gimple.c 94 KB
Newer Older
1 2
/* Gimple IR support functions.

3
   Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
   Contributed by Aldy Hernandez <aldyh@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
25 26 27 28
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
29 30
#include "cgraph.h"
#include "diagnostic.h"
31 32
#include "alias.h"
#include "fold-const.h"
33 34
#include "calls.h"
#include "stor-layout.h"
35 36
#include "internal-fn.h"
#include "tree-eh.h"
37 38
#include "gimple-iterator.h"
#include "gimple-walk.h"
39
#include "gimplify.h"
40
#include "target.h"
41
#include "builtins.h"
David Malcolm committed
42 43
#include "selftest.h"
#include "gimple-pretty-print.h"
44 45
#include "stringpool.h"
#include "attribs.h"
46
#include "asan.h"
47
#include "langhooks.h"
48

49

50
/* All the tuples have their operand vector (if present) at the very bottom
51 52 53
   of the structure.  Therefore, the offset required to find the
   operands vector the size of the structure minus the size of the 1
   element tree array at the end (see gimple_ops).  */
54 55
#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
	(HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
56
EXPORTED_CONST size_t gimple_ops_offset_[] = {
57 58 59 60
#include "gsstruct.def"
};
#undef DEFGSSTRUCT

61
#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
62 63 64 65 66 67 68 69 70 71 72 73 74
static const size_t gsstruct_code_size[] = {
#include "gsstruct.def"
};
#undef DEFGSSTRUCT

#define DEFGSCODE(SYM, NAME, GSSCODE)	NAME,
const char *const gimple_code_name[] = {
#include "gimple.def"
};
#undef DEFGSCODE

#define DEFGSCODE(SYM, NAME, GSSCODE)	GSSCODE,
EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
75 76 77 78 79 80
#include "gimple.def"
};
#undef DEFGSCODE

/* Gimple stats.  */

81 82
uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
83 84 85 86 87 88 89 90 91

/* Keep in sync with gimple.h:enum gimple_alloc_kind.  */
static const char * const gimple_alloc_kind_names[] = {
    "assignments",
    "phi nodes",
    "conditionals",
    "everything else"
};

92 93
/* Static gimple tuple members.  */
const enum gimple_code gassign::code_;
94 95
const enum gimple_code gcall::code_;
const enum gimple_code gcond::code_;
96 97


98 99 100 101 102 103 104
/* Gimple tuple constructors.
   Note: Any constructor taking a ``gimple_seq'' as a parameter, can
   be passed a NULL to start with an empty sequence.  */

/* Set the code for statement G to CODE.  */

static inline void
105
gimple_set_code (gimple *g, enum gimple_code code)
106
{
107
  g->code = code;
108 109 110 111 112
}

/* Return the number of bytes needed to hold a GIMPLE statement with
   code CODE.  */

113
static inline size_t
114 115
gimple_size (enum gimple_code code)
{
116
  return gsstruct_code_size[gss_for_code (code)];
117 118 119 120 121
}

/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
   operands.  */

122
gimple *
123
gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
124 125
{
  size_t size;
126
  gimple *stmt;
127 128 129 130 131

  size = gimple_size (code);
  if (num_ops > 0)
    size += sizeof (tree) * (num_ops - 1);

132 133 134 135 136 137
  if (GATHER_STATISTICS)
    {
      enum gimple_alloc_kind kind = gimple_alloc_kind (code);
      gimple_alloc_counts[(int) kind]++;
      gimple_alloc_sizes[(int) kind] += size;
    }
138

139
  stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
140 141 142 143 144
  gimple_set_code (stmt, code);
  gimple_set_num_ops (stmt, num_ops);

  /* Do not call gimple_set_modified here as it has other side
     effects and this tuple is still not completely built.  */
145
  stmt->modified = 1;
146
  gimple_init_singleton (stmt);
147 148 149 150 151 152 153

  return stmt;
}

/* Set SUBCODE to be the code of the expression computed by statement G.  */

static inline void
154
gimple_set_subcode (gimple *g, unsigned subcode)
155 156 157 158
{
  /* We only have 16 bits for the RHS code.  Assert that we are not
     overflowing it.  */
  gcc_assert (subcode < (1 << 16));
159
  g->subcode = subcode;
160 161 162 163 164
}



/* Build a tuple with operands.  CODE is the statement to build (which
165
   must be one of the GIMPLE_WITH_OPS tuples).  SUBCODE is the subcode
H.J. Lu committed
166
   for the new tuple.  NUM_OPS is the number of operands to allocate.  */
167 168 169 170

#define gimple_build_with_ops(c, s, n) \
  gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)

171
static gimple *
172
gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
173 174
		            unsigned num_ops MEM_STAT_DECL)
{
175
  gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
176 177 178 179 180 181 182 183
  gimple_set_subcode (s, subcode);

  return s;
}


/* Build a GIMPLE_RETURN statement returning RETVAL.  */

184
greturn *
185 186
gimple_build_return (tree retval)
{
187 188 189
  greturn *s
    = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
					       2));
190 191 192 193 194
  if (retval)
    gimple_return_set_retval (s, retval);
  return s;
}

195 196 197
/* Reset alias information on call S.  */

void
198
gimple_call_reset_alias_info (gcall *s)
199 200 201 202 203 204 205 206 207 208 209
{
  if (gimple_call_flags (s) & ECF_CONST)
    memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
  else
    pt_solution_reset (gimple_call_use_set (s));
  if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
    memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
  else
    pt_solution_reset (gimple_call_clobber_set (s));
}

210 211 212 213
/* Helper for gimple_build_call, gimple_build_call_valist,
   gimple_build_call_vec and gimple_build_call_from_tree.  Build the basic
   components of a GIMPLE_CALL statement to function FN with NARGS
   arguments.  */
214

215
static inline gcall *
216 217
gimple_build_call_1 (tree fn, unsigned nargs)
{
218 219 220
  gcall *s
    = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
					     nargs + 3));
221 222
  if (TREE_CODE (fn) == FUNCTION_DECL)
    fn = build_fold_addr_expr (fn);
223
  gimple_set_op (s, 1, fn);
224
  gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
225
  gimple_call_reset_alias_info (s);
226 227 228 229 230 231 232
  return s;
}


/* Build a GIMPLE_CALL statement to function FN with the arguments
   specified in vector ARGS.  */

233
gcall *
234
gimple_build_call_vec (tree fn, vec<tree> args)
235 236
{
  unsigned i;
237
  unsigned nargs = args.length ();
238
  gcall *call = gimple_build_call_1 (fn, nargs);
239 240

  for (i = 0; i < nargs; i++)
241
    gimple_call_set_arg (call, i, args[i]);
242 243 244 245 246 247 248 249

  return call;
}


/* Build a GIMPLE_CALL statement to function FN.  NARGS is the number of
   arguments.  The ... are the arguments.  */

250
gcall *
251 252 253
gimple_build_call (tree fn, unsigned nargs, ...)
{
  va_list ap;
254
  gcall *call;
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  unsigned i;

  gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));

  call = gimple_build_call_1 (fn, nargs);

  va_start (ap, nargs);
  for (i = 0; i < nargs; i++)
    gimple_call_set_arg (call, i, va_arg (ap, tree));
  va_end (ap);

  return call;
}


270 271 272
/* Build a GIMPLE_CALL statement to function FN.  NARGS is the number of
   arguments.  AP contains the arguments.  */

273
gcall *
274 275
gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
{
276
  gcall *call;
277 278 279 280 281 282 283 284 285 286 287 288 289
  unsigned i;

  gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));

  call = gimple_build_call_1 (fn, nargs);

  for (i = 0; i < nargs; i++)
    gimple_call_set_arg (call, i, va_arg (ap, tree));

  return call;
}


290 291 292 293
/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
   Build the basic components of a GIMPLE_CALL statement to internal
   function FN with NARGS arguments.  */

294
static inline gcall *
295 296
gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
{
297 298 299
  gcall *s
    = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
					     nargs + 3));
300
  s->subcode |= GF_CALL_INTERNAL;
301 302 303 304 305 306 307 308 309
  gimple_call_set_internal_fn (s, fn);
  gimple_call_reset_alias_info (s);
  return s;
}


/* Build a GIMPLE_CALL statement to internal function FN.  NARGS is
   the number of arguments.  The ... are the arguments.  */

310
gcall *
311 312 313
gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
{
  va_list ap;
314
  gcall *call;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  unsigned i;

  call = gimple_build_call_internal_1 (fn, nargs);
  va_start (ap, nargs);
  for (i = 0; i < nargs; i++)
    gimple_call_set_arg (call, i, va_arg (ap, tree));
  va_end (ap);

  return call;
}


/* Build a GIMPLE_CALL statement to internal function FN with the arguments
   specified in vector ARGS.  */

330
gcall *
331
gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
332 333
{
  unsigned i, nargs;
334
  gcall *call;
335

336
  nargs = args.length ();
337 338
  call = gimple_build_call_internal_1 (fn, nargs);
  for (i = 0; i < nargs; i++)
339
    gimple_call_set_arg (call, i, args[i]);
340 341 342 343 344

  return call;
}


345 346 347 348
/* Build a GIMPLE_CALL statement from CALL_EXPR T.  Note that T is
   assumed to be in GIMPLE form already.  Minimal checking is done of
   this fact.  */

349
gcall *
350
gimple_build_call_from_tree (tree t, tree fnptrtype)
351 352
{
  unsigned i, nargs;
353
  gcall *call;
354 355 356 357

  gcc_assert (TREE_CODE (t) == CALL_EXPR);

  nargs = call_expr_nargs (t);
358 359 360 361 362 363 364 365 366

  tree fndecl = NULL_TREE;
  if (CALL_EXPR_FN (t) == NULL_TREE)
    call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
  else
    {
      fndecl = get_callee_fndecl (t);
      call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
    }
367 368 369 370 371

  for (i = 0; i < nargs; i++)
    gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));

  gimple_set_block (call, TREE_BLOCK (t));
372
  gimple_set_location (call, EXPR_LOCATION (t));
373 374 375 376

  /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL.  */
  gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
  gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
377
  gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
378
  gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
379
  if (fndecl
380
      && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
381
      && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
382 383 384
    gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
  else
    gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
385
  gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
386
  gimple_call_set_nothrow (call, TREE_NOTHROW (t));
387
  gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
388
  gimple_set_no_warning (call, TREE_NO_WARNING (t));
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  if (fnptrtype)
    {
      gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));

      /* Check if it's an indirect CALL and the type has the
 	 nocf_check attribute. In that case propagate the information
	 to the gimple CALL insn.  */
      if (!fndecl)
	{
	  gcc_assert (POINTER_TYPE_P (fnptrtype));
	  tree fntype = TREE_TYPE (fnptrtype);

	  if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
	    gimple_call_set_nocf_check (call, TRUE);
	}
    }

407 408 409 410 411 412 413 414 415
  return call;
}


/* Build a GIMPLE_ASSIGN statement.

   LHS of the assignment.
   RHS of the assignment which can be unary or binary.  */

416
gassign *
417
gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
418 419
{
  enum tree_code subcode;
420
  tree op1, op2, op3;
421

422
  extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
423
  return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
424 425 426
}


427
/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
428
   OP1, OP2 and OP3.  */
429

430 431 432
static inline gassign *
gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
		       tree op2, tree op3 MEM_STAT_DECL)
433 434
{
  unsigned num_ops;
435
  gassign *p;
436 437 438 439

  /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
     code).  */
  num_ops = get_gimple_rhs_num_ops (subcode) + 1;
H.J. Lu committed
440

441 442 443
  p = as_a <gassign *> (
        gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
				    PASS_MEM_STAT));
444 445 446 447 448 449 450 451
  gimple_assign_set_lhs (p, lhs);
  gimple_assign_set_rhs1 (p, op1);
  if (op2)
    {
      gcc_assert (num_ops > 2);
      gimple_assign_set_rhs2 (p, op2);
    }

452 453 454 455 456 457
  if (op3)
    {
      gcc_assert (num_ops > 3);
      gimple_assign_set_rhs3 (p, op3);
    }

458 459 460
  return p;
}

461 462 463 464 465 466 467 468 469 470 471 472 473
/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
   OP1, OP2 and OP3.  */

gassign *
gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
		     tree op2, tree op3 MEM_STAT_DECL)
{
  return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
}

/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
   OP1 and OP2.  */

474
gassign *
475 476
gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
		     tree op2 MEM_STAT_DECL)
477
{
478 479
  return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
				PASS_MEM_STAT);
480 481
}

482 483
/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1.  */

484
gassign *
485
gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
486
{
487 488
  return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
				PASS_MEM_STAT);
489 490
}

491 492 493 494 495 496 497

/* Build a GIMPLE_COND statement.

