arith.c 50.5 KB
Newer Older
1
/* Compiler arithmetic
2
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
3
   Inc.
4 5
   Contributed by Andy Vaught

6
This file is part of GCC.
7

8 9 10 11
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
17 18

You should have received a copy of the GNU General Public License
19 20 21
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
22 23 24 25 26 27 28

/* Since target arithmetic must be done on the host, there has to
   be some way of evaluating arithmetic expressions as the host
   would evaluate them.  We use the GNU MP library to do arithmetic,
   and this file provides the interface.  */

#include "config.h"
29
#include "system.h"
30
#include "flags.h"
31 32 33
#include "gfortran.h"
#include "arith.h"

34 35
/* MPFR does not have a direct replacement for mpz_set_f() from GMP.
   It's easily implemented with a few calls though.  */
36 37

void
38
gfc_mpfr_to_mpz (mpz_t z, mpfr_t x)
39
{
40
  mp_exp_t e;
41

42
  e = mpfr_get_z_exp (z, x);
43 44 45 46 47
  /* MPFR 2.0.1 (included with GMP 4.1) has a bug whereby mpfr_get_z_exp
     may set the sign of z incorrectly.  Work around that here.  */
  if (mpfr_sgn (x) != mpz_sgn (z))
    mpz_neg (z, z);

48 49
  if (e > 0)
    mpz_mul_2exp (z, z, e);
50
  else
51
    mpz_tdiv_q_2exp (z, z, -e);
52 53 54
}


55
/* Set the model number precision by the requested KIND.  */
56 57

void
58
gfc_set_model_kind (int kind)
59
{
60 61 62 63 64 65 66
  int index = gfc_validate_kind (BT_REAL, kind, false);
  int base2prec;

  base2prec = gfc_real_kinds[index].digits;
  if (gfc_real_kinds[index].radix != 2)
    base2prec *= gfc_real_kinds[index].radix / 2;
  mpfr_set_default_prec (base2prec);
67 68 69
}


70
/* Set the model number precision from mpfr_t x.  */
71 72

void
73
gfc_set_model (mpfr_t x)
74
{
75
  mpfr_set_default_prec (mpfr_get_prec (x));
76 77 78 79 80 81 82 83 84 85 86
}

/* Calculate atan2 (y, x)

atan2(y, x) = atan(y/x)				if x > 0,
	      sign(y)*(pi - atan(|y/x|))	if x < 0,
	      0					if x = 0 && y == 0,
	      sign(y)*pi/2			if x = 0 && y != 0.
*/

void
87
arctangent2 (mpfr_t y, mpfr_t x, mpfr_t result)
88
{
89 90
  int i;
  mpfr_t t;
91

92 93
  gfc_set_model (y);
  mpfr_init (t);
94

95
  i = mpfr_sgn (x);
96 97

  if (i > 0)
98
    {
99 100 101 102 103 104 105 106 107 108 109 110 111
      mpfr_div (t, y, x, GFC_RND_MODE);
      mpfr_atan (result, t, GFC_RND_MODE);
    }
  else if (i < 0)
    {
      mpfr_const_pi (result, GFC_RND_MODE);
      mpfr_div (t, y, x, GFC_RND_MODE);
      mpfr_abs (t, t, GFC_RND_MODE);
      mpfr_atan (t, t, GFC_RND_MODE);
      mpfr_sub (result, result, t, GFC_RND_MODE);
      if (mpfr_sgn (y) < 0)
	mpfr_neg (result, result, GFC_RND_MODE);
    }
112 113
  else
    {
114 115
      if (mpfr_sgn (y) == 0)
	mpfr_set_ui (result, 0, GFC_RND_MODE);
116 117
      else
	{
118 119 120 121
          mpfr_const_pi (result, GFC_RND_MODE);
          mpfr_div_ui (result, result, 2, GFC_RND_MODE);
	  if (mpfr_sgn (y) < 0)
	    mpfr_neg (result, result, GFC_RND_MODE);
122 123 124
	}
    }

