fwprop.c 47.4 KB
Newer Older
Paolo Bonzini committed
1
/* RTL-based forward propagation pass for GNU compiler.
2
   Copyright (C) 2005-2017 Free Software Foundation, Inc.
Paolo Bonzini committed
3 4 5 6 7 8
   Contributed by Paolo Bonzini and Steven Bosscher.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
Paolo Bonzini committed
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Paolo Bonzini committed
20 21 22 23

#include "config.h"
#include "system.h"
#include "coretypes.h"
24
#include "backend.h"
25
#include "target.h"
26
#include "rtl.h"
27
#include "predict.h"
28
#include "df.h"
29
#include "memmodel.h"
Paolo Bonzini committed
30 31
#include "tm_p.h"
#include "insn-config.h"
32
#include "emit-rtl.h"
Paolo Bonzini committed
33
#include "recog.h"
34 35

#include "sparseset.h"
36 37
#include "cfgrtl.h"
#include "cfgcleanup.h"
Paolo Bonzini committed
38 39
#include "cfgloop.h"
#include "tree-pass.h"
40
#include "domwalk.h"
41
#include "rtl-iter.h"
Paolo Bonzini committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


/* This pass does simple forward propagation and simplification when an
   operand of an insn can only come from a single def.  This pass uses
   df.c, so it is global.  However, we only do limited analysis of
   available expressions.

   1) The pass tries to propagate the source of the def into the use,
   and checks if the result is independent of the substituted value.
   For example, the high word of a (zero_extend:DI (reg:SI M)) is always
   zero, independent of the source register.

   In particular, we propagate constants into the use site.  Sometimes
   RTL expansion did not put the constant in the same insn on purpose,
   to satisfy a predicate, and the result will fail to be recognized;
   but this happens rarely and in this case we can still create a
   REG_EQUAL note.  For multi-word operations, this

      (set (subreg:SI (reg:DI 120) 0) (const_int 0))
      (set (subreg:SI (reg:DI 120) 4) (const_int -1))
      (set (subreg:SI (reg:DI 122) 0)
         (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
      (set (subreg:SI (reg:DI 122) 4)
         (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))

   can be simplified to the much simpler

      (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
      (set (subreg:SI (reg:DI 122) 4) (const_int -1))

   This particular propagation is also effective at putting together
   complex addressing modes.  We are more aggressive inside MEMs, in
   that all definitions are propagated if the use is in a MEM; if the
   result is a valid memory address we check address_cost to decide
   whether the substitution is worthwhile.

   2) The pass propagates register copies.  This is not as effective as
   the copy propagation done by CSE's canon_reg, which works by walking
   the instruction chain, it can help the other transformations.

   We should consider removing this optimization, and instead reorder the
   RTL passes, because GCSE does this transformation too.  With some luck,
   the CSE pass at the end of rest_of_handle_gcse could also go away.

   3) The pass looks for paradoxical subregs that are actually unnecessary.
   Things like this:

     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
     (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
                                (subreg:SI (reg:QI 121) 0)))

   are very common on machines that can only do word-sized operations.
   For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
   if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
   we can replace the paradoxical subreg with simply (reg:WIDE M).  The
   above will simplify this to

     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
     (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))

104 105 106 107 108 109 110 111 112 113 114
   where the first two insns are now dead.

   We used to use reaching definitions to find which uses have a
   single reaching definition (sounds obvious...), but this is too
   complex a problem in nasty testcases like PR33928.  Now we use the
   multiple definitions problem in df-problems.c.  The similarity
   between that problem and SSA form creation is taken further, in
   that fwprop does a dominator walk to create its chains; however,
   instead of creating a PHI function where multiple definitions meet
   I just punt and record only singleton use-def chains, which is
   all that is needed by fwprop.  */
Paolo Bonzini committed
115 116 117 118


static int num_changes;

119 120 121
static vec<df_ref> use_def_ref;
static vec<df_ref> reg_defs;
static vec<df_ref> reg_defs_stack;
122

123 124 125 126 127 128 129
/* The maximum number of propagations that are still allowed.  If we do
   more propagations than originally we had uses, we must have ended up
   in a propagation loop, as in PR79405.  Until the algorithm fwprop
   uses can obviously not get into such loops we need a workaround like
   this.  */
static int propagations_left;

130 131 132 133 134 135
/* The MD bitmaps are trimmed to include only live registers to cut
   memory usage on testcases like insn-recog.c.  Track live registers
   in the basic block and do not perform forward propagation if the
   destination is a dead pseudo occurring in a note.  */
static bitmap local_md;
static bitmap local_lr;
136 137 138 139 140 141 142

/* Return the only def in USE's use-def chain, or NULL if there is
   more than one def in the chain.  */

static inline df_ref
get_def_for_use (df_ref use)
{
143
  return use_def_ref[DF_REF_ID (use)];
144 145 146
}


147 148 149 150 151 152 153 154
/* Update the reg_defs vector with non-partial definitions in DEF_REC.
   TOP_FLAG says which artificials uses should be used, when DEF_REC
   is an artificial def vector.  LOCAL_MD is modified as after a
   df_md_simulate_* function; we do more or less the same processing
   done there, so we do not use those functions.  */

#define DF_MD_GEN_FLAGS \
	(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
155

156
static void
157
process_defs (df_ref def, int top_flag)
158
{
159
  for (; def; def = DF_REF_NEXT_LOC (def))
160
    {
161
      df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
162
      unsigned int dregno;
163

164 165
      if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
	continue;
166

167 168
      dregno = DF_REF_REGNO (def);
      if (curr_def)
169
	reg_defs_stack.safe_push (curr_def);
170 171 172 173 174 175 176 177
      else
	{
	  /* Do not store anything if "transitioning" from NULL to NULL.  But
             otherwise, push a special entry on the stack to tell the
	     leave_block callback that the entry in reg_defs was NULL.  */
	  if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
	    ;
	  else
178
	    reg_defs_stack.safe_push (def);
179 180 181 182 183
	}

      if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
	{
	  bitmap_set_bit (local_md, dregno);
184
	  reg_defs[dregno] = NULL;
185 186 187 188
	}
      else
	{
	  bitmap_clear_bit (local_md, dregno);
189
	  reg_defs[dregno] = def;
190
	}
191 192 193 194 195
    }
}


/* Fill the use_def_ref vector with values for the uses in USE_REC,
196 197 198
   taking reaching definitions info from LOCAL_MD and REG_DEFS.
   TOP_FLAG says which artificials uses should be used, when USE_REC
   is an artificial use vector.  */
199 200

static void
201
process_uses (df_ref use, int top_flag)
202
{
203
  for (; use; use = DF_REF_NEXT_LOC (use))
204
    if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
205
      {
206
        unsigned int uregno = DF_REF_REGNO (use);
207
        if (reg_defs[uregno]
208 209
	    && !bitmap_bit_p (local_md, uregno)
	    && bitmap_bit_p (local_lr, uregno))
210
	  use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
211 212 213
      }
}

