (edge e)
{
  remat_block_info *src = &er->m_block_info[e->src->index];
  remat_block_info *dest = &er->m_block_info[e->dest->index];

  if (!available_across_edge_p (e))
    return false;

  if (empty_p (dest->available_in))
    return false;

  if (!src->available_out)
    {
      bitmap_clear (dest->available_in);
      return true;
    }

  return bitmap_and_into (dest->available_in, src->available_out);
}

/* Propagate information from the available_in set of block BB_INDEX
   to available_out.  Return true if something changed.  */

bool
early_remat::avail_transfer (int bb_index)
{
  remat_block_info *info = &er->m_block_info[bb_index];

  if (info->available_out == info->available_locally)
    return false;

  if (info->available_out == info->available_in)
    /* Assume that we are only called if the input changed.  */
    return true;

  return er->set_available_out (info);
}

/* Compute global availability for the function, starting with the local
   information computed by local_phase.  */

void
early_remat::compute_availability (void)
{
  /* We use df_simple_dataflow instead of the lcm routines for three reasons:

     (1) it avoids recomputing the traversal order;
     (2) many of the sets are likely to be sparse, so we don't necessarily
	 want to use sbitmaps; and
     (3) it means we can avoid creating an explicit kill set for the call.  */
  er = this;
  bitmap_clear (&m_tmp_bitmap);
  bitmap_set_range (&m_tmp_bitmap, 0, last_basic_block_for_fn (m_fn));
  df_simple_dataflow (DF_FORWARD, NULL, NULL,
		      avail_confluence_n, avail_transfer,
		      &m_tmp_bitmap, df_get_postorder (DF_FORWARD),
		      df_get_n_blocks (DF_FORWARD));
  er = 0;

  /* Restrict the required_in sets to values that aren't available.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    {
      remat_block_info *info = &m_block_info[bb->index];
      if (info->required_in && info->available_in)
	bitmap_and_compl_into (info->required_in, info->available_in);
    }
}

/* Make sure that INFO's available_out and available_in sets are unique.  */

inline void
early_remat::unshare_available_sets (remat_block_info *info)
{
  if (info->available_in && info->available_in == info->available_out)
    {
      info->available_in = alloc_bitmap ();
      bitmap_copy (info->available_in, info->available_out);
    }
}

/* Return true if it is possible to move rematerializations from the
   destination of E to the source of E.  */

inline bool
early_remat::can_move_across_edge_p (edge e)
{
  return (available_across_edge_p (e)
	  && !m_block_info[e->src->index].abnormal_call_p);
}

/* Return true if it is cheaper to rematerialize values at the head of
   block QUERY_BB_INDEX instead of rematerializing in its predecessors.  */

bool
early_remat::local_remat_cheaper_p (unsigned int query_bb_index)
{
  if (m_block_info[query_bb_index].remat_frequency_valid_p)
    return m_block_info[query_bb_index].local_remat_cheaper_p;

  /* Iteratively compute the cost of rematerializing values in the
     predecessor blocks, then compare that with the cost of
     rematerializing at the head of the block.

     A cycle indicates that there is no call on that execution path,
     so it isn't necessary to rematerialize on that path.  */
  auto_vec<basic_block, 16> stack;
  stack.quick_push (BASIC_BLOCK_FOR_FN (m_fn, query_bb_index));
  while (!stack.is_empty ())
    {
      basic_block bb = stack.last ();
      remat_block_info *info = &m_block_info[bb->index];
      if (info->remat_frequency_valid_p)
	{
	  stack.pop ();
	  continue;
	}

      info->visited_p = true;
      int frequency = 0;
      bool can_move_p = true;
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (!can_move_across_edge_p (e))
	  {
	    can_move_p = false;
	    break;
	  }
	else if (m_block_info[e->src->index].last_call)
	  /* We'll rematerialize after the call.  */
	  frequency += e->src->count.to_frequency (m_fn);
	else if (m_block_info[e->src->index].remat_frequency_valid_p)
	  /* Add the cost of rematerializing at the head of E->src
	     or in its predecessors (whichever is cheaper).  */
	  frequency += m_block_info[e->src->index].remat_frequency;
	else if (!m_block_info[e->src->index].visited_p)
	  /* Queue E->src and then revisit this block again.  */
	  stack.safe_push (e->src);