125
  mpfr_clear (t);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

}


/* Given an arithmetic error code, return a pointer to a string that
   explains the error.  */

static const char *
gfc_arith_error (arith code)
{
  const char *p;

  switch (code)
    {
    case ARITH_OK:
      p = "Arithmetic OK";
      break;
    case ARITH_OVERFLOW:
      p = "Arithmetic overflow";
      break;
    case ARITH_UNDERFLOW:
      p = "Arithmetic underflow";
      break;
149 150 151
    case ARITH_NAN:
      p = "Arithmetic NaN";
      break;
152 153 154 155 156 157 158 159 160
    case ARITH_DIV0:
      p = "Division by zero";
      break;
    case ARITH_0TO0:
      p = "Indeterminate form 0 ** 0";
      break;
    case ARITH_INCOMMENSURATE:
      p = "Array operands are incommensurate";
      break;
161 162 163
    case ARITH_ASYMMETRIC:
      p = "Integer outside symmetric range implied by Standard Fortran";
      break;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    default:
      gfc_internal_error ("gfc_arith_error(): Bad error code");
    }

  return p;
}


/* Get things ready to do math.  */

void
gfc_arith_init_1 (void)
{
  gfc_integer_info *int_info;
  gfc_real_info *real_info;
179
  mpfr_t a, b, c;
180
  mpz_t r;
181
  int i;
182

183
  mpfr_set_default_prec (128);
184 185
  mpfr_init (a);
  mpz_init (r);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

  /* Convert the minimum/maximum values for each kind into their
     GNU MP representation.  */
  for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
    {
      /* Huge */
      mpz_set_ui (r, int_info->radix);
      mpz_pow_ui (r, r, int_info->digits);

      mpz_init (int_info->huge);
      mpz_sub_ui (int_info->huge, r, 1);

      /* These are the numbers that are actually representable by the
         target.  For bases other than two, this needs to be changed.  */
      if (int_info->radix != 2)
201 202 203 204 205 206 207
        gfc_internal_error ("Fix min_int, max_int calculation");

      /* See PRs 13490 and 17912, related to integer ranges.
         The pedantic_min_int exists for range checking when a program
         is compiled with -pedantic, and reflects the belief that
         Standard Fortran requires integers to be symmetrical, i.e.
         every negative integer must have a representable positive
208
         absolute value, and vice versa.  */
209

210 211
      mpz_init (int_info->pedantic_min_int);
      mpz_neg (int_info->pedantic_min_int, int_info->huge);
212 213

      mpz_init (int_info->min_int);
214
      mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
215 216 217 218 219 220

      mpz_init (int_info->max_int);
      mpz_add (int_info->max_int, int_info->huge, int_info->huge);
      mpz_add_ui (int_info->max_int, int_info->max_int, 1);

      /* Range */
221 222 223 224
      mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
      mpfr_log10 (a, a, GFC_RND_MODE);
      mpfr_trunc (a, a);
      gfc_mpfr_to_mpz (r, a);
225 226 227
      int_info->range = mpz_get_si (r);
    }

228 229
  mpfr_clear (a);

230 231
  for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
    {
232
      gfc_set_model_kind (real_info->kind);
233

234 235 236
      mpfr_init (a);
      mpfr_init (b);
      mpfr_init (c);
237

238 239 240 241 242 243
      /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b  */
      /* a = 1 - b**(-p) */
      mpfr_set_ui (a, 1, GFC_RND_MODE);
      mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
      mpfr_pow_si (b, b, -real_info->digits, GFC_RND_MODE);
      mpfr_sub (a, a, b, GFC_RND_MODE);
244

245 246 247
      /* c = b**(emax-1) */
      mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
      mpfr_pow_ui (c, b, real_info->max_exponent - 1, GFC_RND_MODE);
248

249 250
      /* a = a * c = (1 - b**(-p)) * b**(emax-1) */
      mpfr_mul (a, a, c, GFC_RND_MODE);
251