214 215 216 217 218
class single_def_use_dom_walker : public dom_walker
{
public:
  single_def_use_dom_walker (cdi_direction direction)
    : dom_walker (direction) {}
219
  virtual edge before_dom_children (basic_block);
220 221 222
  virtual void after_dom_children (basic_block);
};

223
edge
224
single_def_use_dom_walker::before_dom_children (basic_block bb)
225 226
{
  int bb_index = bb->index;
227 228
  struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
  struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
David Malcolm committed
229
  rtx_insn *insn;
230

231 232
  bitmap_copy (local_md, &md_bb_info->in);
  bitmap_copy (local_lr, &lr_bb_info->in);
233 234

  /* Push a marker for the leave_block callback.  */
235
  reg_defs_stack.safe_push (NULL);
236

237 238
  process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
  process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
239 240 241 242

  /* We don't call df_simulate_initialize_forwards, as it may overestimate
     the live registers if there are unused artificial defs.  We prefer
     liveness to be underestimated.  */
243 244 245 246 247

  FOR_BB_INSNS (bb, insn)
    if (INSN_P (insn))
      {
        unsigned int uid = INSN_UID (insn);
248 249 250 251
        process_uses (DF_INSN_UID_USES (uid), 0);
        process_uses (DF_INSN_UID_EQ_USES (uid), 0);
        process_defs (DF_INSN_UID_DEFS (uid), 0);
	df_simulate_one_insn_forwards (bb, insn, local_lr);
252
      }
253

254 255
  process_uses (df_get_artificial_uses (bb_index), 0);
  process_defs (df_get_artificial_defs (bb_index), 0);
256 257

  return NULL;
258 259 260 261 262
}

/* Pop the definitions created in this basic block when leaving its
   dominated parts.  */

263 264
void
single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
265 266
{
  df_ref saved_def;
267
  while ((saved_def = reg_defs_stack.pop ()) != NULL)
268 269 270 271
    {
      unsigned int dregno = DF_REF_REGNO (saved_def);

      /* See also process_defs.  */
272 273
      if (saved_def == reg_defs[dregno])
	reg_defs[dregno] = NULL;
274
      else
275
	reg_defs[dregno] = saved_def;
276
    }
277 278 279
}


280 281
/* Build a vector holding the reaching definitions of uses reached by a
   single dominating definition.  */
282 283 284 285

static void
build_single_def_use_links (void)
{
286 287
  /* We use the multiple definitions problem to compute our restricted
     use-def chains.  */
288
  df_set_flags (DF_EQ_NOTES);
289
  df_md_add_problem ();
290
  df_note_add_problem ();
291 292 293
  df_analyze ();
  df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);

294 295
  use_def_ref.create (DF_USES_TABLE_SIZE ());
  use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
296

297 298
  reg_defs.create (max_reg_num ());
  reg_defs.safe_grow_cleared (max_reg_num ());
299

300
  reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
301
  local_md = BITMAP_ALLOC (NULL);
302
  local_lr = BITMAP_ALLOC (NULL);
303 304 305

  /* Walk the dominator tree looking for single reaching definitions
     dominating the uses.  This is similar to how SSA form is built.  */
306 307
  single_def_use_dom_walker (CDI_DOMINATORS)
    .walk (cfun->cfg->x_entry_block_ptr);
308

309
  BITMAP_FREE (local_lr);
310
  BITMAP_FREE (local_md);
311 312
  reg_defs.release ();
  reg_defs_stack.release ();
313
}
314

Paolo Bonzini committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

/* Do not try to replace constant addresses or addresses of local and
   argument slots.  These MEM expressions are made only once and inserted
   in many instructions, as well as being used to control symbol table
   output.  It is not safe to clobber them.

   There are some uncommon cases where the address is already in a register
   for some reason, but we cannot take advantage of that because we have
   no easy way to unshare the MEM.  In addition, looking up all stack
   addresses is costly.  */

static bool
can_simplify_addr (rtx addr)
{
  rtx reg;

  if (CONSTANT_ADDRESS_P (addr))
    return false;

  if (GET_CODE (addr) == PLUS)
    reg = XEXP (addr, 0);
  else
    reg = addr;

  return (!REG_P (reg)
	  || (REGNO (reg) != FRAME_POINTER_REGNUM
	      && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
	      && REGNO (reg) != ARG_POINTER_REGNUM));
}

/* Returns a canonical version of X for the address, from the point of view,
   that all multiplications are represented as MULT instead of the multiply
   by a power of 2 being represented as ASHIFT.

   Every ASHIFT we find has been made by simplify_gen_binary and was not
   there before, so it is not shared.  So we can do this in place.  */

static void
canonicalize_address (rtx x)
{
  for (;;)
    switch (GET_CODE (x))
      {
      case ASHIFT:
Shujing Zhao committed
359
        if (CONST_INT_P (XEXP (x, 1))
360 361
	    && INTVAL (XEXP (x, 1)) < GET_MODE_UNIT_BITSIZE (GET_MODE (x))
	    && INTVAL (XEXP (x, 1)) >= 0)
Paolo Bonzini committed
362 363 364
	  {
	    HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
	    PUT_CODE (x, MULT);
365
	    XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
Paolo Bonzini committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
					GET_MODE (x));
	  }

	x = XEXP (x, 0);
        break;

      case PLUS:
        if (GET_CODE (XEXP (x, 0)) == PLUS
	    || GET_CODE (XEXP (x, 0)) == ASHIFT
	    || GET_CODE (XEXP (x, 0)) == CONST)
	  canonicalize_address (XEXP (x, 0));

	x = XEXP (x, 1);
        break;

      case CONST:
	x = XEXP (x, 0);
        break;

      default:
        return;
      }
}

/* OLD is a memory address.  Return whether it is good to use NEW instead,
   for a memory access in the given MODE.  */

static bool
394
should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
395
			addr_space_t as, bool speed)
Paolo Bonzini committed
396 397 398
{
  int gain;

399 400
  if (rtx_equal_p (old_rtx, new_rtx)
      || !memory_address_addr_space_p (mode, new_rtx, as))
Paolo Bonzini committed
401 402 403
    return false;

  /* Copy propagation is always ok.  */
404
  if (REG_P (old_rtx) && REG_P (new_rtx))
Paolo Bonzini committed
405 406 407
    return true;

  /* Prefer the new address if it is less expensive.  */
408 409
  gain = (address_cost (old_rtx, mode, as, speed)
	  - address_cost (new_rtx, mode, as, speed));
Paolo Bonzini committed
410 411

  /* If the addresses have equivalent cost, prefer the new address
412
     if it has the highest `set_src_cost'.  That has the potential of
Paolo Bonzini committed
413 414 415
     eliminating the most insns without additional costs, and it
     is the same that cse.c used to do.  */
  if (gain == 0)
416 417
    gain = (set_src_cost (new_rtx, VOIDmode, speed)
	    - set_src_cost (old_rtx, VOIDmode, speed));
Paolo Bonzini committed
418 419 420 421

  return (gain > 0);
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

/* Flags for the last parameter of propagate_rtx_1.  */

enum {
  /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
     if it is false, propagate_rtx_1 returns false if, for at least
     one occurrence OLD, it failed to collapse the result to a constant.
     For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
     collapse to zero if replacing (reg:M B) with (reg:M A).