   PRED is the condition used to compare LHS and the RHS.
   T_LABEL is the label to jump to if the condition is true.
   F_LABEL is the label to jump to otherwise.  */

498
gcond *
499 500 501
gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
		   tree t_label, tree f_label)
{
502
  gcond *p;
503 504

  gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
505
  p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
506 507 508 509 510 511 512 513 514 515
  gimple_cond_set_lhs (p, lhs);
  gimple_cond_set_rhs (p, rhs);
  gimple_cond_set_true_label (p, t_label);
  gimple_cond_set_false_label (p, f_label);
  return p;
}

/* Build a GIMPLE_COND statement from the conditional expression tree
   COND.  T_LABEL and F_LABEL are as in gimple_build_cond.  */

516
gcond *
517 518 519 520 521 522 523 524 525 526 527 528 529
gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
{
  enum tree_code code;
  tree lhs, rhs;

  gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
  return gimple_build_cond (code, lhs, rhs, t_label, f_label);
}

/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
   boolean expression tree COND.  */

void
530
gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
531 532 533 534 535 536 537 538 539 540
{
  enum tree_code code;
  tree lhs, rhs;

  gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
  gimple_cond_set_condition (stmt, code, lhs, rhs);
}

/* Build a GIMPLE_LABEL statement for LABEL.  */

541
glabel *
542 543
gimple_build_label (tree label)
{
544 545
  glabel *p
    = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
546 547 548 549 550 551
  gimple_label_set_label (p, label);
  return p;
}

/* Build a GIMPLE_GOTO statement to label DEST.  */

552
ggoto *
553 554
gimple_build_goto (tree dest)
{
555 556
  ggoto *p
    = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
557 558 559 560 561 562 563
  gimple_goto_set_dest (p, dest);
  return p;
}


/* Build a GIMPLE_NOP statement.  */

564
gimple *
565 566 567 568 569 570 571 572 573 574
gimple_build_nop (void)
{
  return gimple_alloc (GIMPLE_NOP, 0);
}


/* Build a GIMPLE_BIND statement.
   VARS are the variables in BODY.
   BLOCK is the containing block.  */

575
gbind *
576 577
gimple_build_bind (tree vars, gimple_seq body, tree block)
{
578
  gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
  gimple_bind_set_vars (p, vars);
  if (body)
    gimple_bind_set_body (p, body);
  if (block)
    gimple_bind_set_block (p, block);
  return p;
}

/* Helper function to set the simple fields of a asm stmt.

   STRING is a pointer to a string that is the asm blocks assembly code.
   NINPUT is the number of register inputs.
   NOUTPUT is the number of register outputs.
   NCLOBBERS is the number of clobbered registers.
   */

595
static inline gasm *
H.J. Lu committed
596
gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
597
                    unsigned nclobbers, unsigned nlabels)
598
{
599
  gasm *p;
600 601
  int size = strlen (string);

602 603 604 605
  /* ASMs with labels cannot have outputs.  This should have been
     enforced by the front end.  */
  gcc_assert (nlabels == 0 || noutputs == 0);

606
  p = as_a <gasm *> (
607 608
        gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
			       ninputs + noutputs + nclobbers + nlabels));
609

610 611 612 613 614
  p->ni = ninputs;
  p->no = noutputs;
  p->nc = nclobbers;
  p->nl = nlabels;
  p->string = ggc_alloc_string (string, size);
615

616 617
  if (GATHER_STATISTICS)
    gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
H.J. Lu committed
618

619 620 621 622 623 624 625 626 627 628 629
  return p;
}

/* Build a GIMPLE_ASM statement.

   STRING is the assembly code.
   NINPUT is the number of register inputs.
   NOUTPUT is the number of register outputs.
   NCLOBBERS is the number of clobbered registers.
   INPUTS is a vector of the input register parameters.
   OUTPUTS is a vector of the output register parameters.
630 631
   CLOBBERS is a vector of the clobbered register parameters.
   LABELS is a vector of destination labels.  */
632

633
gasm *
634 635 636
gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
                      vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
		      vec<tree, va_gc> *labels)
637
{
638
  gasm *p;
639 640 641
  unsigned i;

  p = gimple_build_asm_1 (string,
642 643 644 645
                          vec_safe_length (inputs),
                          vec_safe_length (outputs),
                          vec_safe_length (clobbers),
			  vec_safe_length (labels));
H.J. Lu committed
646

647 648
  for (i = 0; i < vec_safe_length (inputs); i++)
    gimple_asm_set_input_op (p, i, (*inputs)[i]);
649

650 651
  for (i = 0; i < vec_safe_length (outputs); i++)
    gimple_asm_set_output_op (p, i, (*outputs)[i]);
652

653 654
  for (i = 0; i < vec_safe_length (clobbers); i++)
    gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
H.J. Lu committed
655

656 657
  for (i = 0; i < vec_safe_length (labels); i++)
    gimple_asm_set_label_op (p, i, (*labels)[i]);
H.J. Lu committed
658

659 660 661 662 663 664 665 666
  return p;
}

/* Build a GIMPLE_CATCH statement.

  TYPES are the catch types.
  HANDLER is the exception handler.  */

667
gcatch *
668 669
gimple_build_catch (tree types, gimple_seq handler)
{
670
  gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
671 672 673 674 675 676 677 678 679 680 681 682
  gimple_catch_set_types (p, types);
  if (handler)
    gimple_catch_set_handler (p, handler);

  return p;
}

/* Build a GIMPLE_EH_FILTER statement.

   TYPES are the filter's types.
   FAILURE is the filter's failure action.  */

683
geh_filter *
684 685
gimple_build_eh_filter (tree types, gimple_seq failure)
{
686
  geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
687 688 689 690 691 692 693
  gimple_eh_filter_set_types (p, types);
  if (failure)
    gimple_eh_filter_set_failure (p, failure);

  return p;
}

694 695
/* Build a GIMPLE_EH_MUST_NOT_THROW statement.  */

696
geh_mnt *
697 698
gimple_build_eh_must_not_throw (tree decl)
{
699
  geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
700 701 702

  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
  gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
703
  gimple_eh_must_not_throw_set_fndecl (p, decl);
704 705 706 707

  return p;
}

708 709
/* Build a GIMPLE_EH_ELSE statement.  */

710
geh_else *
711 712
gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
{
713
  geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
714 715 716 717 718
  gimple_eh_else_set_n_body (p, n_body);
  gimple_eh_else_set_e_body (p, e_body);
  return p;
}

719 720 721 722 723 724 725
/* Build a GIMPLE_TRY statement.

   EVAL is the expression to evaluate.
   CLEANUP is the cleanup expression.
   KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
   whether this is a try/catch or a try/finally respectively.  */

726
gtry *
727 728 729
gimple_build_try (gimple_seq eval, gimple_seq cleanup,
    		  enum gimple_try_flags kind)
{
730
  gtry *p;
731 732

  gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
733
  p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
734 735 736 737 738 739 740 741 742 743 744 745 746
  gimple_set_subcode (p, kind);
  if (eval)
    gimple_try_set_eval (p, eval);
  if (cleanup)
    gimple_try_set_cleanup (p, cleanup);

  return p;
}

/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.

   CLEANUP is the cleanup expression.  */

747
gimple *
748 749
gimple_build_wce (gimple_seq cleanup)
{
750
  gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
751 752 753 754 755 756 757
  if (cleanup)
    gimple_wce_set_cleanup (p, cleanup);

  return p;
}


758
/* Build a GIMPLE_RESX statement.  */
759

760
gresx *
761 762
gimple_build_resx (int region)
{
763 764
  gresx *p
    = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
765
  p->region = region;
766 767 768 769 770 771 772 773 774
  return p;
}


/* The helper for constructing a gimple switch statement.
   INDEX is the switch's index.
   NLABELS is the number of labels in the switch excluding the default.
   DEFAULT_LABEL is the default label for the switch statement.  */

775
gswitch *
776
gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
777 778
{
  /* nlabels + 1 default label + 1 index.  */
779
  gcc_checking_assert (default_label);
780 781 782
  gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
							ERROR_MARK,
							1 + 1 + nlabels));
783
  gimple_switch_set_index (p, index);
784
  gimple_switch_set_default_label (p, default_label);
785 786 787 788 789 790 791 792 793
  return p;
}

/* Build a GIMPLE_SWITCH statement.

   INDEX is the switch's index.
   DEFAULT_LABEL is the default label
   ARGS is a vector of labels excluding the default.  */

794
gswitch *
795
gimple_build_switch (tree index, tree default_label, vec<tree> args)
796
{
797
  unsigned i, nlabels = args.length ();
798

799
  gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
800

801 802
  /* Copy the labels from the vector to the switch statement.  */
  for (i = 0; i < nlabels; i++)
803
    gimple_switch_set_label (p, i + 1, args[i]);
804 805 806 807

  return p;
}

808 809
/* Build a GIMPLE_EH_DISPATCH statement.  */

810
geh_dispatch *
811 812
gimple_build_eh_dispatch (int region)
{
813 814 815
  geh_dispatch *p
    = as_a <geh_dispatch *> (
	gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
816
  p->region = region;
817 818
  return p;
}
819

820 821 822 823
/* Build a new GIMPLE_DEBUG_BIND statement.

   VAR is bound to VALUE; block and location are taken from STMT.  */

824
gdebug *
825
gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
826
{
827 828 829 830
  gdebug *p
    = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
						   (unsigned)GIMPLE_DEBUG_BIND, 2
						   PASS_MEM_STAT));
831 832 833
  gimple_debug_bind_set_var (p, var);
  gimple_debug_bind_set_value (p, value);
  if (stmt)
834
    gimple_set_location (p, gimple_location (stmt));
835 836 837 838 839

  return p;
}


840 841 842 843
/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.

   VAR is bound to VALUE; block and location are taken from STMT.  */

844
gdebug *
845
gimple_build_debug_source_bind (tree var, tree value,
846
				     gimple *stmt MEM_STAT_DECL)
847
{
848 849 850 851 852
  gdebug *p
    = as_a <gdebug *> (
        gimple_build_with_ops_stat (GIMPLE_DEBUG,
				    (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
				    PASS_MEM_STAT));
853 854 855 856

  gimple_debug_source_bind_set_var (p, var);
  gimple_debug_source_bind_set_value (p, value);
  if (stmt)
857
    gimple_set_location (p, gimple_location (stmt));
858 859 860 861 862

  return p;
}


863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
   LOCATION.  */

gdebug *
gimple_build_debug_begin_stmt (tree block, location_t location
				    MEM_STAT_DECL)
{
  gdebug *p
    = as_a <gdebug *> (
        gimple_build_with_ops_stat (GIMPLE_DEBUG,
				    (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
				    PASS_MEM_STAT));

  gimple_set_location (p, location);
  gimple_set_block (p, block);
  cfun->debug_marker_count++;

  return p;
}


884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
   LOCATION.  The BLOCK links to the inlined function.  */

gdebug *
gimple_build_debug_inline_entry (tree block, location_t location
				      MEM_STAT_DECL)
{
  gdebug *p
    = as_a <gdebug *> (
        gimple_build_with_ops_stat (GIMPLE_DEBUG,
				    (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
				    PASS_MEM_STAT));

  gimple_set_location (p, location);
  gimple_set_block (p, block);
  cfun->debug_marker_count++;

  return p;
}


905 906 907
/* Build a GIMPLE_OMP_CRITICAL statement.

   BODY is the sequence of statements for which only one thread can execute.
908 909
   NAME is optional identifier for this critical block.
   CLAUSES are clauses for this critical block.  */
910

911
gomp_critical *
912
gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
913
{
914 915
  gomp_critical *p
    = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
916
  gimple_omp_critical_set_name (p, name);
917
  gimple_omp_critical_set_clauses (p, clauses);
918 919 920 921 922 923 924 925 926
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}

/* Build a GIMPLE_OMP_FOR statement.

   BODY is sequence of statements inside the for loop.
927
   KIND is the `for' variant.
928
   CLAUSES are any of the construct's clauses.
929 930 931
   COLLAPSE is the collapse count.
   PRE_BODY is the sequence of statements that are loop invariant.  */

932
gomp_for *
933
gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
934 935
		      gimple_seq pre_body)
{
936
  gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
937 938 939
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_for_set_clauses (p, clauses);
940
  gimple_omp_for_set_kind (p, kind);
941
  p->collapse = collapse;
942
  p->iter =  ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
943

944 945 946 947 948 949 950 951 952 953
  if (pre_body)
    gimple_omp_for_set_pre_body (p, pre_body);

  return p;
}


/* Build a GIMPLE_OMP_PARALLEL statement.

