regs.h 13.6 KB
Newer Older
Richard Kenner committed
1
/* Define per-register tables for data flow info and register allocation.
2
   Copyright (C) 1987-2013 Free Software Foundation, Inc.
Richard Kenner committed
3

4
This file is part of GCC.
Richard Kenner committed
5

6 7
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
Richard Kenner committed
10

11 12 13 14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
15 16

You should have received a copy of the GNU General Public License
17 18
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Richard Kenner committed
19

20 21
#ifndef GCC_REGS_H
#define GCC_REGS_H
Richard Kenner committed
22

23
#include "machmode.h"
24
#include "hard-reg-set.h"
25
#include "rtl.h"
Richard Kenner committed
26 27 28

#define REG_BYTES(R) mode_size[(int) GET_MODE (R)]

29 30
/* When you only have the mode of a pseudo register before it has a hard
   register chosen for it, this reports the size of each hard register
31 32
   a pseudo in such a mode would get allocated to.  A target may
   override this.  */
33 34 35 36

#ifndef REGMODE_NATURAL_SIZE
#define REGMODE_NATURAL_SIZE(MODE)	UNITS_PER_WORD
#endif
Richard Kenner committed
37 38 39 40 41

/* Maximum register number used in this function, plus one.  */

extern int max_regno;

42 43 44 45
/* REG_N_REFS and REG_N_SETS are initialized by a call to
   regstat_init_n_sets_and_refs from the current values of
   DF_REG_DEF_COUNT and DF_REG_USE_COUNT.  REG_N_REFS and REG_N_SETS
   should only be used if a pass need to change these values in some
Mike Stump committed
46
   magical way or the pass needs to have accurate values for these
47 48 49
   and is not using incremental df scanning.

   At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
H.J. Lu committed
50
   should be made to regstat_free_n_sets_and_refs.
51 52 53 54 55 56 57

   Local alloc seems to play pretty loose with these values.
   REG_N_REFS is set to 0 if the register is used in an asm.
   Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
   REG_N_SETS for three address insns.  Other passes seem to have
   other special values.  */

58 59


60 61 62 63 64
/* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */

struct regstat_n_sets_and_refs_t
{
  int sets;			/* # of times (REG n) is set */
65
  int refs;			/* # of times (REG n) is used or set */
66 67 68 69 70 71
};

extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;

/* Indexed by n, gives number of times (REG n) is used or set.  */
static inline int
72
REG_N_REFS (int regno)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
{
  return regstat_n_sets_and_refs[regno].refs;
}

/* Indexed by n, gives number of times (REG n) is used or set.  */
#define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
#define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)

/* Indexed by n, gives number of times (REG n) is set.  */
static inline int
REG_N_SETS (int regno)
{
  return regstat_n_sets_and_refs[regno].sets;
}

/* Indexed by n, gives number of times (REG n) is set.  */
#define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
#define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)

92 93
/* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise.  */
extern bool reg_is_parm_p (rtx);
94

95
/* Functions defined in regstat.c.  */
96 97 98 99 100 101 102
extern void regstat_init_n_sets_and_refs (void);
extern void regstat_free_n_sets_and_refs (void);
extern void regstat_compute_ri (void);
extern void regstat_free_ri (void);
extern bitmap regstat_get_setjmp_crosses (void);
extern void regstat_compute_calls_crossed (void);
extern void regstat_free_calls_crossed (void);
103
extern void dump_reg_info (FILE *);
104 105 106 107 108 109

/* Register information indexed by register number.  This structure is
   initialized by calling regstat_compute_ri and is destroyed by
   calling regstat_free_ri.  */
struct reg_info_t
{
110
  int freq;			/* # estimated frequency (REG n) is used or set */
111 112 113
  int deaths;			/* # of times (REG n) dies */
  int live_length;		/* # of instructions (REG n) is live */
  int calls_crossed;		/* # of calls (REG n) is live across */
114
  int freq_calls_crossed;	/* # estimated frequency (REG n) crosses call */
115
  int throw_calls_crossed;	/* # of calls that may throw (REG n) is live across */
116
  int basic_block;		/* # of basic blocks (REG n) is used in */
117
};
118

119
extern struct reg_info_t *reg_info_p;
120

121 122
/* The number allocated elements of reg_info_p.  */
extern size_t reg_info_p_size;
Richard Kenner committed
123

124 125
/* Estimate frequency of references to register N.  */

126
#define REG_FREQ(N) (reg_info_p[N].freq)
127

128
/* The weights for each insn varies from 0 to REG_FREQ_BASE.
129 130 131 132 133 134 135 136 137 138 139
   This constant does not need to be high, as in infrequently executed
   regions we want to count instructions equivalently to optimize for
   size instead of speed.  */
#define REG_FREQ_MAX 1000