      /* Come back to this block later if we need to process some of
	 its predecessors.  */
      if (stack.last () != bb)
	continue;

      /* If rematerializing in and before the block have equal cost, prefer
	 rematerializing in the block.  This should shorten the live range.  */
      int bb_frequency = bb->count.to_frequency (m_fn);
      if (!can_move_p || frequency >= bb_frequency)
	{
	  info->local_remat_cheaper_p = true;
	  info->remat_frequency = bb_frequency;
	}
      else
	info->remat_frequency = frequency;
      info->remat_frequency_valid_p = true;
      info->visited_p = false;
      if (dump_file)
	{
	  if (!can_move_p)
	    fprintf (dump_file, ";; Need to rematerialize at the head of"
		     " block %d; cannot move to predecessors.\n", bb->index);
	  else
	    {
	      fprintf (dump_file, ";; Block %d has frequency %d,"
		       " rematerializing in predecessors has frequency %d",
		       bb->index, bb_frequency, frequency);
	      if (info->local_remat_cheaper_p)
		fprintf (dump_file, "; prefer to rematerialize"
			 " in the block\n");
	      else
		fprintf (dump_file, "; prefer to rematerialize"
			 " in predecessors\n");
	    }
	}
      stack.pop ();
    }
  return m_block_info[query_bb_index].local_remat_cheaper_p;
}

/* Return true if we cannot rematerialize candidate CAND_INDEX at the head of
   block BB_INDEX.  */

bool
early_remat::need_to_move_candidate_p (unsigned int bb_index,
				       unsigned int cand_index)
{
  remat_block_info *info = &m_block_info[bb_index];
  remat_candidate *cand = &m_candidates[cand_index];
  basic_block bb = BASIC_BLOCK_FOR_FN (m_fn, bb_index);

  /* If there is more than one reaching definition of REGNO,
     we'll need to rematerialize in predecessors instead.  */
  bitmap_and (&m_tmp_bitmap, info->rd_in, m_regno_to_candidates[cand->regno]);
  if (!bitmap_single_bit_set_p (&m_tmp_bitmap))
    {
      if (dump_file)
	fprintf (dump_file, ";; Cannot rematerialize %d at the"
		 " head of block %d because there is more than one"
		 " reaching definition of reg %d\n", cand_index,
		 bb_index, cand->regno);
      return true;
    }

  /* Likewise if rematerializing CAND here would clobber a live register.  */
  if (cand->clobbers
      && bitmap_intersect_p (cand->clobbers, DF_LR_IN (bb)))
    {
      if (dump_file)
	fprintf (dump_file, ";; Cannot rematerialize %d at the"
		 " head of block %d because it would clobber live"
		 " registers\n", cand_index, bb_index);
      return true;
    }

  return false;
}

/* Set REQUIRED to the minimum set of candidates that must be rematerialized
   in predecessors of block BB_INDEX instead of at the start of the block.  */

void
early_remat::compute_minimum_move_set (unsigned int bb_index,
				       bitmap required)
{
  remat_block_info *info = &m_block_info[bb_index];
  bitmap_head remaining;

  bitmap_clear (required);
  bitmap_initialize (&remaining, &m_obstack);
  bitmap_copy (&remaining, info->required_in);
  while (!bitmap_empty_p (&remaining))
    {
      unsigned int cand_index = bitmap_first_set_bit (&remaining);
      remat_candidate *cand = &m_candidates[cand_index];
      bitmap_clear_bit (&remaining, cand_index);

      /* Leave invalid candidates where they are.  */
      if (!cand->can_copy_p)
	continue;

      /* Decide whether to move this candidate.  */
      if (!bitmap_bit_p (required, cand_index))
	{
	  if (!need_to_move_candidate_p (bb_index, cand_index))
	    continue;
	  bitmap_set_bit (required, cand_index);
	}