     PR_CAN_APPEAR is disregarded inside MEMs: in that case,
     propagate_rtx_1 just tries to make cheaper and valid memory
     addresses.  */
  PR_CAN_APPEAR = 1,

  /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
     outside memory addresses.  This is needed because propagate_rtx_1 does
     not do any analysis on memory; thus it is very conservative and in general
     it will fail if non-read-only MEMs are found in the source expression.

     PR_HANDLE_MEM is set when the source of the propagation was not
     another MEM.  Then, it is safe not to treat non-read-only MEMs as
     ``opaque'' objects.  */
445 446 447 448
  PR_HANDLE_MEM = 2,

  /* Set when costs should be optimized for speed.  */
  PR_OPTIMIZE_FOR_SPEED = 4
449 450 451
};


Paolo Bonzini committed
452 453 454 455 456 457 458 459 460
/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
   resulting expression.  Replace *PX with a new RTL expression if an
   occurrence of OLD was found.

   This is only a wrapper around simplify-rtx.c: do not add any pattern
   matching code here.  (The sole exception is the handling of LO_SUM, but
   that is because there is no simplify_gen_* function for LO_SUM).  */

static bool
461
propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
Paolo Bonzini committed
462 463 464
{
  rtx x = *px, tem = NULL_RTX, op0, op1, op2;
  enum rtx_code code = GET_CODE (x);
465 466
  machine_mode mode = GET_MODE (x);
  machine_mode op_mode;
467
  bool can_appear = (flags & PR_CAN_APPEAR) != 0;
Paolo Bonzini committed
468 469
  bool valid_ops = true;

470 471 472 473 474 475 476 477 478
  if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
    {
      /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
	 they have side effects or not).  */
      *px = (side_effects_p (x)
	     ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
	     : gen_rtx_SCRATCH (GET_MODE (x)));
      return false;
    }
Paolo Bonzini committed
479

480 481
  /* If X is OLD_RTX, return NEW_RTX.  But not if replacing only within an
     address, and we are *not* inside one.  */
482
  if (x == old_rtx)
Paolo Bonzini committed
483
    {
484
      *px = new_rtx;
Paolo Bonzini committed
485 486 487
      return can_appear;
    }

488
  /* If this is an expression, try recursive substitution.  */
Paolo Bonzini committed
489 490 491 492 493
  switch (GET_RTX_CLASS (code))
    {
    case RTX_UNARY:
      op0 = XEXP (x, 0);
      op_mode = GET_MODE (op0);
494
      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
Paolo Bonzini committed
495 496 497 498 499 500 501 502 503
      if (op0 == XEXP (x, 0))
	return true;
      tem = simplify_gen_unary (code, mode, op0, op_mode);
      break;

    case RTX_BIN_ARITH:
    case RTX_COMM_ARITH:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
504 505
      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
Paolo Bonzini committed
506 507 508 509 510 511 512 513 514 515
      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
	return true;
      tem = simplify_gen_binary (code, mode, op0, op1);
      break;

    case RTX_COMPARE:
    case RTX_COMM_COMPARE:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
516 517
      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
Paolo Bonzini committed
518 519 520 521 522 523 524 525 526 527 528
      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
	return true;
      tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
      break;

    case RTX_TERNARY:
    case RTX_BITFIELD_OPS:
      op0 = XEXP (x, 0);
      op1 = XEXP (x, 1);
      op2 = XEXP (x, 2);
      op_mode = GET_MODE (op0);
529 530 531
      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
      valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
Paolo Bonzini committed
532 533 534 535 536 537 538 539 540 541 542 543
      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
	return true;
      if (op_mode == VOIDmode)
	op_mode = GET_MODE (op0);
      tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
      break;

    case RTX_EXTRA:
      /* The only case we try to handle is a SUBREG.  */
      if (code == SUBREG)
	{
          op0 = XEXP (x, 0);
544
	  valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
Paolo Bonzini committed
545 546 547 548 549 550 551 552
          if (op0 == XEXP (x, 0))
	    return true;
	  tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
				     SUBREG_BYTE (x));
	}
      break;

    case RTX_OBJ:
553
      if (code == MEM && x != new_rtx)
Paolo Bonzini committed
554 555 556 557 558 559 560 561 562
	{
	  rtx new_op0;
	  op0 = XEXP (x, 0);

	  /* There are some addresses that we cannot work on.  */
	  if (!can_simplify_addr (op0))
	    return true;

	  op0 = new_op0 = targetm.delegitimize_address (op0);
563
	  valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
564
					flags | PR_CAN_APPEAR);
Paolo Bonzini committed
565 566 567 568

	  /* Dismiss transformation that we do not want to carry on.  */
	  if (!valid_ops
	      || new_op0 == op0
569 570
	      || !(GET_MODE (new_op0) == GET_MODE (op0)
		   || GET_MODE (new_op0) == VOIDmode))
Paolo Bonzini committed
571 572 573 574 575
	    return true;

	  canonicalize_address (new_op0);

	  /* Copy propagations are always ok.  Otherwise check the costs.  */
576
	  if (!(REG_P (old_rtx) && REG_P (new_rtx))
577
	      && !should_replace_address (op0, new_op0, GET_MODE (x),
578
					  MEM_ADDR_SPACE (x),
579
	      			 	  flags & PR_OPTIMIZE_FOR_SPEED))
Paolo Bonzini committed
580 581 582 583 584 585 586 587 588 589 590 591 592
	    return true;

	  tem = replace_equiv_address_nv (x, new_op0);
	}

      else if (code == LO_SUM)
	{
          op0 = XEXP (x, 0);
          op1 = XEXP (x, 1);

	  /* The only simplification we do attempts to remove references to op0
	     or make it constant -- in both cases, op0's invalidity will not
	     make the result invalid.  */
593 594
	  propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
	  valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
Paolo Bonzini committed
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
          if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
	    return true;

	  /* (lo_sum (high x) x) -> x  */
	  if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
	    tem = op1;
	  else
	    tem = gen_rtx_LO_SUM (mode, op0, op1);

	  /* OP1 is likely not a legitimate address, otherwise there would have
	     been no LO_SUM.  We want it to disappear if it is invalid, return
	     false in that case.  */
	  return memory_address_p (mode, tem);
	}

      else if (code == REG)
	{
612
	  if (rtx_equal_p (x, old_rtx))
Paolo Bonzini committed
613
	    {
614
              *px = new_rtx;
Paolo Bonzini committed
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
              return can_appear;
	    }
	}
      break;

    default:
      break;
    }

  /* No change, no trouble.  */
  if (tem == NULL_RTX)
    return true;