/* Compute register frequency from the BB frequency.  When optimizing for size,
   or profile driven feedback is available and the function is never executed,
   frequency is always equivalent.  Otherwise rescale the basic block
   frequency.  */
#define REG_FREQ_FROM_BB(bb) (optimize_size				      \
			      || (flag_branch_probabilities		      \
140
				  && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)   \
141 142 143 144 145
			      ? REG_FREQ_MAX				      \
			      : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
			      ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
			      : 1)

Richard Kenner committed
146 147 148 149 150 151
/* Indexed by N, gives number of insns in which register N dies.
   Note that if register N is live around loops, it can die
   in transitions between basic blocks, and that is not counted here.
   So this is only a reliable indicator of how many regions of life there are
   for registers that are contained in one basic block.  */

152
#define REG_N_DEATHS(N) (reg_info_p[N].deaths)
Richard Kenner committed
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

/* Get the number of consecutive words required to hold pseudo-reg N.  */

#define PSEUDO_REGNO_SIZE(N) \
  ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1)		\
   / UNITS_PER_WORD)

/* Get the number of bytes required to hold pseudo-reg N.  */

#define PSEUDO_REGNO_BYTES(N) \
  GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))

/* Get the machine mode of pseudo-reg N.  */

#define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])

/* Indexed by N, gives number of CALL_INSNS across which (REG n) is live.  */

171
#define REG_N_CALLS_CROSSED(N)  (reg_info_p[N].calls_crossed)
172
#define REG_FREQ_CALLS_CROSSED(N)  (reg_info_p[N].freq_calls_crossed)
Richard Kenner committed
173

174 175 176
/* Indexed by N, gives number of CALL_INSNS that may throw, across which
   (REG n) is live.  */

177
#define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
178

179 180 181 182 183 184 185 186 187 188 189
/* Total number of instructions at which (REG n) is live.
   
   This is set in regstat.c whenever register info is requested and
   remains valid for the rest of the compilation of the function; it is
   used to control register allocation.  The larger this is, the less
   priority (REG n) gets for allocation in a hard register (in IRA in
   priority-coloring mode).

   Negative values are special: -1 is used to mark a pseudo reg that
   should not be allocated to a hard register, because it crosses a
   setjmp call.  */
Richard Kenner committed
190

191 192 193 194 195 196 197 198 199 200 201 202 203
#define REG_LIVE_LENGTH(N)  (reg_info_p[N].live_length)

/* Indexed by n, gives number of basic block that  (REG n) is used in.
   If the value is REG_BLOCK_GLOBAL (-1),
   it means (REG n) is used in more than one basic block.
   REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
   This information remains valid for the rest of the compilation
   of the current function; it is used to control register allocation.  */

#define REG_BLOCK_UNKNOWN 0
#define REG_BLOCK_GLOBAL -1

#define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
Richard Kenner committed
204 205

/* Vector of substitutions of register numbers,
206 207 208 209
   used to map pseudo regs into hardware regs.

   This can't be folded into reg_n_info without changing all of the
   machine dependent directories, since the reload functions
210
   in the machine dependent files access it.  */
Richard Kenner committed
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

extern short *reg_renumber;

/* Flag set by local-alloc or global-alloc if they decide to allocate
   something in a call-clobbered register.  */

extern int caller_save_needed;

/* Predicate to decide whether to give a hard reg to a pseudo which
   is referenced REFS times and would need to be saved and restored
   around a call CALLS times.  */

#ifndef CALLER_SAVE_PROFITABLE
#define CALLER_SAVE_PROFITABLE(REFS, CALLS)  (4 * (CALLS) < (REFS))
#endif
226

227 228
/* Select a register mode required for caller save of hard regno REGNO.  */
#ifndef HARD_REGNO_CALLER_SAVE_MODE
229
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
230
  choose_hard_reg_mode (REGNO, NREGS, false)
231 232
#endif

233
/* Registers that get partially clobbered by a call in a given mode.
234 235 236 237 238
   These must not be call used registers.  */
#ifndef HARD_REGNO_CALL_PART_CLOBBERED
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
#endif

239 240 241 242 243 244 245 246 247 248 249
/* Target-dependent globals.  */
struct target_regs {
  /* For each starting hard register, the number of consecutive hard
     registers that a given machine mode occupies.  */
  unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];

  /* For each hard register, the widest mode object that it can contain.
     This will be a MODE_INT mode if the register can hold integers.  Otherwise
     it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
     register.  */
  enum machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER];
250 251 252 253 254 255 256 257

  /* Vector indexed by machine mode saying whether there are regs of
     that mode.  */
  bool x_have_regs_of_mode[MAX_MACHINE_MODE];

  /* 1 if the corresponding class contains a register of the given mode.  */
  char x_contains_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];