252 253
      /* a = (1 - b**(-p)) * b**(emax-1) * b */
      mpfr_mul_ui (a, a, real_info->radix, GFC_RND_MODE);
254

255 256
      mpfr_init (real_info->huge);
      mpfr_set (real_info->huge, a, GFC_RND_MODE);
257

258 259 260 261 262 263 264 265 266 267 268 269 270
      /* tiny(x) = b**(emin-1) */
      mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
      mpfr_pow_si (b, b, real_info->min_exponent - 1, GFC_RND_MODE);

      mpfr_init (real_info->tiny);
      mpfr_set (real_info->tiny, b, GFC_RND_MODE);

      /* epsilon(x) = b**(1-p) */
      mpfr_set_ui (b, real_info->radix, GFC_RND_MODE);
      mpfr_pow_si (b, b, 1 - real_info->digits, GFC_RND_MODE);

      mpfr_init (real_info->epsilon);
      mpfr_set (real_info->epsilon, b, GFC_RND_MODE);
271

272 273 274 275
      /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
      mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
      mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
      mpfr_neg (b, b, GFC_RND_MODE);
276

277 278 279 280 281
      if (mpfr_cmp (a, b) > 0)
	mpfr_set (a, b, GFC_RND_MODE);		/* a = min(a, b) */

      mpfr_trunc (a, a);
      gfc_mpfr_to_mpz (r, a);
282 283
      real_info->range = mpz_get_si (r);

284 285 286
      /* precision(x) = int((p - 1) * log10(b)) + k */
      mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
      mpfr_log10 (a, a, GFC_RND_MODE);
287

288 289 290
      mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
      mpfr_trunc (a, a);
      gfc_mpfr_to_mpz (r, a);
291 292 293 294 295 296 297
      real_info->precision = mpz_get_si (r);

      /* If the radix is an integral power of 10, add one to the
         precision.  */
      for (i = 10; i <= real_info->radix; i *= 10)
	if (i == real_info->radix)
	  real_info->precision++;
298 299 300 301

      mpfr_clear (a);
      mpfr_clear (b);
      mpfr_clear (c);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    }

  mpz_clear (r);
}


/* Clean up, get rid of numeric constants.  */

void
gfc_arith_done_1 (void)
{
  gfc_integer_info *ip;
  gfc_real_info *rp;

  for (ip = gfc_integer_kinds; ip->kind; ip++)
    {
      mpz_clear (ip->min_int);
      mpz_clear (ip->max_int);
      mpz_clear (ip->huge);
    }

  for (rp = gfc_real_kinds; rp->kind; rp++)
    {
325 326 327
      mpfr_clear (rp->epsilon);
      mpfr_clear (rp->huge);
      mpfr_clear (rp->tiny);
328 329 330 331 332
    }
}


/* Given an integer and a kind, make sure that the integer lies within
333
   the range of the kind.  Returns ARITH_OK, ARITH_ASYMMETRIC or
334
   ARITH_OVERFLOW.  */
335 336 337 338 339 340 341

static arith
gfc_check_integer_range (mpz_t p, int kind)
{
  arith result;
  int i;

342
  i = gfc_validate_kind (BT_INTEGER, kind, false);
343 344
  result = ARITH_OK;

345 346 347 348 349 350
  if (pedantic)
    {
      if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
        result = ARITH_ASYMMETRIC;
    }

351 352 353 354 355 356 357 358 359 360 361 362 363
  if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
      || mpz_cmp (p, gfc_integer_kinds[i].max_int) > 0)
    result = ARITH_OVERFLOW;

  return result;
}


/* Given a real and a kind, make sure that the real lies within the
   range of the kind.  Returns ARITH_OK, ARITH_OVERFLOW or
   ARITH_UNDERFLOW.  */

static arith
364
gfc_check_real_range (mpfr_t p, int kind)
365 366
{
  arith retval;
367
  mpfr_t q;
368 369
  int i;

370
  i = gfc_validate_kind (BT_REAL, kind, false);
371

372 373 374 375
  gfc_set_model (p);
  mpfr_init (q);
  mpfr_abs (q, p, GFC_RND_MODE);