  *px = tem;

630 631 632 633 634 635 636 637 638
  /* Allow replacements that simplify operations on a vector or complex
     value to a component.  The most prominent case is
     (subreg ([vec_]concat ...)).   */
  if (REG_P (tem) && !HARD_REGISTER_P (tem)
      && (VECTOR_MODE_P (GET_MODE (new_rtx))
	  || COMPLEX_MODE_P (GET_MODE (new_rtx)))
      && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
    return true;

Paolo Bonzini committed
639 640 641 642 643 644
  /* The replacement we made so far is valid, if all of the recursive
     replacements were valid, or we could simplify everything to
     a constant.  */
  return valid_ops || can_appear || CONSTANT_P (tem);
}

645

646
/* Return true if X constains a non-constant mem.  */
647

648 649
static bool
varying_mem_p (const_rtx x)
650
{
651 652 653 654 655
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
    if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
      return true;
  return false;
656 657 658
}


Paolo Bonzini committed
659
/* Replace all occurrences of OLD in X with NEW and try to simplify the
660
   resulting expression (in mode MODE).  Return a new expression if it is
Paolo Bonzini committed
661 662 663 664 665 666 667
   a constant, otherwise X.

   Simplifications where occurrences of NEW collapse to a constant are always
   accepted.  All simplifications are accepted if NEW is a pseudo too.
   Otherwise, we accept simplifications that have a lower or equal cost.  */

static rtx
668
propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
669
	       bool speed)
Paolo Bonzini committed
670 671 672
{
  rtx tem;
  bool collapsed;
673
  int flags;
Paolo Bonzini committed
674

675
  if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
Paolo Bonzini committed
676 677
    return NULL_RTX;

678
  flags = 0;
679 680 681 682
  if (REG_P (new_rtx)
      || CONSTANT_P (new_rtx)
      || (GET_CODE (new_rtx) == SUBREG
	  && REG_P (SUBREG_REG (new_rtx))
683
	  && !paradoxical_subreg_p (mode, GET_MODE (SUBREG_REG (new_rtx)))))
684
    flags |= PR_CAN_APPEAR;
685
  if (!varying_mem_p (new_rtx))
686
    flags |= PR_HANDLE_MEM;
Paolo Bonzini committed
687

688 689 690
  if (speed)
    flags |= PR_OPTIMIZE_FOR_SPEED;

Paolo Bonzini committed
691
  tem = x;
692
  collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
Paolo Bonzini committed
693 694 695 696 697
  if (tem == x || !collapsed)
    return NULL_RTX;

  /* gen_lowpart_common will not be able to process VOIDmode entities other
     than CONST_INTs.  */
Shujing Zhao committed
698
  if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
Paolo Bonzini committed
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    return NULL_RTX;

  if (GET_MODE (tem) == VOIDmode)
    tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
  else
    gcc_assert (GET_MODE (tem) == mode);

  return tem;
}




/* Return true if the register from reference REF is killed
   between FROM to (but not including) TO.  */

715
static bool
716
local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
Paolo Bonzini committed
717
{
718
  rtx_insn *insn;
Paolo Bonzini committed
719 720 721

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
722
      df_ref def;
Paolo Bonzini committed
723 724 725
      if (!INSN_P (insn))
	continue;

726 727 728
      FOR_EACH_INSN_DEF (def, insn)
	if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
	  return true;
Paolo Bonzini committed
729 730 731 732 733 734 735 736 737 738 739 740 741 742
    }
  return false;
}


/* Check if the given DEF is available in INSN.  This would require full
   computation of available expressions; we check only restricted conditions:
   - if DEF is the sole definition of its register, go ahead;
   - in the same basic block, we check for no definitions killing the
     definition of DEF_INSN;
   - if USE's basic block has DEF's basic block as the sole predecessor,
     we check if the definition is killed after DEF_INSN or before
     TARGET_INSN insn, in their respective basic blocks.  */
static bool
David Malcolm committed
743
use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
Paolo Bonzini committed
744
{
745 746
  basic_block def_bb = BLOCK_FOR_INSN (def_insn);
  basic_block target_bb = BLOCK_FOR_INSN (target_insn);
Paolo Bonzini committed
747
  int regno;
748
  df_ref def;
Paolo Bonzini committed
749

750 751 752 753 754 755
  /* We used to have a def reaching a use that is _before_ the def,
     with the def not dominating the use even though the use and def
     are in the same basic block, when a register may be used
     uninitialized in a loop.  This should not happen anymore since
     we do not use reaching definitions, but still we test for such
     cases and assume that DEF is not available.  */
756
  if (def_bb == target_bb
757
      ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
758 759 760
      : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
    return true;

Paolo Bonzini committed
761
  /* Check if the reg in USE has only one definition.  We already
762 763 764 765
     know that this definition reaches use, or we wouldn't be here.
     However, this is invalid for hard registers because if they are
     live at the beginning of the function it does not mean that we
     have an uninitialized access.  */
Paolo Bonzini committed
766
  regno = DF_REF_REGNO (use);
767
  def = DF_REG_DEF_CHAIN (regno);
768
  if (def
769
      && DF_REF_NEXT_REG (def) == NULL
770
      && regno >= FIRST_PSEUDO_REGISTER)
Paolo Bonzini committed
771 772
    return false;

773
  /* Check locally if we are in the same basic block.  */
Paolo Bonzini committed
774
  if (def_bb == target_bb)
775
    return local_ref_killed_between_p (use, def_insn, target_insn);
Paolo Bonzini committed
776 777 778 779 780

  /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
  if (single_pred_p (target_bb)
      && single_pred (target_bb) == def_bb)
    {
781
      df_ref x;
Paolo Bonzini committed
782 783 784

      /* See if USE is killed between DEF_INSN and the last insn in the
	 basic block containing DEF_INSN.  */
785
      x = df_bb_regno_last_def_find (def_bb, regno);
786
      if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
Paolo Bonzini committed
787 788 789 790
	return true;

      /* See if USE is killed between TARGET_INSN and the first insn in the
	 basic block containing TARGET_INSN.  */
791
      x = df_bb_regno_first_def_find (target_bb, regno);
792
      if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
Paolo Bonzini committed
793 794 795 796 797 798 799 800 801 802 803 804 805 806
	return true;

      return false;
    }

  /* Otherwise assume the worst case.  */
  return true;
}


/* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
   would require full computation of available expressions;
   we check only restricted conditions, see use_killed_between.  */
static bool
David Malcolm committed
807
all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
Paolo Bonzini committed
808
{
809
  df_ref use;
810
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
Paolo Bonzini committed
811
  rtx def_set = single_set (def_insn);
David Malcolm committed
812
  rtx_insn *next;
Paolo Bonzini committed
813 814 815 816

  gcc_assert (def_set);