   BODY is sequence of statements which are executed in parallel.
954
   CLAUSES are the OMP parallel construct's clauses.
955 956 957
   CHILD_FN is the function created for the parallel threads to execute.
   DATA_ARG are the shared data argument(s).  */

958
gomp_parallel *
H.J. Lu committed
959
gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
960 961
			   tree data_arg)
{
962 963
  gomp_parallel *p
    = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
964 965 966 967 968 969 970 971 972 973 974 975 976
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_parallel_set_clauses (p, clauses);
  gimple_omp_parallel_set_child_fn (p, child_fn);
  gimple_omp_parallel_set_data_arg (p, data_arg);

  return p;
}


/* Build a GIMPLE_OMP_TASK statement.

   BODY is sequence of statements which are executed by the explicit task.
977
   CLAUSES are the OMP task construct's clauses.
978 979 980 981 982
   CHILD_FN is the function created for the parallel threads to execute.
   DATA_ARG are the shared data argument(s).
   COPY_FN is the optional function for firstprivate initialization.
   ARG_SIZE and ARG_ALIGN are size and alignment of the data block.  */

983
gomp_task *
984 985 986 987
gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
		       tree data_arg, tree copy_fn, tree arg_size,
		       tree arg_align)
{
988
  gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_task_set_clauses (p, clauses);
  gimple_omp_task_set_child_fn (p, child_fn);
  gimple_omp_task_set_data_arg (p, data_arg);
  gimple_omp_task_set_copy_fn (p, copy_fn);
  gimple_omp_task_set_arg_size (p, arg_size);
  gimple_omp_task_set_arg_align (p, arg_align);

  return p;
}


/* Build a GIMPLE_OMP_SECTION statement for a sections statement.

   BODY is the sequence of statements in the section.  */

1006
gimple *
1007 1008
gimple_build_omp_section (gimple_seq body)
{
1009
  gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}


/* Build a GIMPLE_OMP_MASTER statement.

   BODY is the sequence of statements to be executed by just the master.  */

1021
gimple *
1022 1023
gimple_build_omp_master (gimple_seq body)
{
1024
  gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1025 1026 1027 1028 1029 1030
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}

Martin Jambor committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/* Build a GIMPLE_OMP_GRID_BODY statement.

   BODY is the sequence of statements to be executed by the kernel.  */

gimple *
gimple_build_omp_grid_body (gimple_seq body)
{
  gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}
1044

Jakub Jelinek committed
1045 1046 1047
/* Build a GIMPLE_OMP_TASKGROUP statement.

   BODY is the sequence of statements to be executed by the taskgroup
1048 1049
   construct.
   CLAUSES are any of the construct's clauses.  */
Jakub Jelinek committed
1050

1051
gimple *
1052
gimple_build_omp_taskgroup (gimple_seq body, tree clauses)
Jakub Jelinek committed
1053
{
1054
  gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1055
  gimple_omp_taskgroup_set_clauses (p, clauses);
Jakub Jelinek committed
1056 1057 1058 1059 1060 1061 1062
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}


1063 1064 1065 1066 1067
/* Build a GIMPLE_OMP_CONTINUE statement.

   CONTROL_DEF is the definition of the control variable.
   CONTROL_USE is the use of the control variable.  */

1068
gomp_continue *
1069 1070
gimple_build_omp_continue (tree control_def, tree control_use)
{
1071 1072
  gomp_continue *p
    = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1073 1074 1075 1076 1077 1078 1079 1080
  gimple_omp_continue_set_control_def (p, control_def);
  gimple_omp_continue_set_control_use (p, control_use);
  return p;
}

/* Build a GIMPLE_OMP_ORDERED statement.

   BODY is the sequence of statements inside a loop that will executed in
1081 1082
   sequence.
   CLAUSES are clauses for this statement.  */
1083

1084 1085
gomp_ordered *
gimple_build_omp_ordered (gimple_seq body, tree clauses)
1086
{
1087 1088 1089
  gomp_ordered *p
    = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
  gimple_omp_ordered_set_clauses (p, clauses);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}


/* Build a GIMPLE_OMP_RETURN statement.
   WAIT_P is true if this is a non-waiting return.  */

1100
gimple *
1101 1102
gimple_build_omp_return (bool wait_p)
{
1103
  gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1104 1105 1106 1107 1108 1109 1110
  if (wait_p)
    gimple_omp_return_set_nowait (p);

  return p;
}


1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/* Build a GIMPLE_OMP_SCAN statement.

   BODY is the sequence of statements to be executed by the scan
   construct.
   CLAUSES are any of the construct's clauses.  */

gomp_scan *
gimple_build_omp_scan (gimple_seq body, tree clauses)
{
  gomp_scan *p
    = as_a <gomp_scan *> (gimple_alloc (GIMPLE_OMP_SCAN, 0));
  gimple_omp_scan_set_clauses (p, clauses);
  if (body)
    gimple_omp_set_body (p, body);

  return p;
}


1130 1131 1132 1133 1134 1135
/* Build a GIMPLE_OMP_SECTIONS statement.

   BODY is a sequence of section statements.
   CLAUSES are any of the OMP sections contsruct's clauses: private,
   firstprivate, lastprivate, reduction, and nowait.  */

1136
gomp_sections *
1137 1138
gimple_build_omp_sections (gimple_seq body, tree clauses)
{
1139 1140
  gomp_sections *p
    = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_sections_set_clauses (p, clauses);

  return p;
}


/* Build a GIMPLE_OMP_SECTIONS_SWITCH.  */

1151
gimple *
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
gimple_build_omp_sections_switch (void)
{
  return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
}


/* Build a GIMPLE_OMP_SINGLE statement.

   BODY is the sequence of statements that will be executed once.
   CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
   copyprivate, nowait.  */

1164
gomp_single *
1165 1166
gimple_build_omp_single (gimple_seq body, tree clauses)
{
1167 1168
  gomp_single *p
    = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1169 1170 1171 1172 1173 1174 1175 1176
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_single_set_clauses (p, clauses);

  return p;
}


Jakub Jelinek committed
1177 1178 1179
/* Build a GIMPLE_OMP_TARGET statement.

   BODY is the sequence of statements that will be executed.
1180 1181
   KIND is the kind of the region.
   CLAUSES are any of the construct's clauses.  */
Jakub Jelinek committed
1182

1183
gomp_target *
Jakub Jelinek committed
1184 1185
gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
{
1186 1187
  gomp_target *p
    = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
Jakub Jelinek committed
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_target_set_clauses (p, clauses);
  gimple_omp_target_set_kind (p, kind);

  return p;
}


/* Build a GIMPLE_OMP_TEAMS statement.

   BODY is the sequence of statements that will be executed.
   CLAUSES are any of the OMP teams construct's clauses.  */

1202
gomp_teams *
Jakub Jelinek committed
1203 1204
gimple_build_omp_teams (gimple_seq body, tree clauses)
{
1205
  gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
Jakub Jelinek committed
1206 1207 1208 1209 1210 1211 1212 1213
  if (body)
    gimple_omp_set_body (p, body);
  gimple_omp_teams_set_clauses (p, clauses);

  return p;
}


1214 1215
/* Build a GIMPLE_OMP_ATOMIC_LOAD statement.  */

1216
gomp_atomic_load *
1217
gimple_build_omp_atomic_load (tree lhs, tree rhs, enum omp_memory_order mo)
1218
{
1219 1220
  gomp_atomic_load *p
    = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1221 1222
  gimple_omp_atomic_load_set_lhs (p, lhs);
  gimple_omp_atomic_load_set_rhs (p, rhs);
1223
  gimple_omp_atomic_set_memory_order (p, mo);
1224 1225 1226 1227 1228 1229 1230
  return p;
}

/* Build a GIMPLE_OMP_ATOMIC_STORE statement.

   VAL is the value we are storing.  */

1231
gomp_atomic_store *
1232
gimple_build_omp_atomic_store (tree val, enum omp_memory_order mo)
1233
{
1234 1235
  gomp_atomic_store *p
    = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1236
  gimple_omp_atomic_store_set_val (p, val);
1237
  gimple_omp_atomic_set_memory_order (p, mo);
1238 1239 1240
  return p;
}

1241 1242
/* Build a GIMPLE_TRANSACTION statement.  */

1243
gtransaction *
1244
gimple_build_transaction (gimple_seq body)
1245
{
1246 1247
  gtransaction *p
    = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1248
  gimple_transaction_set_body (p, body);
1249 1250 1251
  gimple_transaction_set_label_norm (p, 0);
  gimple_transaction_set_label_uninst (p, 0);
  gimple_transaction_set_label_over (p, 0);
1252 1253 1254
  return p;
}

1255
#if defined ENABLE_GIMPLE_CHECKING
1256 1257 1258
/* Complain of a gimple type mismatch and die.  */

void
1259
gimple_check_failed (const gimple *gs, const char *file, int line,
1260 1261 1262 1263 1264
		     const char *function, enum gimple_code code,
		     enum tree_code subcode)
{
  internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
      		  gimple_code_name[code],
1265
		  get_tree_code_name (subcode),
1266
		  gimple_code_name[gimple_code (gs)],
1267 1268
		  gs->subcode > 0
		    ? get_tree_code_name ((enum tree_code) gs->subcode)
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		    : "",
		  function, trim_filename (file), line);
}
#endif /* ENABLE_GIMPLE_CHECKING */


/* Link gimple statement GS to the end of the sequence *SEQ_P.  If
   *SEQ_P is NULL, a new sequence is allocated.  */

void
1279
gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1280 1281 1282 1283 1284 1285 1286 1287 1288
{
  gimple_stmt_iterator si;
  if (gs == NULL)
    return;

  si = gsi_last (*seq_p);
  gsi_insert_after (&si, gs, GSI_NEW_STMT);
}

1289 1290 1291 1292 1293 1294 1295
/* Link gimple statement GS to the end of the sequence *SEQ_P.  If
   *SEQ_P is NULL, a new sequence is allocated.  This function is
   similar to gimple_seq_add_stmt, but does not scan the operands.
   During gimplification, we need to manipulate statement sequences
   before the def/use vectors have been constructed.  */

void
1296
gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1297 1298 1299 1300 1301 1302 1303 1304 1305
{
  gimple_stmt_iterator si;

  if (gs == NULL)
    return;

  si = gsi_last (*seq_p);
  gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

/* Append sequence SRC to the end of sequence *DST_P.  If *DST_P is
   NULL, a new sequence is allocated.  */

void
gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
{
  gimple_stmt_iterator si;
  if (src == NULL)
    return;

  si = gsi_last (*dst_p);
  gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/* Append sequence SRC to the end of sequence *DST_P.  If *DST_P is
   NULL, a new sequence is allocated.  This function is
   similar to gimple_seq_add_seq, but does not scan the operands.  */

void
gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
{
  gimple_stmt_iterator si;
  if (src == NULL)
    return;

  si = gsi_last (*dst_p);
  gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
}

1336 1337 1338
/* Determine whether to assign a location to the statement GS.  */

static bool
1339
should_carry_location_p (gimple *gs)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
{
  /* Don't emit a line note for a label.  We particularly don't want to
     emit one for the break label, since it doesn't actually correspond
     to the beginning of the loop/switch.  */
  if (gimple_code (gs) == GIMPLE_LABEL)
    return false;

  return true;
}

/* Set the location for gimple statement GS to LOCATION.  */

static void
1353
annotate_one_with_location (gimple *gs, location_t location)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
{
  if (!gimple_has_location (gs)
      && !gimple_do_not_emit_location_p (gs)
      && should_carry_location_p (gs))
    gimple_set_location (gs, location);
}

/* Set LOCATION for all the statements after iterator GSI in sequence
   SEQ.  If GSI is pointing to the end of the sequence, start with the
   first statement in SEQ.  */

void
annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
				  location_t location)
{
  if (gsi_end_p (gsi))
    gsi = gsi_start (seq);
  else
    gsi_next (&gsi);

  for (; !gsi_end_p (gsi); gsi_next (&gsi))
    annotate_one_with_location (gsi_stmt (gsi), location);
}

/* Set the location for all the statements in a sequence STMT_P to LOCATION.  */

void
annotate_all_with_location (gimple_seq stmt_p, location_t location)
{
  gimple_stmt_iterator i;

  if (gimple_seq_empty_p (stmt_p))
    return;

  for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
    {
1390
      gimple *gs = gsi_stmt (i);
1391 1392 1393
      annotate_one_with_location (gs, location);
    }
}
1394 1395 1396 1397 1398