376
  retval = ARITH_OK;
377
  if (mpfr_sgn (q) == 0)
378 379
    goto done;

380
  if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
381 382 383 384 385
    {
      retval = ARITH_OVERFLOW;
      goto done;
    }

386
  if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
387 388 389
    retval = ARITH_UNDERFLOW;

done:
390
  mpfr_clear (q);
391 392 393 394 395 396 397 398

  return retval;
}


/* Function to return a constant expression node of a given type and
   kind.  */

399
gfc_expr *
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
gfc_constant_result (bt type, int kind, locus * where)
{
  gfc_expr *result;

  if (!where)
    gfc_internal_error
      ("gfc_constant_result(): locus 'where' cannot be NULL");

  result = gfc_get_expr ();

  result->expr_type = EXPR_CONSTANT;
  result->ts.type = type;
  result->ts.kind = kind;
  result->where = *where;

  switch (type)
    {
    case BT_INTEGER:
      mpz_init (result->value.integer);
      break;

    case BT_REAL:
422 423
      gfc_set_model_kind (kind);
      mpfr_init (result->value.real);
424 425 426
      break;

    case BT_COMPLEX:
427 428 429
      gfc_set_model_kind (kind);
      mpfr_init (result->value.complex.r);
      mpfr_init (result->value.complex.i);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
      break;

    default:
      break;
    }

  return result;
}


/* Low-level arithmetic functions.  All of these subroutines assume
   that all operands are of the same type and return an operand of the
   same type.  The other thing about these subroutines is that they
   can fail in various ways -- overflow, underflow, division by zero,
   zero raised to the zero, etc.  */

static arith
gfc_arith_not (gfc_expr * op1, gfc_expr ** resultp)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_LOGICAL, op1->ts.kind, &op1->where);
  result->value.logical = !op1->value.logical;
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_and (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
				&op1->where);
  result->value.logical = op1->value.logical && op2->value.logical;
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_or (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
				&op1->where);
  result->value.logical = op1->value.logical || op2->value.logical;
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_eqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
				&op1->where);
  result->value.logical = op1->value.logical == op2->value.logical;
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_neqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2),
				&op1->where);
  result->value.logical = op1->value.logical != op2->value.logical;
  *resultp = result;

  return ARITH_OK;
}


/* Make sure a constant numeric expression is within the range for
516
   its type and kind.  Note that there's also a gfc_check_range(),
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
   but that one deals with the intrinsic RANGE function.  */

arith
gfc_range_check (gfc_expr * e)
{
  arith rc;

  switch (e->ts.type)
    {
    case BT_INTEGER:
      rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
      break;

    case BT_REAL:
      rc = gfc_check_real_range (e->value.real, e->ts.kind);
532
      if (rc == ARITH_UNDERFLOW)
533
        mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
534 535 536 537
      break;

    case BT_COMPLEX:
      rc = gfc_check_real_range (e->value.complex.r, e->ts.kind);
538
      if (rc == ARITH_UNDERFLOW)
539
        mpfr_set_ui (e->value.complex.r, 0, GFC_RND_MODE);
540 541 542 543
      if (rc == ARITH_OK || rc == ARITH_UNDERFLOW)
        {
          rc = gfc_check_real_range (e->value.complex.i, e->ts.kind);
          if (rc == ARITH_UNDERFLOW)
544
            mpfr_set_ui (e->value.complex.i, 0, GFC_RND_MODE);
545
        }
546 547 548 549 550 551

      break;

    default:
      gfc_internal_error ("gfc_range_check(): Bad type");
    }
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
  return rc;
}