      /* Also move values used by the candidate, so that we don't
	 rematerialize them twice.  */
      if (cand->uses)
	{
	  bitmap_ior_and_into (required, cand->uses, info->required_in);
	  bitmap_ior_and_into (&remaining, cand->uses, info->required_in);
	}
    }
}

/* Make the predecessors of BB_INDEX rematerialize the candidates in
   REQUIRED.  Add any blocks whose required_in set changes to
   PENDING_BLOCKS.  */

void
early_remat::move_to_predecessors (unsigned int bb_index, bitmap required,
				   bitmap pending_blocks)
{
  if (empty_p (required))
    return;
  remat_block_info *dest_info = &m_block_info[bb_index];
  basic_block bb = BASIC_BLOCK_FOR_FN (m_fn, bb_index);
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      remat_block_info *src_info = &m_block_info[e->src->index];

      /* Restrict the set we add to the reaching definitions.  */
      bitmap_and (&m_tmp_bitmap, required, src_info->rd_out);
      if (bitmap_empty_p (&m_tmp_bitmap))
	continue;

      if (!can_move_across_edge_p (e))
	{
	  /* We can't move the rematerialization and we can't do it at
	     the start of the block either.  In this case we just give up
	     and rely on spilling to make the values available across E.  */
	  if (dump_file)
	    {
	      fprintf (dump_file, ";; Cannot rematerialize the following"
		       " candidates in block %d:", e->src->index);
	      dump_candidate_bitmap (required);
	      fprintf (dump_file, "\n");
	    }
	  continue;
	}

      /* Remove candidates that are already available.  */
      if (src_info->available_out)
	{
	  bitmap_and_compl_into (&m_tmp_bitmap, src_info->available_out);
	  if (bitmap_empty_p (&m_tmp_bitmap))
	    continue;
	}

      /* Add the remaining candidates to the appropriate required set.  */
      if (dump_file)
	{
	  fprintf (dump_file, ";; Moving this set from block %d"
		   " to block %d:", bb_index, e->src->index);
	  dump_candidate_bitmap (&m_tmp_bitmap);
	  fprintf (dump_file, "\n");
	}
      /* If the source block contains a call, we want to rematerialize
	 after the call, otherwise we want to rematerialize at the start
	 of the block.  */
      bitmap src_required = get_bitmap (src_info->last_call
					? &src_info->required_after_call
					: &src_info->required_in);
      if (bitmap_ior_into (src_required, &m_tmp_bitmap))
	{
	  if (!src_info->last_call)
	    bitmap_set_bit (pending_blocks, e->src->index);
	  unshare_available_sets (src_info);
	  bitmap_ior_into (get_bitmap (&src_info->available_out),
			   &m_tmp_bitmap);
	}
    }

  /* The candidates are now available on entry to the block.  */
  bitmap_and_compl_into (dest_info->required_in, required);
  unshare_available_sets (dest_info);
  bitmap_ior_into (get_bitmap (&dest_info->available_in), required);
}

/* Go through the candidates that are currently marked as being
   rematerialized at the beginning of a block.  Decide in each case
   whether that's valid and profitable; if it isn't, move the
   rematerialization to predecessor blocks instead.  */

void
early_remat::choose_rematerialization_points (void)
{
  bitmap_head required;
  bitmap_head pending_blocks;

  int *postorder = df_get_postorder (DF_BACKWARD);
  unsigned int postorder_len = df_get_n_blocks (DF_BACKWARD);
  bitmap_initialize (&required, &m_obstack);
  bitmap_initialize (&pending_blocks, &m_obstack);
  do
    /* Process the blocks in postorder, to reduce the number of iterations
       of the outer loop.  */
    for (unsigned int i = 0; i < postorder_len; ++i)
      {
	unsigned int bb_index = postorder[i];
	remat_block_info *info = &m_block_info[bb_index];
	bitmap_clear_bit (&pending_blocks, bb_index);

	if (empty_p (info->required_in))
	  continue;

	if (info->available_in)
	  gcc_checking_assert (!bitmap_intersect_p (info->required_in,
						    info->available_in));

	if (local_remat_cheaper_p (bb_index))
	  {
	    /* We'd prefer to rematerialize at the head of the block.
	       Only move candidates if we need to.  */
	    compute_minimum_move_set (bb_index, &required);
	    move_to_predecessors (bb_index, &required, &pending_blocks);
	  }
	else
	  move_to_predecessors (bb_index, info->required_in,
				&pending_blocks);
      }
  while (!bitmap_empty_p (&pending_blocks));
  bitmap_clear (&required);
}