/* Helper function of empty_body_p.  Return true if STMT is an empty
   statement.  */

static bool
1399
empty_stmt_p (gimple *stmt)
1400 1401 1402
{
  if (gimple_code (stmt) == GIMPLE_NOP)
    return true;
1403 1404
  if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
    return empty_body_p (gimple_bind_body (bind_stmt));
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
  return false;
}


/* Return true if BODY contains nothing but empty statements.  */

bool
empty_body_p (gimple_seq body)
{
  gimple_stmt_iterator i;

  if (gimple_seq_empty_p (body))
    return true;
  for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1419 1420
    if (!empty_stmt_p (gsi_stmt (i))
	&& !is_gimple_debug (gsi_stmt (i)))
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
      return false;

  return true;
}


/* Perform a deep copy of sequence SRC and return the result.  */

gimple_seq
gimple_seq_copy (gimple_seq src)
{
  gimple_stmt_iterator gsi;
1433
  gimple_seq new_seq = NULL;
1434
  gimple *stmt;
1435 1436 1437 1438

  for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gimple_copy (gsi_stmt (gsi));
1439
      gimple_seq_add_stmt (&new_seq, stmt);
1440 1441
    }

1442
  return new_seq;
1443 1444 1445 1446
}



1447 1448 1449
/* Return true if calls C1 and C2 are known to go to the same function.  */

bool
1450
gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1451 1452 1453
{
  if (gimple_call_internal_p (c1))
    return (gimple_call_internal_p (c2)
1454
	    && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1455 1456
	    && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
		|| c1 == c2));
1457 1458 1459 1460 1461 1462
  else
    return (gimple_call_fn (c1) == gimple_call_fn (c2)
	    || (gimple_call_fndecl (c1)
		&& gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
}

1463 1464 1465 1466
/* Detect flags from a GIMPLE_CALL.  This is just like
   call_expr_flags, but for gimple tuples.  */

int
1467
gimple_call_flags (const gimple *stmt)
1468
{
1469
  int flags = 0;
1470

1471
  if (gimple_call_internal_p (stmt))
1472
    flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1473
  else
1474 1475 1476 1477 1478 1479
    {
      tree decl = gimple_call_fndecl (stmt);
      if (decl)
	flags = flags_from_decl_or_type (decl);
      flags |= flags_from_decl_or_type (gimple_call_fntype (stmt));
    }
1480

1481
  if (stmt->subcode & GF_CALL_NOTHROW)
1482 1483
    flags |= ECF_NOTHROW;

1484 1485 1486
  if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
    flags |= ECF_BY_DESCRIPTOR;

1487 1488 1489
  return flags;
}

1490 1491
/* Return the "fn spec" string for call STMT.  */

1492
static const_tree
1493
gimple_call_fnspec (const gcall *stmt)
1494 1495 1496
{
  tree type, attr;

1497 1498 1499
  if (gimple_call_internal_p (stmt))
    return internal_fn_fnspec (gimple_call_internal_fn (stmt));

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
  type = gimple_call_fntype (stmt);
  if (!type)
    return NULL_TREE;

  attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
  if (!attr)
    return NULL_TREE;

  return TREE_VALUE (TREE_VALUE (attr));
}

1511 1512 1513
/* Detects argument flags for argument number ARG on call STMT.  */

int
1514
gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1515
{
1516
  const_tree attr = gimple_call_fnspec (stmt);
1517

1518
  if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    return 0;

  switch (TREE_STRING_POINTER (attr)[1 + arg])
    {
    case 'x':
    case 'X':
      return EAF_UNUSED;

    case 'R':
      return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;

    case 'r':
      return EAF_NOCLOBBER | EAF_NOESCAPE;

    case 'W':
      return EAF_DIRECT | EAF_NOESCAPE;

    case 'w':
      return EAF_NOESCAPE;

    case '.':
    default:
      return 0;
    }
}

/* Detects return flags for the call STMT.  */

int
1548
gimple_call_return_flags (const gcall *stmt)
1549
{
1550
  const_tree attr;
1551 1552 1553 1554

  if (gimple_call_flags (stmt) & ECF_MALLOC)
    return ERF_NOALIAS;

1555 1556
  attr = gimple_call_fnspec (stmt);
  if (!attr || TREE_STRING_LENGTH (attr) < 1)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    return 0;

  switch (TREE_STRING_POINTER (attr)[0])
    {
    case '1':
    case '2':
    case '3':
    case '4':
      return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');

    case 'm':
      return ERF_NOALIAS;

    case '.':
    default:
      return 0;
    }
}
1575

1576

1577 1578 1579 1580 1581 1582 1583 1584 1585
/* Return true if call STMT is known to return a non-zero result.  */

bool
gimple_call_nonnull_result_p (gcall *call)
{
  tree fndecl = gimple_call_fndecl (call);
  if (!fndecl)
    return false;
  if (flag_delete_null_pointer_checks && !flag_check_new
1586
      && DECL_IS_OPERATOR_NEW_P (fndecl)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
      && !TREE_NOTHROW (fndecl))
    return true;

  /* References are always non-NULL.  */
  if (flag_delete_null_pointer_checks
      && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
    return true;

  if (flag_delete_null_pointer_checks
      && lookup_attribute ("returns_nonnull",
			   TYPE_ATTRIBUTES (gimple_call_fntype (call))))
    return true;
  return gimple_alloca_call_p (call);
}


/* If CALL returns a non-null result in an argument, return that arg.  */

tree
gimple_call_nonnull_arg (gcall *call)
{
  tree fndecl = gimple_call_fndecl (call);
  if (!fndecl)
    return NULL_TREE;

  unsigned rf = gimple_call_return_flags (call);
  if (rf & ERF_RETURNS_ARG)
    {
      unsigned argnum = rf & ERF_RETURN_ARG_MASK;
      if (argnum < gimple_call_num_args (call))
	{
	  tree arg = gimple_call_arg (call, argnum);
	  if (SSA_VAR_P (arg)
	      && infer_nonnull_range_by_attribute (call, arg))
	    return arg;
	}
    }
  return NULL_TREE;
}


1628 1629 1630
/* Return true if GS is a copy assignment.  */

bool
1631
gimple_assign_copy_p (gimple *gs)
1632
{
1633 1634
  return (gimple_assign_single_p (gs)
	  && is_gimple_val (gimple_op (gs, 1)));
1635 1636 1637 1638 1639 1640
}


/* Return true if GS is a SSA_NAME copy assignment.  */

bool
1641
gimple_assign_ssa_name_copy_p (gimple *gs)
1642
{
1643
  return (gimple_assign_single_p (gs)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	  && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
	  && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
}


/* Return true if GS is an assignment with a unary RHS, but the
   operator has no effect on the assigned value.  The logic is adapted
   from STRIP_NOPS.  This predicate is intended to be used in tuplifying
   instances in which STRIP_NOPS was previously applied to the RHS of
   an assignment.

   NOTE: In the use cases that led to the creation of this function
   and of gimple_assign_single_p, it is typical to test for either
   condition and to proceed in the same manner.  In each case, the
   assigned value is represented by the single RHS operand of the
   assignment.  I suspect there may be cases where gimple_assign_copy_p,
   gimple_assign_single_p, or equivalent logic is used where a similar
   treatment of unary NOPs is appropriate.  */
H.J. Lu committed
1662

1663
bool
1664
gimple_assign_unary_nop_p (gimple *gs)
1665
{
1666
  return (is_gimple_assign (gs)
1667
          && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1668 1669 1670 1671 1672 1673 1674 1675 1676
              || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
          && gimple_assign_rhs1 (gs) != error_mark_node
          && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
              == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
}

/* Set BB to be the basic block holding G.  */

void
1677
gimple_set_bb (gimple *stmt, basic_block bb)
1678
{
1679
  stmt->bb = bb;
1680

1681 1682 1683
  if (gimple_code (stmt) != GIMPLE_LABEL)
    return;

1684 1685
  /* If the statement is a label, add the label to block-to-labels map
     so that we can speed up edge creation for GIMPLE_GOTOs.  */
1686
  if (cfun->cfg)
1687 1688 1689 1690
    {
      tree t;
      int uid;

1691
      t = gimple_label_label (as_a <glabel *> (stmt));
1692 1693 1694
      uid = LABEL_DECL_UID (t);
      if (uid == -1)
	{
1695 1696
	  unsigned old_len =
	    vec_safe_length (label_to_block_map_for_fn (cfun));
1697 1698 1699
	  LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
	  if (old_len <= (unsigned) uid)
	    {
1700
	      unsigned new_len = 3 * uid / 2 + 1;
1701

1702 1703
	      vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
				     new_len);
1704 1705 1706
	    }
	}

1707
      (*label_to_block_map_for_fn (cfun))[uid] = bb;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
    }
}


/* Modify the RHS of the assignment pointed-to by GSI using the
   operands in the expression tree EXPR.

   NOTE: The statement pointed-to by GSI may be reallocated if it
   did not have enough operand slots.

   This function is useful to convert an existing tree expression into
   the flat representation used for the RHS of a GIMPLE assignment.
   It will reallocate memory as needed to expand or shrink the number
   of operand slots needed to represent EXPR.

   NOTE: If you find yourself building a tree and then calling this
   function, you are most certainly doing it the slow way.  It is much
   better to build a new assignment or to use the function
   gimple_assign_set_rhs_with_ops, which does not require an
   expression tree to be built.  */

void
gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
{
  enum tree_code subcode;
1733
  tree op1, op2, op3;
1734

1735
  extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1736
  gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1737 1738 1739 1740
}


/* Set the RHS of assignment statement pointed-to by GSI to CODE with
1741
   operands OP1, OP2 and OP3.
1742 1743 1744 1745 1746

   NOTE: The statement pointed-to by GSI may be reallocated if it
   did not have enough operand slots.  */

void
1747 1748
gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
				tree op1, tree op2, tree op3)
1749 1750
{
  unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1751
  gimple *stmt = gsi_stmt (*gsi);
1752
  gimple *old_stmt = stmt;
1753 1754 1755 1756

  /* If the new CODE needs more operands, allocate a new statement.  */
  if (gimple_num_ops (stmt) < new_rhs_ops + 1)
    {
1757 1758 1759 1760
      tree lhs = gimple_assign_lhs (old_stmt);
      stmt = gimple_alloc (gimple_code (old_stmt), new_rhs_ops + 1);
      memcpy (stmt, old_stmt, gimple_size (gimple_code (old_stmt)));
      gimple_init_singleton (stmt);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

      /* The LHS needs to be reset as this also changes the SSA name
	 on the LHS.  */
      gimple_assign_set_lhs (stmt, lhs);
    }

  gimple_set_num_ops (stmt, new_rhs_ops + 1);
  gimple_set_subcode (stmt, code);
  gimple_assign_set_rhs1 (stmt, op1);
  if (new_rhs_ops > 1)
    gimple_assign_set_rhs2 (stmt, op2);
1772 1773
  if (new_rhs_ops > 2)
    gimple_assign_set_rhs3 (stmt, op3);
1774
  if (stmt != old_stmt)
1775
    gsi_replace (gsi, stmt, false);
1776 1777 1778 1779 1780 1781 1782 1783 1784
}


/* Return the LHS of a statement that performs an assignment,
   either a GIMPLE_ASSIGN or a GIMPLE_CALL.  Returns NULL_TREE
   for a call to a function that returns no value, or for a
   statement other than an assignment or a call.  */

tree
1785
gimple_get_lhs (const gimple *stmt)
1786
{
1787
  enum gimple_code code = gimple_code (stmt);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

  if (code == GIMPLE_ASSIGN)
    return gimple_assign_lhs (stmt);
  else if (code == GIMPLE_CALL)
    return gimple_call_lhs (stmt);
  else
    return NULL_TREE;
}


/* Set the LHS of a statement that performs an assignment,
   either a GIMPLE_ASSIGN or a GIMPLE_CALL.  */

void
1802
gimple_set_lhs (gimple *stmt, tree lhs)
1803
{
1804
  enum gimple_code code = gimple_code (stmt);
1805 1806 1807 1808 1809 1810

  if (code == GIMPLE_ASSIGN)
    gimple_assign_set_lhs (stmt, lhs);
  else if (code == GIMPLE_CALL)
    gimple_call_set_lhs (stmt, lhs);
  else
1811
    gcc_unreachable ();
1812 1813 1814 1815 1816
}


/* Return a deep copy of statement STMT.  All the operands from STMT
   are reallocated and copied using unshare_expr.  The DEF, USE, VDEF
1817 1818
   and VUSE operand arrays are set to empty in the new copy.  The new
   copy isn't part of any sequence.  */
1819