/* It may seem silly to have a subroutine that actually computes the
   unary plus of a constant, but it prevents us from making exceptions
   in the code elsewhere.  */

static arith
gfc_arith_uplus (gfc_expr * op1, gfc_expr ** resultp)
{
  *resultp = gfc_copy_expr (op1);
  return ARITH_OK;
}


static arith
gfc_arith_uminus (gfc_expr * op1, gfc_expr ** resultp)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);

  switch (op1->ts.type)
    {
    case BT_INTEGER:
      mpz_neg (result->value.integer, op1->value.integer);
      break;

    case BT_REAL:
584
      mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
585 586 587
      break;

    case BT_COMPLEX:
588 589
      mpfr_neg (result->value.complex.r, op1->value.complex.r, GFC_RND_MODE);
      mpfr_neg (result->value.complex.i, op1->value.complex.i, GFC_RND_MODE);
590 591 592 593 594 595 596 597
      break;

    default:
      gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
    }

  rc = gfc_range_check (result);

598 599 600 601 602 603 604
  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
605 606 607 608 609 610
  else if (rc == ARITH_ASYMMETRIC)
    {
      gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
611
  else if (rc != ARITH_OK)
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    gfc_free_expr (result);
  else
    *resultp = result;

  return rc;
}


static arith
gfc_arith_plus (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);

  switch (op1->ts.type)
    {
    case BT_INTEGER:
      mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
      break;

    case BT_REAL:
635 636
      mpfr_add (result->value.real, op1->value.real, op2->value.real,
               GFC_RND_MODE);
637 638 639
      break;

    case BT_COMPLEX:
640 641
      mpfr_add (result->value.complex.r, op1->value.complex.r,
	       op2->value.complex.r, GFC_RND_MODE);
642

643 644
      mpfr_add (result->value.complex.i, op1->value.complex.i,
	       op2->value.complex.i, GFC_RND_MODE);
645 646 647 648 649 650 651 652
      break;

    default:
      gfc_internal_error ("gfc_arith_plus(): Bad basic type");
    }

  rc = gfc_range_check (result);

653 654 655 656 657 658 659
  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
660 661 662 663 664 665
  else if (rc == ARITH_ASYMMETRIC)
    {
      gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
666
  else if (rc != ARITH_OK)
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    gfc_free_expr (result);
  else
    *resultp = result;

  return rc;
}


static arith
gfc_arith_minus (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);

  switch (op1->ts.type)
    {
    case BT_INTEGER:
      mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
      break;

    case BT_REAL:
690 691
      mpfr_sub (result->value.real, op1->value.real, op2->value.real,
                GFC_RND_MODE);
692 693 694
      break;

    case BT_COMPLEX:
695 696
      mpfr_sub (result->value.complex.r, op1->value.complex.r,
	       op2->value.complex.r, GFC_RND_MODE);
697

698 699
      mpfr_sub (result->value.complex.i, op1->value.complex.i,
	       op2->value.complex.i, GFC_RND_MODE);
700 701 702 703 704 705 706 707
      break;

    default:
      gfc_internal_error ("gfc_arith_minus(): Bad basic type");
    }

  rc = gfc_range_check (result);

708 709 710 711 712 713 714
  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
715 716 717 718 719 720
  else if (rc == ARITH_ASYMMETRIC)
    {
      gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
721
  else if (rc != ARITH_OK)
722 723 724 725 726 727 728 729 730 731 732 733
    gfc_free_expr (result);
  else
    *resultp = result;

  return rc;
}


static arith
gfc_arith_times (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;
734
  mpfr_t x, y;
735 736 737 738 739 740 741 742 743 744 745
  arith rc;

  result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);

  switch (op1->ts.type)
    {
    case BT_INTEGER:
      mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
      break;

    case BT_REAL:
746 747
      mpfr_mul (result->value.real, op1->value.real, op2->value.real,
               GFC_RND_MODE);
748 749 750 751
      break;

    case BT_COMPLEX:

752
      /* FIXME:  possible numericals problem.  */
753

754 755 756
      gfc_set_model (op1->value.complex.r);
      mpfr_init (x);
      mpfr_init (y);
757