258 259 260 261 262 263 264 265
  /* Record for each mode whether we can move a register directly to or
     from an object of that mode in memory.  If we can't, we won't try
     to use that mode directly when accessing a field of that mode.  */
  char x_direct_load[NUM_MACHINE_MODES];
  char x_direct_store[NUM_MACHINE_MODES];

  /* Record for each mode whether we can float-extend from memory.  */
  bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
266 267 268 269 270 271 272 273 274 275 276 277 278
};

extern struct target_regs default_target_regs;
#if SWITCHABLE_TARGET
extern struct target_regs *this_target_regs;
#else
#define this_target_regs (&default_target_regs)
#endif

#define hard_regno_nregs \
  (this_target_regs->x_hard_regno_nregs)
#define reg_raw_mode \
  (this_target_regs->x_reg_raw_mode)
279 280 281 282
#define have_regs_of_mode \
  (this_target_regs->x_have_regs_of_mode)
#define contains_reg_of_mode \
  (this_target_regs->x_contains_reg_of_mode)
283 284 285 286 287 288
#define direct_load \
  (this_target_regs->x_direct_load)
#define direct_store \
  (this_target_regs->x_direct_store)
#define float_extend_from_mem \
  (this_target_regs->x_float_extend_from_mem)
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/* Return an exclusive upper bound on the registers occupied by hard
   register (reg:MODE REGNO).  */

static inline unsigned int
end_hard_regno (enum machine_mode mode, unsigned int regno)
{
  return regno + hard_regno_nregs[regno][(int) mode];
}

/* Likewise for hard register X.  */

#define END_HARD_REGNO(X) end_hard_regno (GET_MODE (X), REGNO (X))

/* Likewise for hard or pseudo register X.  */

#define END_REGNO(X) (HARD_REGISTER_P (X) ? END_HARD_REGNO (X) : REGNO (X) + 1)

/* Add to REGS all the registers required to store a value of mode MODE
   in register REGNO.  */

static inline void
add_to_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
		     unsigned int regno)
{
  unsigned int end_regno;

  end_regno = end_hard_regno (mode, regno);
  do
    SET_HARD_REG_BIT (*regs, regno);
  while (++regno < end_regno);
}

/* Likewise, but remove the registers.  */

static inline void
remove_from_hard_reg_set (HARD_REG_SET *regs, enum machine_mode mode,
			  unsigned int regno)
{
  unsigned int end_regno;

  end_regno = end_hard_regno (mode, regno);
  do
    CLEAR_HARD_REG_BIT (*regs, regno);
  while (++regno < end_regno);
}

/* Return true if REGS contains the whole of (reg:MODE REGNO).  */

static inline bool
in_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
		   unsigned int regno)
{
  unsigned int end_regno;

344 345
  gcc_assert (HARD_REGISTER_NUM_P (regno));
  
346 347 348 349
  if (!TEST_HARD_REG_BIT (regs, regno))
    return false;

  end_regno = end_hard_regno (mode, regno);
350 351 352 353

  if (!HARD_REGISTER_NUM_P (end_regno - 1))
    return false;

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  while (++regno < end_regno)
    if (!TEST_HARD_REG_BIT (regs, regno))
      return false;

  return true;
}

/* Return true if (reg:MODE REGNO) includes an element of REGS.  */

static inline bool
overlaps_hard_reg_set_p (const HARD_REG_SET regs, enum machine_mode mode,
			 unsigned int regno)
{
  unsigned int end_regno;

  if (TEST_HARD_REG_BIT (regs, regno))
    return true;

  end_regno = end_hard_regno (mode, regno);
  while (++regno < end_regno)
    if (TEST_HARD_REG_BIT (regs, regno))
      return true;

  return false;
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
   REGNO and MODE.  */

static inline void
add_range_to_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
			   int nregs)
{
  while (nregs-- > 0)
    SET_HARD_REG_BIT (*regs, regno + nregs);
}

/* Likewise, but remove the registers.  */

static inline void
remove_range_from_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
				int nregs)
{
  while (nregs-- > 0)
    CLEAR_HARD_REG_BIT (*regs, regno + nregs);
}

/* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
   REGNO and MODE.  */
static inline bool
range_overlaps_hard_reg_set_p (const HARD_REG_SET set, unsigned regno,
			       int nregs)
{
  while (nregs-- > 0)
    if (TEST_HARD_REG_BIT (set, regno + nregs))
      return true;
  return false;
}

/* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
   REGNO and MODE.  */
static inline bool
range_in_hard_reg_set_p (const HARD_REG_SET set, unsigned regno, int nregs)
{
  while (nregs-- > 0)
    if (!TEST_HARD_REG_BIT (set, regno + nregs))
      return false;
  return true;
}

424
#endif /* GCC_REGS_H */