1820 1821
gimple *
gimple_copy (gimple *stmt)
1822 1823 1824
{
  enum gimple_code code = gimple_code (stmt);
  unsigned num_ops = gimple_num_ops (stmt);
1825
  gimple *copy = gimple_alloc (code, num_ops);
1826 1827 1828 1829
  unsigned i;

  /* Shallow copy all the fields from STMT.  */
  memcpy (copy, stmt, gimple_size (code));
1830
  gimple_init_singleton (copy);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

  /* If STMT has sub-statements, deep-copy them as well.  */
  if (gimple_has_substatements (stmt))
    {
      gimple_seq new_seq;
      tree t;

      switch (gimple_code (stmt))
	{
	case GIMPLE_BIND:
1841 1842 1843 1844 1845 1846 1847 1848 1849
	  {
	    gbind *bind_stmt = as_a <gbind *> (stmt);
	    gbind *bind_copy = as_a <gbind *> (copy);
	    new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
	    gimple_bind_set_body (bind_copy, new_seq);
	    gimple_bind_set_vars (bind_copy,
				  unshare_expr (gimple_bind_vars (bind_stmt)));
	    gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
	  }
1850 1851 1852
	  break;

	case GIMPLE_CATCH:
1853 1854 1855 1856 1857 1858 1859 1860
	  {
	    gcatch *catch_stmt = as_a <gcatch *> (stmt);
	    gcatch *catch_copy = as_a <gcatch *> (copy);
	    new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
	    gimple_catch_set_handler (catch_copy, new_seq);
	    t = unshare_expr (gimple_catch_types (catch_stmt));
	    gimple_catch_set_types (catch_copy, t);
	  }
1861 1862 1863
	  break;

	case GIMPLE_EH_FILTER:
1864 1865 1866 1867 1868 1869 1870 1871 1872
	  {
	    geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
	    geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
	    new_seq
	      = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
	    gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
	    t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
	    gimple_eh_filter_set_types (eh_filter_copy, t);
	  }
1873 1874
	  break;

1875
	case GIMPLE_EH_ELSE:
1876 1877 1878 1879 1880 1881 1882 1883
	  {
	    geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
	    geh_else *eh_else_copy = as_a <geh_else *> (copy);
	    new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
	    gimple_eh_else_set_n_body (eh_else_copy, new_seq);
	    new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
	    gimple_eh_else_set_e_body (eh_else_copy, new_seq);
	  }
1884 1885
	  break;

1886
	case GIMPLE_TRY:
1887 1888 1889 1890 1891 1892 1893 1894
	  {
	    gtry *try_stmt = as_a <gtry *> (stmt);
	    gtry *try_copy = as_a <gtry *> (copy);
	    new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
	    gimple_try_set_eval (try_copy, new_seq);
	    new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
	    gimple_try_set_cleanup (try_copy, new_seq);
	  }
1895 1896 1897 1898 1899 1900 1901
	  break;

	case GIMPLE_OMP_FOR:
	  new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
	  gimple_omp_for_set_pre_body (copy, new_seq);
	  t = unshare_expr (gimple_omp_for_clauses (stmt));
	  gimple_omp_for_set_clauses (copy, t);
1902
	  {
1903
	    gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1904 1905
	    omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
	      ( gimple_omp_for_collapse (stmt));
1906
          }
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	  for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
	    {
	      gimple_omp_for_set_cond (copy, i,
				       gimple_omp_for_cond (stmt, i));
	      gimple_omp_for_set_index (copy, i,
					gimple_omp_for_index (stmt, i));
	      t = unshare_expr (gimple_omp_for_initial (stmt, i));
	      gimple_omp_for_set_initial (copy, i, t);
	      t = unshare_expr (gimple_omp_for_final (stmt, i));
	      gimple_omp_for_set_final (copy, i, t);
	      t = unshare_expr (gimple_omp_for_incr (stmt, i));
	      gimple_omp_for_set_incr (copy, i, t);
	    }
	  goto copy_omp_body;

	case GIMPLE_OMP_PARALLEL:
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	  {
	    gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
	    gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
	    t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
	    gimple_omp_parallel_set_clauses (omp_par_copy, t);
	    t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
	    gimple_omp_parallel_set_child_fn (omp_par_copy, t);
	    t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
	    gimple_omp_parallel_set_data_arg (omp_par_copy, t);
	  }
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	  goto copy_omp_body;

	case GIMPLE_OMP_TASK:
	  t = unshare_expr (gimple_omp_task_clauses (stmt));
	  gimple_omp_task_set_clauses (copy, t);
	  t = unshare_expr (gimple_omp_task_child_fn (stmt));
	  gimple_omp_task_set_child_fn (copy, t);
	  t = unshare_expr (gimple_omp_task_data_arg (stmt));
	  gimple_omp_task_set_data_arg (copy, t);
	  t = unshare_expr (gimple_omp_task_copy_fn (stmt));
	  gimple_omp_task_set_copy_fn (copy, t);
	  t = unshare_expr (gimple_omp_task_arg_size (stmt));
	  gimple_omp_task_set_arg_size (copy, t);
	  t = unshare_expr (gimple_omp_task_arg_align (stmt));
	  gimple_omp_task_set_arg_align (copy, t);
	  goto copy_omp_body;

	case GIMPLE_OMP_CRITICAL:
1951 1952
	  t = unshare_expr (gimple_omp_critical_name
				(as_a <gomp_critical *> (stmt)));
1953
	  gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1954 1955 1956 1957 1958 1959 1960 1961 1962
	  t = unshare_expr (gimple_omp_critical_clauses
				(as_a <gomp_critical *> (stmt)));
	  gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
	  goto copy_omp_body;

	case GIMPLE_OMP_ORDERED:
	  t = unshare_expr (gimple_omp_ordered_clauses
				(as_a <gomp_ordered *> (stmt)));
	  gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1963 1964
	  goto copy_omp_body;

1965 1966 1967 1968 1969 1970
	case GIMPLE_OMP_SCAN:
	  t = gimple_omp_scan_clauses (as_a <gomp_scan *> (stmt));
	  t = unshare_expr (t);
	  gimple_omp_scan_set_clauses (as_a <gomp_scan *> (copy), t);
	  goto copy_omp_body;

1971 1972 1973 1974 1975
	case GIMPLE_OMP_TASKGROUP:
	  t = unshare_expr (gimple_omp_taskgroup_clauses (stmt));
	  gimple_omp_taskgroup_set_clauses (copy, t);
	  goto copy_omp_body;

1976 1977 1978 1979 1980
	case GIMPLE_OMP_SECTIONS:
	  t = unshare_expr (gimple_omp_sections_clauses (stmt));
	  gimple_omp_sections_set_clauses (copy, t);
	  t = unshare_expr (gimple_omp_sections_control (stmt));
	  gimple_omp_sections_set_control (copy, t);
1981
	  goto copy_omp_body;
1982 1983

	case GIMPLE_OMP_SINGLE:
1984 1985 1986 1987 1988 1989 1990
	  {
	    gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
	    t = unshare_expr (gimple_omp_single_clauses (stmt));
	    gimple_omp_single_set_clauses (omp_single_copy, t);
	  }
	  goto copy_omp_body;

Jakub Jelinek committed
1991
	case GIMPLE_OMP_TARGET:
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	  {
	    gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
	    gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
	    t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
	    gimple_omp_target_set_clauses (omp_target_copy, t);
	    t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
	    gimple_omp_target_set_data_arg (omp_target_copy, t);
	  }
	  goto copy_omp_body;

Jakub Jelinek committed
2002
	case GIMPLE_OMP_TEAMS:
2003 2004 2005 2006 2007 2008 2009
	  {
	    gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
	    t = unshare_expr (gimple_omp_teams_clauses (stmt));
	    gimple_omp_teams_set_clauses (omp_teams_copy, t);
	  }
	  /* FALLTHRU  */

2010 2011
	case GIMPLE_OMP_SECTION:
	case GIMPLE_OMP_MASTER:
Martin Jambor committed
2012
	case GIMPLE_OMP_GRID_BODY:
2013 2014 2015 2016 2017
	copy_omp_body:
	  new_seq = gimple_seq_copy (gimple_omp_body (stmt));
	  gimple_omp_set_body (copy, new_seq);
	  break;

2018
	case GIMPLE_TRANSACTION:
2019 2020 2021 2022
	  new_seq = gimple_seq_copy (gimple_transaction_body (
				       as_a <gtransaction *> (stmt)));
	  gimple_transaction_set_body (as_a <gtransaction *> (copy),
				       new_seq);
2023 2024
	  break;

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	case GIMPLE_WITH_CLEANUP_EXPR:
	  new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
	  gimple_wce_set_cleanup (copy, new_seq);
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  /* Make copy of operands.  */
2036 2037
  for (i = 0; i < num_ops; i++)
    gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2038

2039 2040 2041 2042 2043
  if (gimple_has_mem_ops (stmt))
    {
      gimple_set_vdef (copy, gimple_vdef (stmt));
      gimple_set_vuse (copy, gimple_vuse (stmt));
    }
2044

2045 2046 2047 2048
  /* Clear out SSA operand vectors on COPY.  */
  if (gimple_has_ops (stmt))
    {
      gimple_set_use_ops (copy, NULL);
2049

2050 2051
      /* SSA operands need to be updated.  */
      gimple_set_modified (copy, true);
2052 2053
    }

2054 2055 2056
  if (gimple_debug_nonbind_marker_p (stmt))
    cfun->debug_marker_count++;

2057 2058 2059
  return copy;
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/* Move OLD_STMT's vuse and vdef operands to NEW_STMT, on the assumption
   that OLD_STMT is about to be removed.  */

void
gimple_move_vops (gimple *new_stmt, gimple *old_stmt)
{
  tree vdef = gimple_vdef (old_stmt);
  gimple_set_vuse (new_stmt, gimple_vuse (old_stmt));
  gimple_set_vdef (new_stmt, vdef);
  if (vdef && TREE_CODE (vdef) == SSA_NAME)
    SSA_NAME_DEF_STMT (vdef) = new_stmt;
}
2072 2073 2074 2075 2076 2077 2078 2079

/* Return true if statement S has side-effects.  We consider a
   statement to have side effects if:

   - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
   - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS.  */

bool
2080
gimple_has_side_effects (const gimple *s)
2081
{
2082 2083 2084
  if (is_gimple_debug (s))
    return false;

2085 2086 2087 2088 2089 2090
  /* We don't have to scan the arguments to check for
     volatile arguments, though, at present, we still
     do a scan to check for TREE_SIDE_EFFECTS.  */
  if (gimple_has_volatile_ops (s))
    return true;

2091
  if (gimple_code (s) == GIMPLE_ASM
2092
      && gimple_asm_volatile_p (as_a <const gasm *> (s)))
2093 2094
    return true;

2095 2096
  if (is_gimple_call (s))
    {
2097
      int flags = gimple_call_flags (s);
2098

2099 2100 2101
      /* An infinite loop is considered a side effect.  */
      if (!(flags & (ECF_CONST | ECF_PURE))
	  || (flags & ECF_LOOPING_CONST_OR_PURE))
2102 2103 2104 2105 2106 2107 2108 2109 2110
	return true;

      return false;
    }

  return false;
}

/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2111 2112 2113
   Return true if S can trap.  When INCLUDE_MEM is true, check whether
   the memory operations could trap.  When INCLUDE_STORES is true and
   S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked.  */
2114

2115
bool
2116
gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2117 2118 2119 2120
{
  tree t, div = NULL_TREE;
  enum tree_code op;

2121 2122 2123
  if (include_mem)
    {
      unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2124

2125 2126 2127 2128
      for (i = start; i < gimple_num_ops (s); i++)
	if (tree_could_trap_p (gimple_op (s, i)))
	  return true;
    }
2129 2130 2131 2132

  switch (gimple_code (s))
    {
    case GIMPLE_ASM:
2133
      return gimple_asm_volatile_p (as_a <gasm *> (s));
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

    case GIMPLE_CALL:
      t = gimple_call_fndecl (s);
      /* Assume that calls to weak functions may trap.  */
      if (!t || !DECL_P (t) || DECL_WEAK (t))
	return true;
      return false;

    case GIMPLE_ASSIGN:
      t = gimple_expr_type (s);
      op = gimple_assign_rhs_code (s);
      if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
	div = gimple_assign_rhs2 (s);
      return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
				      (INTEGRAL_TYPE_P (t)
				       && TYPE_OVERFLOW_TRAPS (t)),
				      div));

2152 2153 2154 2155 2156
    case GIMPLE_COND:
      t = TREE_TYPE (gimple_cond_lhs (s));
      return operation_could_trap_p (gimple_cond_code (s),
				     FLOAT_TYPE_P (t), false, NULL_TREE);