758 759 760 761 762 763 764 765 766 767
      mpfr_mul (x, op1->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
      mpfr_mul (y, op1->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
      mpfr_sub (result->value.complex.r, x, y, GFC_RND_MODE);

      mpfr_mul (x, op1->value.complex.r, op2->value.complex.i, GFC_RND_MODE);
      mpfr_mul (y, op1->value.complex.i, op2->value.complex.r, GFC_RND_MODE);
      mpfr_add (result->value.complex.i, x, y, GFC_RND_MODE);

      mpfr_clear (x);
      mpfr_clear (y);
768 769 770 771 772 773 774 775 776

      break;

    default:
      gfc_internal_error ("gfc_arith_times(): Bad basic type");
    }

  rc = gfc_range_check (result);

777 778 779 780 781 782 783
  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
784 785 786 787 788 789
  else if (rc == ARITH_ASYMMETRIC)
    {
      gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
790
  else if (rc != ARITH_OK)
791 792 793 794 795 796 797 798 799 800 801 802
    gfc_free_expr (result);
  else
    *resultp = result;

  return rc;
}


static arith
gfc_arith_divide (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;
803
  mpfr_t x, y, div;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  arith rc;

  rc = ARITH_OK;

  result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);

  switch (op1->ts.type)
    {
    case BT_INTEGER:
      if (mpz_sgn (op2->value.integer) == 0)
	{
	  rc = ARITH_DIV0;
	  break;
	}

      mpz_tdiv_q (result->value.integer, op1->value.integer,
		  op2->value.integer);
      break;

    case BT_REAL:
824 825
      /* FIXME: MPFR correctly generates NaN.  This may not be needed.  */
      if (mpfr_sgn (op2->value.real) == 0)
826 827 828 829 830
	{
	  rc = ARITH_DIV0;
	  break;
	}

831 832
      mpfr_div (result->value.real, op1->value.real, op2->value.real,
               GFC_RND_MODE);
833 834 835
      break;

    case BT_COMPLEX:
836 837 838
      /* FIXME: MPFR correctly generates NaN.  This may not be needed.  */
      if (mpfr_sgn (op2->value.complex.r) == 0
	  && mpfr_sgn (op2->value.complex.i) == 0)
839 840 841 842 843
	{
	  rc = ARITH_DIV0;
	  break;
	}

844 845 846 847
      gfc_set_model (op1->value.complex.r);
      mpfr_init (x);
      mpfr_init (y);
      mpfr_init (div);
848

849 850 851 852
      /* FIXME: possible numerical problems.  */
      mpfr_mul (x, op2->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
      mpfr_mul (y, op2->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
      mpfr_add (div, x, y, GFC_RND_MODE);
853

854 855 856 857 858
      mpfr_mul (x, op1->value.complex.r, op2->value.complex.r, GFC_RND_MODE);
      mpfr_mul (y, op1->value.complex.i, op2->value.complex.i, GFC_RND_MODE);
      mpfr_add (result->value.complex.r, x, y, GFC_RND_MODE);
      mpfr_div (result->value.complex.r, result->value.complex.r, div,
                GFC_RND_MODE);
859

860 861 862 863 864
      mpfr_mul (x, op1->value.complex.i, op2->value.complex.r, GFC_RND_MODE);
      mpfr_mul (y, op1->value.complex.r, op2->value.complex.i, GFC_RND_MODE);
      mpfr_sub (result->value.complex.i, x, y, GFC_RND_MODE);
      mpfr_div (result->value.complex.i, result->value.complex.i, div,
                GFC_RND_MODE);
865

866 867 868
      mpfr_clear (x);
      mpfr_clear (y);
      mpfr_clear (div);
869 870 871 872 873 874 875 876 877 878

      break;

    default:
      gfc_internal_error ("gfc_arith_divide(): Bad basic type");
    }

  if (rc == ARITH_OK)
    rc = gfc_range_check (result);

879 880 881 882 883 884 885
  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
886 887 888 889 890 891
  else if (rc == ARITH_ASYMMETRIC)
    {
      gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
892
  else if (rc != ARITH_OK)
893 894 895 896 897 898 899 900 901 902 903 904 905
    gfc_free_expr (result);
  else
    *resultp = result;

  return rc;
}


/* Compute the reciprocal of a complex number (guaranteed nonzero).  */

static void
complex_reciprocal (gfc_expr * op)
{
906
  mpfr_t mod, a, re, im;
907