/* Emit all rematerialization instructions queued for BB.  */

void
early_remat::emit_remat_insns_for_block (basic_block bb)
{
  remat_block_info *info = &m_block_info[bb->index];

  if (info->last_call && !empty_p (info->required_after_call))
2509 2510 2511 2512 2513
    {
      restrict_remat_for_call (info->required_after_call, info->last_call);
      emit_remat_insns (info->required_after_call, NULL,
			info->rd_after_call, info->last_call);
    }
2514 2515 2516 2517 2518 2519 2520

  if (!empty_p (info->required_in))
    {
      rtx_insn *insn = BB_HEAD (bb);
      while (insn != BB_END (bb)
	     && !INSN_P (NEXT_INSN (insn)))
	insn = NEXT_INSN (insn);
2521
      restrict_remat_for_unavail_regs (info->required_in, DF_LR_IN (bb));
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
      emit_remat_insns (info->required_in, info->available_in,
			info->rd_in, insn);
    }
}

/* Decide which candidates in each block's REQUIRED_IN set need to be
   rematerialized and decide where the rematerialization instructions
   should go.  Emit queued rematerialization instructions at the start
   of blocks and after the last calls in blocks.  */

void
early_remat::global_phase (void)
{
  compute_availability ();
  if (dump_file)
    {
      fprintf (dump_file, "\n;; Blocks after computing global"
	       " availability:\n");
      dump_all_blocks ();
    }

  choose_rematerialization_points ();
  if (dump_file)
    {
      fprintf (dump_file, "\n;; Blocks after choosing rematerialization"
	       " points:\n");
      dump_all_blocks ();
    }

  basic_block bb;
  FOR_EACH_BB_FN (bb, m_fn)
    emit_remat_insns_for_block (bb);
}

/* Main function for the pass.  */

void
early_remat::run (void)
{
  df_analyze ();

  if (!collect_candidates ())
    return;

  init_block_info ();
  sort_candidates ();
  finalize_candidate_indices ();
  if (dump_file)
    dump_all_candidates ();

  compute_rd ();
  decide_candidate_validity ();
  local_phase ();
  global_phase ();
}

early_remat::early_remat (function *fn, sbitmap selected_modes)
  : m_fn (fn),
    m_selected_modes (selected_modes),
    m_available (0),
    m_required (0),
    m_value_table (63)
{
  bitmap_obstack_initialize (&m_obstack);
  bitmap_initialize (&m_candidate_regnos, &m_obstack);
  bitmap_initialize (&m_tmp_bitmap, &m_obstack);
}

early_remat::~early_remat ()
{
  bitmap_obstack_release (&m_obstack);
}

namespace {

const pass_data pass_data_early_remat =
{
  RTL_PASS, /* type */
  "early_remat", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_EARLY_REMAT, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_early_remat : public rtl_opt_pass
{
public:
  pass_early_remat (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_early_remat, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
  {
    return optimize > 1 && NUM_POLY_INT_COEFFS > 1;
  }

  virtual unsigned int execute (function *f)
  {
    auto_sbitmap selected_modes (NUM_MACHINE_MODES);
    bitmap_clear (selected_modes);
    targetm.select_early_remat_modes (selected_modes);
    if (!bitmap_empty_p (selected_modes))
      early_remat (f, selected_modes).run ();
    return 0;
  }
}; // class pass_early_remat

} // anon namespace

rtl_opt_pass *
make_pass_early_remat (gcc::context *ctxt)
{
  return new pass_early_remat (ctxt);
}