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    default:
      break;
    }

  return false;
}

/* Return true if statement S can trap.  */

bool
2167
gimple_could_trap_p (gimple *s)
2168
{
2169
  return gimple_could_trap_p_1 (s, true, true);
2170 2171 2172 2173 2174
}

/* Return true if RHS of a GIMPLE_ASSIGN S can trap.  */

bool
2175
gimple_assign_rhs_could_trap_p (gimple *s)
2176 2177
{
  gcc_assert (is_gimple_assign (s));
2178
  return gimple_could_trap_p_1 (s, true, false);
2179 2180 2181 2182 2183 2184 2185 2186
}


/* Print debugging information for gimple stmts generated.  */

void
dump_gimple_statistics (void)
{
2187 2188
  int i;
  uint64_t total_tuples = 0, total_bytes = 0;
2189

2190 2191
  if (! GATHER_STATISTICS)
    {
2192
      fprintf (stderr, "No GIMPLE statistics\n");
2193 2194 2195
      return;
    }

2196 2197 2198 2199 2200
  fprintf (stderr, "\nGIMPLE statements\n");
  fprintf (stderr, "Kind                   Stmts      Bytes\n");
  fprintf (stderr, "---------------------------------------\n");
  for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
    {
2201 2202 2203 2204
      fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n",
	       gimple_alloc_kind_names[i],
	       SIZE_AMOUNT (gimple_alloc_counts[i]),
	       SIZE_AMOUNT (gimple_alloc_sizes[i]));
2205 2206 2207 2208
      total_tuples += gimple_alloc_counts[i];
      total_bytes += gimple_alloc_sizes[i];
    }
  fprintf (stderr, "---------------------------------------\n");
2209 2210
  fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n", "Total",
	   SIZE_AMOUNT (total_tuples), SIZE_AMOUNT (total_bytes));
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
  fprintf (stderr, "---------------------------------------\n");
}


/* Return the number of operands needed on the RHS of a GIMPLE
   assignment for an expression with tree code CODE.  */

unsigned
get_gimple_rhs_num_ops (enum tree_code code)
{
  enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);

  if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
    return 1;
  else if (rhs_class == GIMPLE_BINARY_RHS)
    return 2;
2227 2228
  else if (rhs_class == GIMPLE_TERNARY_RHS)
    return 3;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
  else
    gcc_unreachable ();
}

#define DEFTREECODE(SYM, STRING, TYPE, NARGS)   			    \
  (unsigned char)							    \
  ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS				    \
   : ((TYPE) == tcc_binary						    \
      || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS   		    \
   : ((TYPE) == tcc_constant						    \
      || (TYPE) == tcc_declaration					    \
      || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS			    \
   : ((SYM) == TRUTH_AND_EXPR						    \
      || (SYM) == TRUTH_OR_EXPR						    \
      || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS			    \
   : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS				    \
2245 2246
   : ((SYM) == COND_EXPR						    \
      || (SYM) == WIDEN_MULT_PLUS_EXPR					    \
2247
      || (SYM) == WIDEN_MULT_MINUS_EXPR					    \
2248
      || (SYM) == DOT_PROD_EXPR						    \
2249
      || (SYM) == SAD_EXPR						    \
2250
      || (SYM) == REALIGN_LOAD_EXPR					    \
2251
      || (SYM) == VEC_COND_EXPR						    \
2252
      || (SYM) == VEC_PERM_EXPR                                             \
2253
      || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS			    \
2254
   : ((SYM) == CONSTRUCTOR						    \
2255 2256 2257 2258
      || (SYM) == OBJ_TYPE_REF						    \
      || (SYM) == ASSERT_EXPR						    \
      || (SYM) == ADDR_EXPR						    \
      || (SYM) == WITH_SIZE_EXPR					    \
2259
      || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS				    \
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
   : GIMPLE_INVALID_RHS),
#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,

const unsigned char gimple_rhs_class_table[] = {
#include "all-tree.def"
};

#undef DEFTREECODE
#undef END_OF_BASE_TREE_CODES

/* Canonicalize a tree T for use in a COND_EXPR as conditional.  Returns
   a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
   we failed to create one.  */

tree
canonicalize_cond_expr_cond (tree t)
{
2277 2278
  /* Strip conversions around boolean operations.  */
  if (CONVERT_EXPR_P (t)
2279 2280 2281
      && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
          || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
	     == BOOLEAN_TYPE))
2282 2283
    t = TREE_OPERAND (t, 0);

2284
  /* For !x use x == 0.  */
2285
  if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    {
      tree top0 = TREE_OPERAND (t, 0);
      t = build2 (EQ_EXPR, TREE_TYPE (t),
		  top0, build_int_cst (TREE_TYPE (top0), 0));
    }
  /* For cmp ? 1 : 0 use cmp.  */
  else if (TREE_CODE (t) == COND_EXPR
	   && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
	   && integer_onep (TREE_OPERAND (t, 1))
	   && integer_zerop (TREE_OPERAND (t, 2)))
    {
      tree top0 = TREE_OPERAND (t, 0);
      t = build2 (TREE_CODE (top0), TREE_TYPE (t),
		  TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
    }
2301 2302 2303 2304 2305
  /* For x ^ y use x != y.  */
  else if (TREE_CODE (t) == BIT_XOR_EXPR)
    t = build2 (NE_EXPR, TREE_TYPE (t),
		TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
  
2306 2307 2308 2309 2310 2311
  if (is_gimple_condexpr (t))
    return t;

  return NULL_TREE;
}

2312 2313 2314
/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
   the positions marked by the set ARGS_TO_SKIP.  */

2315 2316
gcall *
gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2317 2318 2319
{
  int i;
  int nargs = gimple_call_num_args (stmt);
Trevor Saunders committed
2320
  auto_vec<tree> vargs (nargs);
2321
  gcall *new_stmt;
2322 2323 2324

  for (i = 0; i < nargs; i++)
    if (!bitmap_bit_p (args_to_skip, i))
2325
      vargs.quick_push (gimple_call_arg (stmt, i));
2326

2327 2328 2329 2330 2331
  if (gimple_call_internal_p (stmt))
    new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
					       vargs);
  else
    new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
Trevor Saunders committed
2332

2333 2334 2335
  if (gimple_call_lhs (stmt))
    gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));

2336 2337 2338
  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
  gimple_set_vdef (new_stmt, gimple_vdef (stmt));

2339 2340
  if (gimple_has_location (stmt))
    gimple_set_location (new_stmt, gimple_location (stmt));
2341
  gimple_call_copy_flags (new_stmt, stmt);
2342
  gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2343 2344 2345

  gimple_set_modified (new_stmt, true);

2346 2347 2348
  return new_stmt;
}

2349

2350

2351 2352
/* Return true if the field decls F1 and F2 are at the same offset.

2353
   This is intended to be used on GIMPLE types only.  */
2354

2355
bool
2356
gimple_compare_field_offset (tree f1, tree f2)
2357 2358
{
  if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    {
      tree offset1 = DECL_FIELD_OFFSET (f1);
      tree offset2 = DECL_FIELD_OFFSET (f2);
      return ((offset1 == offset2
	       /* Once gimplification is done, self-referential offsets are
		  instantiated as operand #2 of the COMPONENT_REF built for
		  each access and reset.  Therefore, they are not relevant
		  anymore and fields are interchangeable provided that they
		  represent the same access.  */
	       || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
		   && TREE_CODE (offset2) == PLACEHOLDER_EXPR
		   && (DECL_SIZE (f1) == DECL_SIZE (f2)
		       || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
			   && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
		       || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
		   && DECL_ALIGN (f1) == DECL_ALIGN (f2))
	       || operand_equal_p (offset1, offset2, 0))
	      && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
				     DECL_FIELD_BIT_OFFSET (f2)));
    }
2379 2380 2381 2382

  /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
     should be, so handle differing ones specially by decomposing
     the offset into a byte and bit offset manually.  */
2383 2384
  if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
      && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
    {
      unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
      unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
      bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
      byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
		      + bit_offset1 / BITS_PER_UNIT);
      bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
      byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
		      + bit_offset2 / BITS_PER_UNIT);
      if (byte_offset1 != byte_offset2)
	return false;
      return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
    }

  return false;
}


/* Return a type the same as TYPE except unsigned or
   signed according to UNSIGNEDP.  */

static tree
gimple_signed_or_unsigned_type (bool unsignedp, tree type)
{
  tree type1;
2410
  int i;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

  type1 = TYPE_MAIN_VARIANT (type);
  if (type1 == signed_char_type_node
      || type1 == char_type_node
      || type1 == unsigned_char_type_node)
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (type1 == integer_type_node || type1 == unsigned_type_node)
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (type1 == long_long_integer_type_node
      || type1 == long_long_unsigned_type_node)
    return unsignedp
           ? long_long_unsigned_type_node
	   : long_long_integer_type_node;
2428 2429 2430 2431 2432 2433 2434 2435 2436

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& (type1 == int_n_trees[i].unsigned_type
	    || type1 == int_n_trees[i].signed_type))
	return unsignedp
	  ? int_n_trees[i].unsigned_type
	  : int_n_trees[i].signed_type;

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
#if HOST_BITS_PER_WIDE_INT >= 64
  if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
  if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
  if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
  if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
  if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;

#define GIMPLE_FIXED_TYPES(NAME)	    \
  if (type1 == short_ ## NAME ## _type_node \
      || type1 == unsigned_short_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_short_ ## NAME ## _type_node \
		     : short_ ## NAME ## _type_node; \
  if (type1 == NAME ## _type_node \
      || type1 == unsigned_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_ ## NAME ## _type_node \
		     : NAME ## _type_node; \
  if (type1 == long_ ## NAME ## _type_node \
      || type1 == unsigned_long_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_long_ ## NAME ## _type_node \
		     : long_ ## NAME ## _type_node; \
  if (type1 == long_long_ ## NAME ## _type_node \
      || type1 == unsigned_long_long_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
		     : long_long_ ## NAME ## _type_node;

#define GIMPLE_FIXED_MODE_TYPES(NAME) \
  if (type1 == NAME ## _type_node \
      || type1 == u ## NAME ## _type_node) \
    return unsignedp ? u ## NAME ## _type_node \
		     : NAME ## _type_node;

#define GIMPLE_FIXED_TYPES_SAT(NAME) \
  if (type1 == sat_ ## short_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
		     : sat_ ## short_ ## NAME ## _type_node; \
  if (type1 == sat_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
		     : sat_ ## NAME ## _type_node; \
  if (type1 == sat_ ## long_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
		     : sat_ ## long_ ## NAME ## _type_node; \
  if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
		     : sat_ ## long_long_ ## NAME ## _type_node;

#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME)	\
  if (type1 == sat_ ## NAME ## _type_node \
      || type1 == sat_ ## u ## NAME ## _type_node) \
    return unsignedp ? sat_ ## u ## NAME ## _type_node \
		     : sat_ ## NAME ## _type_node;

  GIMPLE_FIXED_TYPES (fract);
  GIMPLE_FIXED_TYPES_SAT (fract);
  GIMPLE_FIXED_TYPES (accum);
  GIMPLE_FIXED_TYPES_SAT (accum);

  GIMPLE_FIXED_MODE_TYPES (qq);
  GIMPLE_FIXED_MODE_TYPES (hq);
  GIMPLE_FIXED_MODE_TYPES (sq);
  GIMPLE_FIXED_MODE_TYPES (dq);
  GIMPLE_FIXED_MODE_TYPES (tq);
  GIMPLE_FIXED_MODE_TYPES_SAT (qq);
  GIMPLE_FIXED_MODE_TYPES_SAT (hq);
  GIMPLE_FIXED_MODE_TYPES_SAT (sq);
  GIMPLE_FIXED_MODE_TYPES_SAT (dq);
  GIMPLE_FIXED_MODE_TYPES_SAT (tq);
  GIMPLE_FIXED_MODE_TYPES (ha);
  GIMPLE_FIXED_MODE_TYPES (sa);
  GIMPLE_FIXED_MODE_TYPES (da);
  GIMPLE_FIXED_MODE_TYPES (ta);
  GIMPLE_FIXED_MODE_TYPES_SAT (ha);
  GIMPLE_FIXED_MODE_TYPES_SAT (sa);
  GIMPLE_FIXED_MODE_TYPES_SAT (da);
  GIMPLE_FIXED_MODE_TYPES_SAT (ta);

  /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
     the precision; they have precision set to match their range, but
     may use a wider mode to match an ABI.  If we change modes, we may
     wind up with bad conversions.  For INTEGER_TYPEs in C, must check
     the precision as well, so as to yield correct results for
     bit-field types.  C++ does not have these separate bit-field
     types, and producing a signed or unsigned variant of an
     ENUMERAL_TYPE may cause other problems as well.  */
  if (!INTEGRAL_TYPE_P (type)
      || TYPE_UNSIGNED (type) == unsignedp)
    return type;