  /* If target_insn comes right after def_insn, which is very common
817 818 819 820 821 822
     for addresses, we can use a quicker test.  Ignore debug insns
     other than target insns for this.  */
  next = NEXT_INSN (def_insn);
  while (next && next != target_insn && DEBUG_INSN_P (next))
    next = NEXT_INSN (next);
  if (next == target_insn && REG_P (SET_DEST (def_set)))
Paolo Bonzini committed
823 824 825 826 827
    {
      rtx def_reg = SET_DEST (def_set);

      /* If the insn uses the reg that it defines, the substitution is
         invalid.  */
828 829 830 831 832 833
      FOR_EACH_INSN_INFO_USE (use, insn_info)
	if (rtx_equal_p (DF_REF_REG (use), def_reg))
	  return false;
      FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
	if (rtx_equal_p (DF_REF_REG (use), def_reg))
	  return false;
Paolo Bonzini committed
834 835 836
    }
  else
    {
837 838
      rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;

Paolo Bonzini committed
839 840
      /* Look at all the uses of DEF_INSN, and see if they are not
	 killed between DEF_INSN and TARGET_INSN.  */
841
      FOR_EACH_INSN_INFO_USE (use, insn_info)
842
	{
843 844
	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
	    return false;
845 846 847
	  if (use_killed_between (use, def_insn, target_insn))
	    return false;
	}
848
      FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
849
	{
850 851
	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
	    return false;
852 853 854
	  if (use_killed_between (use, def_insn, target_insn))
	    return false;
	}
Paolo Bonzini committed
855 856
    }

857
  return true;
Paolo Bonzini committed
858 859 860
}


861 862
static df_ref *active_defs;
static sparseset active_defs_check;
Paolo Bonzini committed
863

864 865 866
/* Fill the ACTIVE_DEFS array with the use->def link for the registers
   mentioned in USE_REC.  Register the valid entries in ACTIVE_DEFS_CHECK
   too, for checking purposes.  */
Paolo Bonzini committed
867

868
static void
869
register_active_defs (df_ref use)
Paolo Bonzini committed
870
{
871
  for (; use; use = DF_REF_NEXT_LOC (use))
Paolo Bonzini committed
872
    {
873 874
      df_ref def = get_def_for_use (use);
      int regno = DF_REF_REGNO (use);
Paolo Bonzini committed
875

876 877
      if (flag_checking)
	sparseset_set_bit (active_defs_check, regno);
878 879
      active_defs[regno] = def;
    }
Paolo Bonzini committed
880 881 882
}


883 884 885 886 887 888 889
/* Build the use->def links that we use to update the dataflow info
   for new uses.  Note that building the links is very cheap and if
   it were done earlier, they could be used to rule out invalid
   propagations (in addition to what is done in all_uses_available_at).
   I'm not doing this yet, though.  */

static void
David Malcolm committed
890
update_df_init (rtx_insn *def_insn, rtx_insn *insn)
Paolo Bonzini committed
891
{
892 893
  if (flag_checking)
    sparseset_clear (active_defs_check);
894 895 896 897
  register_active_defs (DF_INSN_USES (def_insn));
  register_active_defs (DF_INSN_USES (insn));
  register_active_defs (DF_INSN_EQ_USES (insn));
}
Paolo Bonzini committed
898 899


900 901
/* Update the USE_DEF_REF array for the given use, using the active definitions
   in the ACTIVE_DEFS array to match pseudos to their def. */
Paolo Bonzini committed
902

903
static inline void
904
update_uses (df_ref use)
Paolo Bonzini committed
905
{
906
  for (; use; use = DF_REF_NEXT_LOC (use))
Paolo Bonzini committed
907
    {
908
      int regno = DF_REF_REGNO (use);
Paolo Bonzini committed
909

910
      /* Set up the use-def chain.  */
911 912
      if (DF_REF_ID (use) >= (int) use_def_ref.length ())
        use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
Paolo Bonzini committed
913

914 915
      if (flag_checking)
	gcc_assert (sparseset_bit_p (active_defs_check, regno));
916
      use_def_ref[DF_REF_ID (use)] = active_defs[regno];
917 918
    }
}
Paolo Bonzini committed
919

920 921 922 923 924

/* Update the USE_DEF_REF array for the uses in INSN.  Only update note
   uses if NOTES_ONLY is true.  */

static void
David Malcolm committed
925
update_df (rtx_insn *insn, rtx note)
926 927 928 929 930 931 932 933 934 935 936 937 938
{
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);

  if (note)
    {
      df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
      df_notes_rescan (insn);
    }
  else
    {
      df_uses_create (&PATTERN (insn), insn, 0);
      df_insn_rescan (insn);
      update_uses (DF_INSN_INFO_USES (insn_info));
Paolo Bonzini committed
939
    }
940 941

  update_uses (DF_INSN_INFO_EQ_USES (insn_info));
Paolo Bonzini committed
942 943 944 945 946 947 948 949 950 951
}


/* Try substituting NEW into LOC, which originated from forward propagation
   of USE's value from DEF_INSN.  SET_REG_EQUAL says whether we are
   substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
   new insn is not recognized.  Return whether the substitution was
   performed.  */

static bool
David Malcolm committed
952 953
try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
		  bool set_reg_equal)
Paolo Bonzini committed
954
{
David Malcolm committed
955
  rtx_insn *insn = DF_REF_INSN (use);
956
  rtx set = single_set (insn);
957
  rtx note = NULL_RTX;
958
  bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
959
  int old_cost = 0;
960
  bool ok;
Paolo Bonzini committed
961

962 963
  update_df_init (def_insn, insn);

964 965 966 967
  /* forward_propagate_subreg may be operating on an instruction with
     multiple sets.  If so, assume the cost of the new instruction is
     not greater than the old one.  */
  if (set)
968
    old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
Paolo Bonzini committed
969 970 971 972 973
  if (dump_file)
    {
      fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
      print_inline_rtx (dump_file, *loc, 2);
      fprintf (dump_file, "\n with ");
974
      print_inline_rtx (dump_file, new_rtx, 2);
Paolo Bonzini committed
975 976 977
      fprintf (dump_file, "\n");
    }

978
  validate_unshare_change (insn, loc, new_rtx, true);
979 980 981 982 983 984 985 986
  if (!verify_changes (0))
    {
      if (dump_file)
	fprintf (dump_file, "Changes to insn %d not recognized\n",
		 INSN_UID (insn));
      ok = false;
    }

987
  else if (DF_REF_TYPE (use) == DF_REF_REG_USE
988
	   && set
989 990
	   && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
	       > old_cost))
991 992 993 994 995 996 997 998
    {
      if (dump_file)
	fprintf (dump_file, "Changes to insn %d not profitable\n",
		 INSN_UID (insn));
      ok = false;
    }

  else
Paolo Bonzini committed
999 1000 1001
    {
      if (dump_file)
	fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1002 1003 1004 1005 1006 1007 1008
      ok = true;
    }

  if (ok)
    {
      confirm_change_group ();
      num_changes++;
Paolo Bonzini committed
1009 1010 1011
    }
  else
    {
1012
      cancel_changes (0);
Paolo Bonzini committed
1013