908 909 910 911 912
  gfc_set_model (op->value.complex.r);
  mpfr_init (mod);
  mpfr_init (a);
  mpfr_init (re);
  mpfr_init (im);
913

914 915 916 917
  /* FIXME:  another possible numerical problem.  */
  mpfr_mul (mod, op->value.complex.r, op->value.complex.r, GFC_RND_MODE);
  mpfr_mul (a, op->value.complex.i, op->value.complex.i, GFC_RND_MODE);
  mpfr_add (mod, mod, a, GFC_RND_MODE);
918

919
  mpfr_div (re, op->value.complex.r, mod, GFC_RND_MODE);
920

921 922
  mpfr_neg (im, op->value.complex.i, GFC_RND_MODE);
  mpfr_div (im, im, mod, GFC_RND_MODE);
923

924 925
  mpfr_set (op->value.complex.r, re, GFC_RND_MODE);
  mpfr_set (op->value.complex.i, im, GFC_RND_MODE);
926

927 928 929 930
  mpfr_clear (re);
  mpfr_clear (im);
  mpfr_clear (mod);
  mpfr_clear (a);
931 932 933 934 935 936 937 938
}


/* Raise a complex number to positive power.  */

static void
complex_pow_ui (gfc_expr * base, int power, gfc_expr * result)
{
939
  mpfr_t re, im, a;
940

941 942 943 944
  gfc_set_model (base->value.complex.r);
  mpfr_init (re);
  mpfr_init (im);
  mpfr_init (a);
945

946 947
  mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE);
  mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
948 949 950

  for (; power > 0; power--)
    {
951 952 953 954 955
      mpfr_mul (re, base->value.complex.r, result->value.complex.r,
                GFC_RND_MODE);
      mpfr_mul (a, base->value.complex.i, result->value.complex.i,
                GFC_RND_MODE);
      mpfr_sub (re, re, a, GFC_RND_MODE);
956

957 958 959 960 961
      mpfr_mul (im, base->value.complex.r, result->value.complex.i,
                GFC_RND_MODE);
      mpfr_mul (a, base->value.complex.i, result->value.complex.r,
                GFC_RND_MODE);
      mpfr_add (im, im, a, GFC_RND_MODE);
962

963 964
      mpfr_set (result->value.complex.r, re, GFC_RND_MODE);
      mpfr_set (result->value.complex.i, im, GFC_RND_MODE);
965 966
    }

967 968 969
  mpfr_clear (re);
  mpfr_clear (im);
  mpfr_clear (a);
970 971 972 973 974 975 976 977 978 979 980
}


/* Raise a number to an integer power.  */

static arith
gfc_arith_power (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  int power, apower;
  gfc_expr *result;
  mpz_t unity_z;
981
  mpfr_t unity_f;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  arith rc;

  rc = ARITH_OK;

  if (gfc_extract_int (op2, &power) != NULL)
    gfc_internal_error ("gfc_arith_power(): Bad exponent");

  result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);

  if (power == 0)
    {				/* Handle something to the zeroth power */
      switch (op1->ts.type)
	{
	case BT_INTEGER:
	  if (mpz_sgn (op1->value.integer) == 0)
	    rc = ARITH_0TO0;
	  else
	    mpz_set_ui (result->value.integer, 1);
	  break;

	case BT_REAL:
1003
	  if (mpfr_sgn (op1->value.real) == 0)
1004 1005
	    rc = ARITH_0TO0;
	  else
1006
	    mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
1007 1008 1009
	  break;

	case BT_COMPLEX:
1010 1011
	  if (mpfr_sgn (op1->value.complex.r) == 0
	      && mpfr_sgn (op1->value.complex.i) == 0)
1012 1013 1014
	    rc = ARITH_0TO0;
	  else
	    {
1015 1016
	      mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE);
	      mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
1017 1018 1019 1020 1021 1022 1023 1024
	    }