#define TYPE_OK(node)							    \
  (TYPE_MODE (type) == TYPE_MODE (node)					    \
   && TYPE_PRECISION (type) == TYPE_PRECISION (node))
  if (TYPE_OK (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (TYPE_OK (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (TYPE_OK (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (TYPE_OK (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (TYPE_OK (long_long_integer_type_node))
    return (unsignedp
	    ? long_long_unsigned_type_node
	    : long_long_integer_type_node);
2549 2550 2551 2552 2553 2554 2555 2556

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& TYPE_MODE (type) == int_n_data[i].m
	&& TYPE_PRECISION (type) == int_n_data[i].bitsize)
	return unsignedp
	  ? int_n_trees[i].unsigned_type
	  : int_n_trees[i].signed_type;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

#if HOST_BITS_PER_WIDE_INT >= 64
  if (TYPE_OK (intTI_type_node))
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
  if (TYPE_OK (intDI_type_node))
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
  if (TYPE_OK (intSI_type_node))
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
  if (TYPE_OK (intHI_type_node))
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
  if (TYPE_OK (intQI_type_node))
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;

#undef GIMPLE_FIXED_TYPES
#undef GIMPLE_FIXED_MODE_TYPES
#undef GIMPLE_FIXED_TYPES_SAT
#undef GIMPLE_FIXED_MODE_TYPES_SAT
#undef TYPE_OK

  return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
}


/* Return an unsigned type the same as TYPE in other respects.  */

tree
gimple_unsigned_type (tree type)
{
  return gimple_signed_or_unsigned_type (true, type);
}


/* Return a signed type the same as TYPE in other respects.  */

tree
gimple_signed_type (tree type)
{
  return gimple_signed_or_unsigned_type (false, type);
}


/* Return the typed-based alias set for T, which may be an expression
   or a type.  Return -1 if we don't do anything special.  */

alias_set_type
gimple_get_alias_set (tree t)
{
  /* That's all the expressions we handle specially.  */
  if (!TYPE_P (t))
    return -1;

  /* For convenience, follow the C standard when dealing with
     character types.  Any object may be accessed via an lvalue that
     has character type.  */
  if (t == char_type_node
      || t == signed_char_type_node
      || t == unsigned_char_type_node)
    return 0;

  /* Allow aliasing between signed and unsigned variants of the same
     type.  We treat the signed variant as canonical.  */
  if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
    {
      tree t1 = gimple_signed_type (t);

      /* t1 == t can happen for boolean nodes which are always unsigned.  */
      if (t1 != t)
	return get_alias_set (t1);
    }

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
  /* Allow aliasing between enumeral types and the underlying
     integer type.  This is required for C since those are
     compatible types.  */
  else if (TREE_CODE (t) == ENUMERAL_TYPE)
    {
      tree t1 = lang_hooks.types.type_for_size (tree_to_uhwi (TYPE_SIZE (t)),
						false /* short-cut above */);
      return get_alias_set (t1);
    }

2638 2639 2640 2641
  return -1;
}


2642 2643 2644
/* Helper for gimple_ior_addresses_taken_1.  */

static bool
2645
gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2646 2647
{
  bitmap addresses_taken = (bitmap)data;
2648 2649 2650
  addr = get_base_address (addr);
  if (addr
      && DECL_P (addr))
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    {
      bitmap_set_bit (addresses_taken, DECL_UID (addr));
      return true;
    }
  return false;
}

/* Set the bit for the uid of all decls that have their address taken
   in STMT in the ADDRESSES_TAKEN bitmap.  Returns true if there
   were any in this stmt.  */

bool
2663
gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2664 2665 2666 2667 2668
{
  return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
					gimple_ior_addresses_taken_1);
}

Diego Novillo committed
2669

2670 2671
/* Return true when STMTs arguments and return value match those of FNDECL,
   a decl of a builtin function.  */
2672

2673
bool
2674
gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2675
{
2676 2677 2678 2679
  gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);

  tree ret = gimple_call_lhs (stmt);
  if (ret
2680 2681
      && !useless_type_conversion_p (TREE_TYPE (ret),
				     TREE_TYPE (TREE_TYPE (fndecl))))
2682 2683
    return false;

2684 2685 2686 2687 2688 2689 2690 2691
  tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  unsigned nargs = gimple_call_num_args (stmt);
  for (unsigned i = 0; i < nargs; ++i)
    {
      /* Variadic args follow.  */
      if (!targs)
	return true;
      tree arg = gimple_call_arg (stmt, i);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
      tree type = TREE_VALUE (targs);
      if (!useless_type_conversion_p (type, TREE_TYPE (arg))
	  /* char/short integral arguments are promoted to int
	     by several frontends if targetm.calls.promote_prototypes
	     is true.  Allow such promotion too.  */
	  && !(INTEGRAL_TYPE_P (type)
	       && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
	       && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
	       && useless_type_conversion_p (integer_type_node,
					     TREE_TYPE (arg))))
2702 2703 2704 2705 2706 2707 2708 2709
	return false;
      targs = TREE_CHAIN (targs);
    }
  if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
    return false;
  return true;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/* Return true when STMT is operator delete call.  */

bool
gimple_call_operator_delete_p (const gcall *stmt)
{
  tree fndecl;

  if ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE)
    return DECL_IS_OPERATOR_DELETE_P (fndecl);
  return false;
}

2722 2723 2724
/* Return true when STMT is builtins call.  */

bool
2725
gimple_call_builtin_p (const gimple *stmt)
2726 2727 2728 2729 2730 2731 2732 2733 2734
{
  tree fndecl;
  if (is_gimple_call (stmt)
      && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
      && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
    return gimple_builtin_call_types_compatible_p (stmt, fndecl);
  return false;
}

2735 2736 2737
/* Return true when STMT is builtins call to CLASS.  */

bool
2738
gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2739 2740 2741 2742 2743
{
  tree fndecl;
  if (is_gimple_call (stmt)
      && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
      && DECL_BUILT_IN_CLASS (fndecl) == klass)
2744
    return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2745 2746 2747 2748
  return false;
}

/* Return true when STMT is builtins call to CODE of CLASS.  */
2749 2750

bool
2751
gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2752 2753
{
  tree fndecl;
2754 2755
  if (is_gimple_call (stmt)
      && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2756
      && fndecl_built_in_p (fndecl, code))
2757
    return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2758
  return false;
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/* If CALL is a call to a combined_fn (i.e. an internal function or
   a normal built-in function), return its code, otherwise return
   CFN_LAST.  */

combined_fn
gimple_call_combined_fn (const gimple *stmt)
{
  if (const gcall *call = dyn_cast <const gcall *> (stmt))
    {
      if (gimple_call_internal_p (call))
	return as_combined_fn (gimple_call_internal_fn (call));

      tree fndecl = gimple_call_fndecl (stmt);
      if (fndecl
2775
	  && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2776 2777 2778 2779 2780 2781
	  && gimple_builtin_call_types_compatible_p (stmt, fndecl))
	return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
    }
  return CFN_LAST;
}

2782 2783 2784 2785
/* Return true if STMT clobbers memory.  STMT is required to be a
   GIMPLE_ASM.  */

bool
2786
gimple_asm_clobbers_memory_p (const gasm *stmt)
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
{
  unsigned i;

  for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
    {
      tree op = gimple_asm_clobber_op (stmt, i);
      if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
	return true;
    }

2797 2798 2799 2800
  /* Non-empty basic ASM implicitly clobbers memory.  */
  if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
    return true;

2801 2802
  return false;
}
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */

void
dump_decl_set (FILE *file, bitmap set)
{
  if (set)
    {
      bitmap_iterator bi;
      unsigned i;

      fprintf (file, "{ ");

      EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
	{
	  fprintf (file, "D.%u", i);
	  fprintf (file, " ");
	}

      fprintf (file, "}");
    }
  else
    fprintf (file, "NIL");
}
Andrew MacLeod committed
2827

2828 2829 2830
/* Return true when CALL is a call stmt that definitely doesn't
   free any memory or makes it unavailable otherwise.  */
bool
2831
nonfreeing_call_p (gimple *call)
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
{
  if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
      && gimple_call_flags (call) & ECF_LEAF)
    switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
      {
	/* Just in case these become ECF_LEAF in the future.  */
	case BUILT_IN_FREE:
	case BUILT_IN_TM_FREE:
	case BUILT_IN_REALLOC:
	case BUILT_IN_STACK_RESTORE:
	  return false;
	default:
	  return true;
      }
2846 2847 2848 2849 2850
  else if (gimple_call_internal_p (call))
    switch (gimple_call_internal_fn (call))
      {
      case IFN_ABNORMAL_DISPATCHER:
        return true;
2851
      case IFN_ASAN_MARK:
2852
	return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2853 2854 2855 2856 2857
      default:
	if (gimple_call_flags (call) & ECF_LEAF)
	  return true;
	return false;
      }
2858

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
  tree fndecl = gimple_call_fndecl (call);
  if (!fndecl)
    return false;
  struct cgraph_node *n = cgraph_node::get (fndecl);
  if (!n)
    return false;
  enum availability availability;
  n = n->function_symbol (&availability);
  if (!n || availability <= AVAIL_INTERPOSABLE)
    return false;
  return n->nonfreeing_fn;
2870
}
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
/* Return true when CALL is a call stmt that definitely need not
   be considered to be a memory barrier.  */
bool
nonbarrier_call_p (gimple *call)
{
  if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
    return true;
  /* Should extend this to have a nonbarrier_fn flag, just as above in
     the nonfreeing case.  */
  return false;
}

2884 2885 2886 2887 2888 2889 2890 2891
/* Callback for walk_stmt_load_store_ops.
 
   Return TRUE if OP will dereference the tree stored in DATA, FALSE
   otherwise.

   This routine only makes a superficial check for a dereference.  Thus
   it must only be used if it is safe to return a false negative.  */
static bool
2892
check_loadstore (gimple *, tree op, tree, void *data)
2893
{
2894 2895 2896 2897 2898 2899 2900 2901 2902
  if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
    {
      /* Some address spaces may legitimately dereference zero.  */
      addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
      if (targetm.addr_space.zero_address_valid (as))
	return false;

      return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
    }
2903 2904 2905
  return false;
}

2906

2907 2908 2909
/* Return true if OP can be inferred to be non-NULL after STMT executes,
   either by using a pointer dereference or attributes.  */
bool
2910
infer_nonnull_range (gimple *stmt, tree op)
2911 2912 2913 2914
{
  return infer_nonnull_range_by_dereference (stmt, op)
    || infer_nonnull_range_by_attribute (stmt, op);
}
2915

2916 2917
/* Return true if OP can be inferred to be non-NULL after STMT
   executes by using a pointer dereference.  */
2918
bool
2919
infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2920 2921 2922 2923 2924 2925 2926 2927
{
  /* We can only assume that a pointer dereference will yield
     non-NULL if -fdelete-null-pointer-checks is enabled.  */
  if (!flag_delete_null_pointer_checks
      || !POINTER_TYPE_P (TREE_TYPE (op))
      || gimple_code (stmt) == GIMPLE_ASM)
    return false;

2928 2929
  if (walk_stmt_load_store_ops (stmt, (void *)op,
				check_loadstore, check_loadstore))
2930 2931
    return true;

2932 2933 2934 2935 2936 2937
  return false;
}

/* Return true if OP can be inferred to be a non-NULL after STMT
   executes by using attributes.  */
bool
2938
infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2939 2940 2941 2942 2943 2944 2945 2946 2947
{
  /* We can only assume that a pointer dereference will yield
     non-NULL if -fdelete-null-pointer-checks is enabled.  */
  if (!flag_delete_null_pointer_checks
      || !POINTER_TYPE_P (TREE_TYPE (op))
      || gimple_code (stmt) == GIMPLE_ASM)
    return false;

  if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    {
      tree fntype = gimple_call_fntype (stmt);
      tree attrs = TYPE_ATTRIBUTES (fntype);
      for (; attrs; attrs = TREE_CHAIN (attrs))
	{
	  attrs = lookup_attribute ("nonnull", attrs);

	  /* If "nonnull" wasn't specified, we know nothing about
	     the argument.  */
	  if (attrs == NULL_TREE)
	    return false;

	  /* If "nonnull" applies to all the arguments, then ARG
	     is non-null if it's in the argument list.  */
	  if (TREE_VALUE (attrs) == NULL_TREE)
	    {
	      for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
		{
Patrick Palka committed
2966 2967
		  if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
		      && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2968 2969 2970 2971 2972 2973 2974 2975
		    return true;
		}
	      return false;
	    }

	  /* Now see if op appears in the nonnull list.  */
	  for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
	    {
2976 2977 2978 2979 2980 2981 2982
	      unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
	      if (idx < gimple_call_num_args (stmt))
		{
		  tree arg = gimple_call_arg (stmt, idx);
		  if (operand_equal_p (op, arg, 0))
		    return true;
		}
2983 2984 2985 2986 2987 2988
	    }
	}
    }

  /* If this function is marked as returning non-null, then we can
     infer OP is non-null if it is used in the return statement.  */
2989 2990 2991 2992 2993 2994
  if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
    if (gimple_return_retval (return_stmt)
	&& operand_equal_p (gimple_return_retval (return_stmt), op, 0)
	&& lookup_attribute ("returns_nonnull",
			     TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
      return true;
2995 2996 2997

  return false;
}
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

/* Compare two case labels.  Because the front end should already have
   made sure that case ranges do not overlap, it is enough to only compare
   the CASE_LOW values of each case label.  */

static int
compare_case_labels (const void *p1, const void *p2)
{
  const_tree const case1 = *(const_tree const*)p1;
  const_tree const case2 = *(const_tree const*)p2;

  /* The 'default' case label always goes first.  */
  if (!CASE_LOW (case1))
    return -1;
  else if (!CASE_LOW (case2))
    return 1;
  else
    return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
}

/* Sort the case labels in LABEL_VEC in place in ascending order.  */

void
sort_case_labels (vec<tree> label_vec)
{
  label_vec.qsort (compare_case_labels);
}

/* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.