1014
      /* Can also record a simplified value in a REG_EQUAL note,
Steven Bosscher committed
1015 1016
	 making a new one if one does not already exist.  */
      if (set_reg_equal)
Paolo Bonzini committed
1017
	{
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	  /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
	     because the bits in there can be anything and so might not
	     match the REG_EQUAL note content.  See PR70574.  */
	  subrtx_var_iterator::array_type array;
	  FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
	    {
	      rtx x = *iter;
	      if (SUBREG_P (x) && paradoxical_subreg_p (x))
		{
		  set_reg_equal = false;
		  break;
		}
	    }
Paolo Bonzini committed
1031

1032 1033 1034 1035 1036 1037 1038
	  if (set_reg_equal)
	    {
	      if (dump_file)
		fprintf (dump_file, " Setting REG_EQUAL note\n");

	      note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
	    }
Paolo Bonzini committed
1039 1040
	}
    }
1041

1042 1043 1044
  if ((ok || note) && !CONSTANT_P (new_rtx))
    update_df (insn, note);

1045
  return ok;
Paolo Bonzini committed
1046 1047
}

1048 1049 1050 1051 1052 1053
/* For the given single_set INSN, containing SRC known to be a
   ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
   is redundant due to the register being set by a LOAD_EXTEND_OP
   load from memory.  */

static bool
David Malcolm committed
1054
free_load_extend (rtx src, rtx_insn *insn)
1055
{
1056
  rtx reg;
1057
  df_ref def, use;
1058 1059

  reg = XEXP (src, 0);
1060
  if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
1061
    return false;
1062

1063 1064 1065 1066 1067
  FOR_EACH_INSN_USE (use, insn)
    if (!DF_REF_IS_ARTIFICIAL (use)
	&& DF_REF_TYPE (use) == DF_REF_REG_USE
	&& DF_REF_REG (use) == reg)
      break;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  if (!use)
    return false;

  def = get_def_for_use (use);
  if (!def)
    return false;

  if (DF_REF_IS_ARTIFICIAL (def))
    return false;

  if (NONJUMP_INSN_P (DF_REF_INSN (def)))
    {
      rtx patt = PATTERN (DF_REF_INSN (def));

      if (GET_CODE (patt) == SET
	  && GET_CODE (SET_SRC (patt)) == MEM
	  && rtx_equal_p (SET_DEST (patt), reg))
	return true;
1086
    }
1087
  return false;
1088 1089 1090
}

/* If USE is a subreg, see if it can be replaced by a pseudo.  */
Paolo Bonzini committed
1091 1092

static bool
David Malcolm committed
1093
forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
Paolo Bonzini committed
1094 1095
{
  rtx use_reg = DF_REF_REG (use);
David Malcolm committed
1096 1097
  rtx_insn *use_insn;
  rtx src;
1098
  scalar_int_mode int_use_mode, src_mode;
Paolo Bonzini committed
1099

1100
  /* Only consider subregs... */
1101
  machine_mode use_mode = GET_MODE (use_reg);
Paolo Bonzini committed
1102
  if (GET_CODE (use_reg) != SUBREG
1103
      || !REG_P (SET_DEST (def_set)))
Paolo Bonzini committed
1104 1105
    return false;

1106
  if (paradoxical_subreg_p (use_reg))
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    {
      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent to
	 a SUBREG whose operand is the same as our mode, and all the modes
	 are within a word, we can just use the inner operand because
	 these SUBREGs just say how to treat the register.  */
      use_insn = DF_REF_INSN (use);
      src = SET_SRC (def_set);
      if (GET_CODE (src) == SUBREG
	  && REG_P (SUBREG_REG (src))
1117
	  && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	  && GET_MODE (SUBREG_REG (src)) == use_mode
	  && subreg_lowpart_p (src)
	  && all_uses_available_at (def_insn, use_insn))
	return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
				 def_insn, false);
    }

  /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
     is the low part of the reg being extended then just use the inner
     operand.  Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
     be removed due to it matching a LOAD_EXTEND_OP load from memory,
     or due to the operation being a no-op when applied to registers.
     For example, if we have:

	 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
	 B: (... (subreg:SI (reg:DI X)) ...)

     and mode_rep_extended says that Y is already sign-extended,
     the backend will typically allow A to be combined with the
     definition of Y or, failing that, allow A to be deleted after
     reload through register tying.  Introducing more uses of Y
     prevents both optimisations.  */
1140 1141
  else if (is_a <scalar_int_mode> (use_mode, &int_use_mode)
	   && subreg_lowpart_p (use_reg))
1142 1143 1144 1145 1146
    {
      use_insn = DF_REF_INSN (use);
      src = SET_SRC (def_set);
      if ((GET_CODE (src) == ZERO_EXTEND
	   || GET_CODE (src) == SIGN_EXTEND)
1147
	  && is_a <scalar_int_mode> (GET_MODE (src), &src_mode)
1148
	  && REG_P (XEXP (src, 0))
1149
	  && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1150
	  && GET_MODE (XEXP (src, 0)) == use_mode
1151
	  && !free_load_extend (src, def_insn)
1152
	  && (targetm.mode_rep_extended (int_use_mode, src_mode)
1153
	      != (int) GET_CODE (src))
1154 1155 1156 1157 1158 1159
	  && all_uses_available_at (def_insn, use_insn))
	return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
				 def_insn, false);
    }

  return false;
Paolo Bonzini committed
1160 1161
}

1162 1163 1164
/* Try to replace USE with SRC (defined in DEF_INSN) in __asm.  */

static bool
David Malcolm committed
1165
forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1166
{
David Malcolm committed
1167 1168
  rtx_insn *use_insn = DF_REF_INSN (use);
  rtx src, use_pat, asm_operands, new_rtx, *loc;
1169
  int speed_p, i;
1170
  df_ref uses;
1171 1172 1173 1174 1175 1176 1177 1178

  gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);

  src = SET_SRC (def_set);
  use_pat = PATTERN (use_insn);

  /* In __asm don't replace if src might need more registers than
     reg, as that could increase register pressure on the __asm.  */
1179 1180
  uses = DF_INSN_USES (def_insn);
  if (uses && DF_REF_NEXT_LOC (uses))
1181 1182
    return false;

1183
  update_df_init (def_insn, use_insn);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
  speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
  asm_operands = NULL_RTX;
  switch (GET_CODE (use_pat))
    {
    case ASM_OPERANDS:
      asm_operands = use_pat;
      break;
    case SET:
      if (MEM_P (SET_DEST (use_pat)))
	{
	  loc = &SET_DEST (use_pat);
	  new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
	  if (new_rtx)
	    validate_unshare_change (use_insn, loc, new_rtx, true);
	}
      asm_operands = SET_SRC (use_pat);
      break;
    case PARALLEL:
      for (i = 0; i < XVECLEN (use_pat, 0); i++)
	if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
	  {
	    if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
	      {
		loc = &SET_DEST (XVECEXP (use_pat, 0, i));
		new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
					 src, speed_p);
		if (new_rtx)
		  validate_unshare_change (use_insn, loc, new_rtx, true);
	      }
	    asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
	  }
	else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
	  asm_operands = XVECEXP (use_pat, 0, i);
      break;
    default:
      gcc_unreachable ();
    }

  gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
  for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
    {
      loc = &ASM_OPERANDS_INPUT (asm_operands, i);
      new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
      if (new_rtx)
	validate_unshare_change (use_insn, loc, new_rtx, true);
    }

  if (num_changes_pending () == 0 || !apply_change_group ())
    return false;

1234
  update_df (use_insn, NULL);
1235 1236 1237 1238
  num_changes++;
  return true;
}

Paolo Bonzini committed
1239 1240 1241 1242
/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
   result.  */

static bool
David Malcolm committed
1243
forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
Paolo Bonzini committed
1244
{
David Malcolm committed
1245
  rtx_insn *use_insn = DF_REF_INSN (use);
Paolo Bonzini committed
1246
  rtx use_set = single_set (use_insn);
1247
  rtx src, reg, new_rtx, *loc;
Paolo Bonzini committed
1248
  bool set_reg_equal;
1249
  machine_mode mode;
1250 1251 1252 1253
  int asm_use = -1;

  if (INSN_CODE (use_insn) < 0)
    asm_use = asm_noperands (PATTERN (use_insn));
Paolo Bonzini committed
1254

1255
  if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
Paolo Bonzini committed
1256 1257 1258
    return false;

  /* Do not propagate into PC, CC0, etc.  */
1259
  if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
Paolo Bonzini committed
1260 1261 1262 1263
    return false;

  /* If def and use are subreg, check if they match.  */
  reg = DF_REF_REG (use);
1264 1265 1266 1267 1268
  if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
    {
      if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
	return false;
    }
Paolo Bonzini committed
1269
  /* Check if the def had a subreg, but the use has the whole reg.  */
1270
  else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
Paolo Bonzini committed
1271 1272 1273
    return false;
  /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
     previous case, the optimization is possible and often useful indeed.  */
1274
  else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
Paolo Bonzini committed
1275 1276
    reg = SUBREG_REG (reg);

1277 1278 1279 1280 1281
  /* Make sure that we can treat REG as having the same mode as the
     source of DEF_SET.  */
  if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
    return false;

Paolo Bonzini committed
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
  /* Check if the substitution is valid (last, because it's the most
     expensive check!).  */
  src = SET_SRC (def_set);
  if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
    return false;

  /* Check if the def is loading something from the constant pool; in this
     case we would undo optimization such as compress_float_constant.
     Still, we can set a REG_EQUAL note.  */
  if (MEM_P (src) && MEM_READONLY_P (src))
    {
      rtx x = avoid_constant_pool_reference (src);
1294
      if (x != src && use_set)
Paolo Bonzini committed
1295 1296
	{
          rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1297 1298 1299 1300
	  rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
	  rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
	  if (old_rtx != new_rtx)
            set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
Paolo Bonzini committed
1301 1302 1303 1304
	}
      return false;
    }

1305 1306 1307
  if (asm_use >= 0)
    return forward_propagate_asm (use, def_insn, def_set, reg);

Paolo Bonzini committed
1308 1309 1310 1311 1312 1313 1314
  /* Else try simplifying.  */

  if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
    {
      loc = &SET_DEST (use_set);
      set_reg_equal = false;
    }
1315 1316 1317 1318 1319
  else if (!use_set)
    {
      loc = &INSN_VAR_LOCATION_LOC (use_insn);
      set_reg_equal = false;
    }
Paolo Bonzini committed
1320 1321 1322 1323 1324 1325 1326
  else
    {
      rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
      if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
	loc = &XEXP (note, 0);
      else
	loc = &SET_SRC (use_set);
1327

Paolo Bonzini committed
1328
      /* Do not replace an existing REG_EQUAL note if the insn is not
1329 1330
	 recognized.  Either we're already replacing in the note, or we'll
	 separately try plugging the definition in the note and simplifying.
1331 1332
	 And only install a REQ_EQUAL note when the destination is a REG
	 that isn't mentioned in USE_SET, as the note would be invalid
1333 1334
	 otherwise.  We also don't want to install a note if we are merely
	 propagating a pseudo since verifying that this pseudo isn't dead
1335 1336 1337 1338 1339
	 is a pain; moreover such a note won't help anything.
	 If the use is a paradoxical subreg, make sure we don't add a
	 REG_EQUAL note for it, because it is not equivalent, it is one
	 possible value for it, but we can't rely on it holding that value.
	 See PR70574.  */
1340 1341 1342 1343 1344 1345
      set_reg_equal = (note == NULL_RTX
		       && REG_P (SET_DEST (use_set))
		       && !REG_P (src)
		       && !(GET_CODE (src) == SUBREG
			    && REG_P (SUBREG_REG (src)))
		       && !reg_mentioned_p (SET_DEST (use_set),
1346 1347
					    SET_SRC (use_set))
		       && !paradoxical_subreg_p (DF_REF_REG (use)));
Paolo Bonzini committed
1348 1349 1350 1351 1352 1353 1354
    }

  if (GET_MODE (*loc) == VOIDmode)
    mode = GET_MODE (SET_DEST (use_set));
  else
    mode = GET_MODE (*loc);

1355 1356
  new_rtx = propagate_rtx (*loc, mode, reg, src,
  			   optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1357

1358
  if (!new_rtx)
Paolo Bonzini committed
1359 1360
    return false;

1361
  return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
Paolo Bonzini committed
1362 1363 1364 1365
}


/* Given a use USE of an insn, if it has a single reaching
1366 1367
   definition, try to forward propagate it into that insn.
   Return true if cfg cleanup will be needed.  */
Paolo Bonzini committed
1368

1369
static bool
1370
forward_propagate_into (df_ref use)
Paolo Bonzini committed
1371
{
1372
  df_ref def;
David Malcolm committed
1373 1374
  rtx_insn *def_insn, *use_insn;
  rtx def_set;
1375
  rtx parent;
Paolo Bonzini committed
1376 1377

  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1378
    return false;
1379
  if (DF_REF_IS_ARTIFICIAL (use))
1380
    return false;
Paolo Bonzini committed
1381 1382

  /* Only consider uses that have a single definition.  */
1383 1384
  def = get_def_for_use (use);
  if (!def)
1385
    return false;
Paolo Bonzini committed
1386
  if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1387
    return false;
1388
  if (DF_REF_IS_ARTIFICIAL (def))
1389
    return false;
Paolo Bonzini committed
1390