   LABELS is a vector that contains all case labels to look at.

   INDEX_TYPE is the type of the switch index expression.  Case labels
   in LABELS are discarded if their values are not in the value range
   covered by INDEX_TYPE.  The remaining case label values are folded
   to INDEX_TYPE.

   If a default case exists in LABELS, it is removed from LABELS and
   returned in DEFAULT_CASEP.  If no default case exists, but the
   case labels already cover the whole range of INDEX_TYPE, a default
   case is returned pointing to one of the existing case labels.
   Otherwise DEFAULT_CASEP is set to NULL_TREE.

   DEFAULT_CASEP may be NULL, in which case the above comment doesn't
   apply and no action is taken regardless of whether a default case is
   found or not.  */

void
preprocess_case_label_vec_for_gimple (vec<tree> labels,
				      tree index_type,
				      tree *default_casep)
{
  tree min_value, max_value;
  tree default_case = NULL_TREE;
  size_t i, len;

  i = 0;
  min_value = TYPE_MIN_VALUE (index_type);
  max_value = TYPE_MAX_VALUE (index_type);
  while (i < labels.length ())
    {
      tree elt = labels[i];
      tree low = CASE_LOW (elt);
      tree high = CASE_HIGH (elt);
      bool remove_element = FALSE;

      if (low)
	{
	  gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
	  gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);

	  /* This is a non-default case label, i.e. it has a value.

	     See if the case label is reachable within the range of
	     the index type.  Remove out-of-range case values.  Turn
	     case ranges into a canonical form (high > low strictly)
	     and convert the case label values to the index type.

	     NB: The type of gimple_switch_index() may be the promoted
	     type, but the case labels retain the original type.  */

	  if (high)
	    {
	      /* This is a case range.  Discard empty ranges.
		 If the bounds or the range are equal, turn this
		 into a simple (one-value) case.  */
	      int cmp = tree_int_cst_compare (high, low);
	      if (cmp < 0)
		remove_element = TRUE;
	      else if (cmp == 0)
		high = NULL_TREE;
	    }

	  if (! high)
	    {
	      /* If the simple case value is unreachable, ignore it.  */
	      if ((TREE_CODE (min_value) == INTEGER_CST
		   && tree_int_cst_compare (low, min_value) < 0)
		  || (TREE_CODE (max_value) == INTEGER_CST
		      && tree_int_cst_compare (low, max_value) > 0))
		remove_element = TRUE;
	      else
		low = fold_convert (index_type, low);
	    }
	  else
	    {
	      /* If the entire case range is unreachable, ignore it.  */
	      if ((TREE_CODE (min_value) == INTEGER_CST
		   && tree_int_cst_compare (high, min_value) < 0)
		  || (TREE_CODE (max_value) == INTEGER_CST
		      && tree_int_cst_compare (low, max_value) > 0))
		remove_element = TRUE;
	      else
		{
		  /* If the lower bound is less than the index type's
		     minimum value, truncate the range bounds.  */
		  if (TREE_CODE (min_value) == INTEGER_CST
		      && tree_int_cst_compare (low, min_value) < 0)
		    low = min_value;
		  low = fold_convert (index_type, low);

		  /* If the upper bound is greater than the index type's
		     maximum value, truncate the range bounds.  */
		  if (TREE_CODE (max_value) == INTEGER_CST
		      && tree_int_cst_compare (high, max_value) > 0)
		    high = max_value;
		  high = fold_convert (index_type, high);

		  /* We may have folded a case range to a one-value case.  */
		  if (tree_int_cst_equal (low, high))
		    high = NULL_TREE;
		}
	    }

	  CASE_LOW (elt) = low;
	  CASE_HIGH (elt) = high;
	}
      else
	{
	  gcc_assert (!default_case);
	  default_case = elt;
	  /* The default case must be passed separately to the
	     gimple_build_switch routine.  But if DEFAULT_CASEP
	     is NULL, we do not remove the default case (it would
	     be completely lost).  */
	  if (default_casep)
	    remove_element = TRUE;
	}

      if (remove_element)
	labels.ordered_remove (i);
      else
	i++;
    }
  len = i;

  if (!labels.is_empty ())
    sort_case_labels (labels);

  if (default_casep && !default_case)
    {
      /* If the switch has no default label, add one, so that we jump
	 around the switch body.  If the labels already cover the whole
	 range of the switch index_type, add the default label pointing
	 to one of the existing labels.  */
      if (len
	  && TYPE_MIN_VALUE (index_type)
	  && TYPE_MAX_VALUE (index_type)
	  && tree_int_cst_equal (CASE_LOW (labels[0]),
				 TYPE_MIN_VALUE (index_type)))
	{
	  tree low, high = CASE_HIGH (labels[len - 1]);
	  if (!high)
	    high = CASE_LOW (labels[len - 1]);
	  if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
	    {
3174
	      tree widest_label = labels[0];
3175 3176 3177 3178 3179 3180
	      for (i = 1; i < len; i++)
		{
		  high = CASE_LOW (labels[i]);
		  low = CASE_HIGH (labels[i - 1]);
		  if (!low)
		    low = CASE_LOW (labels[i - 1]);
3181 3182 3183

		  if (CASE_HIGH (labels[i]) != NULL_TREE
		      && (CASE_HIGH (widest_label) == NULL_TREE
3184 3185 3186 3187 3188
			  || (wi::gtu_p
			      (wi::to_wide (CASE_HIGH (labels[i]))
			       - wi::to_wide (CASE_LOW (labels[i])),
			       wi::to_wide (CASE_HIGH (widest_label))
			       - wi::to_wide (CASE_LOW (widest_label))))))
3189 3190
		    widest_label = labels[i];

3191
		  if (wi::to_wide (low) + 1 != wi::to_wide (high))
3192 3193 3194 3195
		    break;
		}
	      if (i == len)
		{
3196 3197 3198
		  /* Designate the label with the widest range to be the
		     default label.  */
		  tree label = CASE_LABEL (widest_label);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		  default_case = build_case_label (NULL_TREE, NULL_TREE,
						   label);
		}
	    }
	}
    }

  if (default_casep)
    *default_casep = default_case;
}
3209 3210 3211 3212 3213 3214 3215 3216 3217

/* Set the location of all statements in SEQ to LOC.  */

void
gimple_seq_set_location (gimple_seq seq, location_t loc)
{
  for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
    gimple_set_location (gsi_stmt (i), loc);
}
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

/* Release SSA_NAMEs in SEQ as well as the GIMPLE statements.  */

void
gimple_seq_discard (gimple_seq seq)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
    {
3228
      gimple *stmt = gsi_stmt (gsi);
3229 3230 3231 3232 3233
      gsi_remove (&gsi, true);
      release_defs (stmt);
      ggc_free (stmt);
    }
}
3234 3235 3236

/* See if STMT now calls function that takes no parameters and if so, drop
   call arguments.  This is used when devirtualization machinery redirects
3237
   to __builtin_unreachable or __cxa_pure_virtual.  */
3238 3239

void
3240
maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
{
  tree decl = gimple_call_fndecl (stmt);
  if (TYPE_ARG_TYPES (TREE_TYPE (decl))
      && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
      && gimple_call_num_args (stmt))
    {
      gimple_set_num_ops (stmt, 3);
      update_stmt_fn (fn, stmt);
    }
}
David Malcolm committed
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
/* Return false if STMT will likely expand to real function call.  */

bool
gimple_inexpensive_call_p (gcall *stmt)
{
  if (gimple_call_internal_p (stmt))
    return true;
  tree decl = gimple_call_fndecl (stmt);
  if (decl && is_inexpensive_builtin (decl))
    return true;
  return false;
}

David Malcolm committed
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
#if CHECKING_P

namespace selftest {

/* Selftests for core gimple structures.  */

/* Verify that STMT is pretty-printed as EXPECTED.
   Helper function for selftests.  */

static void
verify_gimple_pp (const char *expected, gimple *stmt)
{
  pretty_printer pp;
3278
  pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
David Malcolm committed
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
  ASSERT_STREQ (expected, pp_formatted_text (&pp));
}

/* Build a GIMPLE_ASSIGN equivalent to
     tmp = 5;
   and verify various properties of it.  */

static void
test_assign_single ()
{
  tree type = integer_type_node;
  tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
			 get_identifier ("tmp"),
			 type);
  tree rhs = build_int_cst (type, 5);
  gassign *stmt = gimple_build_assign (lhs, rhs);
  verify_gimple_pp ("tmp = 5;", stmt);

  ASSERT_TRUE (is_gimple_assign (stmt));
  ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
  ASSERT_EQ (lhs, gimple_get_lhs (stmt));
  ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
  ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
  ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
  ASSERT_TRUE (gimple_assign_single_p (stmt));
  ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
}

/* Build a GIMPLE_ASSIGN equivalent to
     tmp = a * b;
   and verify various properties of it.  */

static void
test_assign_binop ()
{
  tree type = integer_type_node;
  tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
			 get_identifier ("tmp"),
			 type);
  tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
		       get_identifier ("a"),
		       type);
  tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
		       get_identifier ("b"),
		       type);
  gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
  verify_gimple_pp ("tmp = a * b;", stmt);

  ASSERT_TRUE (is_gimple_assign (stmt));
  ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
  ASSERT_EQ (lhs, gimple_get_lhs (stmt));
  ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
  ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
  ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
  ASSERT_FALSE (gimple_assign_single_p (stmt));
  ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
}

/* Build a GIMPLE_NOP and verify various properties of it.  */

static void
test_nop_stmt ()
{
  gimple *stmt = gimple_build_nop ();
  verify_gimple_pp ("GIMPLE_NOP", stmt);
  ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
  ASSERT_EQ (NULL, gimple_get_lhs (stmt));
  ASSERT_FALSE (gimple_assign_single_p (stmt));
}

/* Build a GIMPLE_RETURN equivalent to
     return 7;
   and verify various properties of it.  */

static void
test_return_stmt ()
{
  tree type = integer_type_node;
  tree val = build_int_cst (type, 7);
  greturn *stmt = gimple_build_return (val);
  verify_gimple_pp ("return 7;", stmt);

  ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
  ASSERT_EQ (NULL, gimple_get_lhs (stmt));
  ASSERT_EQ (val, gimple_return_retval (stmt));
  ASSERT_FALSE (gimple_assign_single_p (stmt));
}

/* Build a GIMPLE_RETURN equivalent to
     return;
   and verify various properties of it.  */

static void
test_return_without_value ()
{
  greturn *stmt = gimple_build_return (NULL);
  verify_gimple_pp ("return;", stmt);

  ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
  ASSERT_EQ (NULL, gimple_get_lhs (stmt));
  ASSERT_EQ (NULL, gimple_return_retval (stmt));
  ASSERT_FALSE (gimple_assign_single_p (stmt));
}

/* Run all of the selftests within this file.  */

void
gimple_c_tests ()
{
  test_assign_single ();
  test_assign_binop ();
  test_nop_stmt ();
  test_return_stmt ();
  test_return_without_value ();
}

} // namespace selftest


#endif /* CHECKING_P */