1391 1392
  /* Do not propagate loop invariant definitions inside the loop.  */
  if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1393
    return false;
Paolo Bonzini committed
1394 1395 1396 1397 1398 1399 1400 1401

  /* Check if the use is still present in the insn!  */
  use_insn = DF_REF_INSN (use);
  if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
    parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
  else
    parent = PATTERN (use_insn);

1402
  if (!reg_mentioned_p (DF_REF_REG (use), parent))
1403
    return false;
Paolo Bonzini committed
1404 1405

  def_insn = DF_REF_INSN (def);
1406
  if (multiple_sets (def_insn))
1407
    return false;
Paolo Bonzini committed
1408 1409
  def_set = single_set (def_insn);
  if (!def_set)
1410
    return false;
Paolo Bonzini committed
1411 1412 1413

  /* Only try one kind of propagation.  If two are possible, we'll
     do it on the following iterations.  */
1414 1415 1416
  if (forward_propagate_and_simplify (use, def_insn, def_set)
      || forward_propagate_subreg (use, def_insn, def_set))
    {
1417 1418
      propagations_left--;

1419 1420 1421 1422 1423 1424
      if (cfun->can_throw_non_call_exceptions
	  && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
	  && purge_dead_edges (DF_REF_BB (use)))
	return true;
    }
  return false;
Paolo Bonzini committed
1425 1426 1427 1428 1429 1430 1431
}


static void
fwprop_init (void)
{
  num_changes = 0;
1432
  calculate_dominance_info (CDI_DOMINATORS);
Paolo Bonzini committed
1433 1434

  /* We do not always want to propagate into loops, so we have to find
1435 1436 1437 1438
     loops and be careful about them.  Avoid CFG modifications so that
     we don't have to update dominance information afterwards for
     build_single_def_use_links.  */
  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
Paolo Bonzini committed
1439

1440
  build_single_def_use_links ();
1441
  df_set_flags (DF_DEFER_INSN_RESCAN);
1442 1443

  active_defs = XNEWVEC (df_ref, max_reg_num ());
1444 1445
  if (flag_checking)
    active_defs_check = sparseset_alloc (max_reg_num ());
1446 1447

  propagations_left = DF_USES_TABLE_SIZE ();
Paolo Bonzini committed
1448 1449 1450 1451 1452
}

static void
fwprop_done (void)
{
1453
  loop_optimizer_finalize ();
1454

1455
  use_def_ref.release ();
1456
  free (active_defs);
1457 1458
  if (flag_checking)
    sparseset_free (active_defs_check);
1459

1460
  free_dominance_info (CDI_DOMINATORS);
Paolo Bonzini committed
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
  cleanup_cfg (0);
  delete_trivially_dead_insns (get_insns (), max_reg_num ());

  if (dump_file)
    fprintf (dump_file,
	     "\nNumber of successful forward propagations: %d\n\n",
	     num_changes);
}


/* Main entry point.  */

static bool
gate_fwprop (void)
{
  return optimize > 0 && flag_forward_propagate;
}

static unsigned int
fwprop (void)
{
  unsigned i;

  fwprop_init ();

1486
  /* Go through all the uses.  df_uses_create will create new ones at the
Paolo Bonzini committed
1487 1488 1489 1490 1491
     end, and we'll go through them as well.

     Do not forward propagate addresses into loops until after unrolling.
     CSE did so because it was able to fix its own mess, but we are not.  */

1492
  for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
Paolo Bonzini committed
1493
    {
1494 1495 1496
      if (!propagations_left)
	break;

1497
      df_ref use = DF_USES_GET (i);
Paolo Bonzini committed
1498
      if (use)
1499
	if (DF_REF_TYPE (use) == DF_REF_REG_USE
1500 1501 1502
	    || DF_REF_BB (use)->loop_father == NULL
	    /* The outer most loop is not really a loop.  */
	    || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1503
	  forward_propagate_into (use);
Paolo Bonzini committed
1504 1505 1506 1507 1508 1509
    }

  fwprop_done ();
  return 0;
}

1510 1511 1512
namespace {

const pass_data pass_data_rtl_fwprop =
Paolo Bonzini committed
1513
{
1514 1515 1516 1517 1518 1519 1520 1521
  RTL_PASS, /* type */
  "fwprop1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_FWPROP, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
1522
  TODO_df_finish, /* todo_flags_finish */
Paolo Bonzini committed
1523 1524
};

1525 1526 1527
class pass_rtl_fwprop : public rtl_opt_pass
{
public:
1528 1529
  pass_rtl_fwprop (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1530 1531 1532
  {}

  /* opt_pass methods: */
1533
  virtual bool gate (function *) { return gate_fwprop (); }
1534
  virtual unsigned int execute (function *) { return fwprop (); }
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

}; // class pass_rtl_fwprop

} // anon namespace

rtl_opt_pass *
make_pass_rtl_fwprop (gcc::context *ctxt)
{
  return new pass_rtl_fwprop (ctxt);
}

Paolo Bonzini committed
1546 1547 1548 1549
static unsigned int
fwprop_addr (void)
{
  unsigned i;
1550

Paolo Bonzini committed
1551 1552
  fwprop_init ();

1553
  /* Go through all the uses.  df_uses_create will create new ones at the
Paolo Bonzini committed
1554
     end, and we'll go through them as well.  */
1555
  for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
Paolo Bonzini committed
1556
    {
1557 1558 1559
      if (!propagations_left)
	break;

1560
      df_ref use = DF_USES_GET (i);
Paolo Bonzini committed
1561 1562
      if (use)
	if (DF_REF_TYPE (use) != DF_REF_REG_USE
1563 1564 1565
	    && DF_REF_BB (use)->loop_father != NULL
	    /* The outer most loop is not really a loop.  */
	    && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1566
	  forward_propagate_into (use);
Paolo Bonzini committed
1567 1568 1569 1570 1571 1572
    }

  fwprop_done ();
  return 0;
}

1573 1574 1575
namespace {

const pass_data pass_data_rtl_fwprop_addr =
Paolo Bonzini committed
1576
{
1577 1578 1579 1580 1581 1582 1583 1584
  RTL_PASS, /* type */
  "fwprop2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_FWPROP, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
1585
  TODO_df_finish, /* todo_flags_finish */
Paolo Bonzini committed
1586
};
1587 1588 1589 1590

class pass_rtl_fwprop_addr : public rtl_opt_pass
{
public:
1591 1592
  pass_rtl_fwprop_addr (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1593 1594 1595
  {}

  /* opt_pass methods: */
1596
  virtual bool gate (function *) { return gate_fwprop (); }
1597
  virtual unsigned int execute (function *) { return fwprop_addr (); }
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

}; // class pass_rtl_fwprop_addr

} // anon namespace

rtl_opt_pass *
make_pass_rtl_fwprop_addr (gcc::context *ctxt)
{
  return new pass_rtl_fwprop_addr (ctxt);
}