	  break;

	default:
	  gfc_internal_error ("gfc_arith_power(): Bad base");
	}
    }
1025
  else
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    {
      apower = power;
      if (power < 0)
	apower = -power;

      switch (op1->ts.type)
	{
	case BT_INTEGER:
	  mpz_pow_ui (result->value.integer, op1->value.integer, apower);

	  if (power < 0)
	    {
	      mpz_init_set_ui (unity_z, 1);
	      mpz_tdiv_q (result->value.integer, unity_z,
			  result->value.integer);
	      mpz_clear (unity_z);
	    }

	  break;

	case BT_REAL:
1047 1048
	  mpfr_pow_ui (result->value.real, op1->value.real, apower,
                       GFC_RND_MODE);
1049 1050 1051

	  if (power < 0)
	    {
1052 1053 1054 1055 1056 1057
              gfc_set_model (op1->value.real);
	      mpfr_init (unity_f);
	      mpfr_set_ui (unity_f, 1, GFC_RND_MODE);
	      mpfr_div (result->value.real, unity_f, result->value.real,
                        GFC_RND_MODE);
	      mpfr_clear (unity_f);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	    }
	  break;

	case BT_COMPLEX:
	  complex_pow_ui (op1, apower, result);
	  if (power < 0)
	    complex_reciprocal (result);
	  break;

	default:
	  break;
	}
    }

  if (rc == ARITH_OK)
    rc = gfc_range_check (result);

1075 1076 1077 1078 1079 1080 1081
  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
1082 1083 1084 1085 1086 1087
  else if (rc == ARITH_ASYMMETRIC)
    {
      gfc_warning ("%s at %L", gfc_arith_error (rc), &op1->where);
      rc = ARITH_OK;
      *resultp = result;
    }
1088
  else if (rc != ARITH_OK)
1089 1090 1091
    gfc_free_expr (result);
  else
    *resultp = result;
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
  return rc;
}


/* Concatenate two string constants.  */

static arith
gfc_arith_concat (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;
  int len;

1105
  result = gfc_constant_result (BT_CHARACTER, gfc_default_character_kind,
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
				&op1->where);

  len = op1->value.character.length + op2->value.character.length;

  result->value.character.string = gfc_getmem (len + 1);
  result->value.character.length = len;

  memcpy (result->value.character.string, op1->value.character.string,
	  op1->value.character.length);

  memcpy (result->value.character.string + op1->value.character.length,
	  op2->value.character.string, op2->value.character.length);

  result->value.character.string[len] = '\0';

  *resultp = result;

  return ARITH_OK;
}


/* Comparison operators.  Assumes that the two expression nodes
   contain two constants of the same type.  */

int
gfc_compare_expr (gfc_expr * op1, gfc_expr * op2)
{
  int rc;

  switch (op1->ts.type)
    {
    case BT_INTEGER:
      rc = mpz_cmp (op1->value.integer, op2->value.integer);
      break;

    case BT_REAL:
1142
      rc = mpfr_cmp (op1->value.real, op2->value.real);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
      break;

    case BT_CHARACTER:
      rc = gfc_compare_string (op1, op2, NULL);
      break;

    case BT_LOGICAL:
      rc = ((!op1->value.logical && op2->value.logical)
	    || (op1->value.logical && !op2->value.logical));
      break;

    default:
      gfc_internal_error ("gfc_compare_expr(): Bad basic type");
    }

  return rc;
}


/* Compare a pair of complex numbers.  Naturally, this is only for
   equality/nonequality.  */

static int
compare_complex (gfc_expr * op1, gfc_expr * op2)
{
1168 1169
  return (mpfr_cmp (op1->value.complex.r, op2->value.complex.r) == 0
	  && mpfr_cmp (op1->value.complex.i, op2->value.complex.i) == 0);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}


/* Given two constant strings and the inverse collating sequence,
   compare the strings.  We return -1 for a<b, 0 for a==b and 1 for
   a>b.  If the xcoll_table is NULL, we use the processor's default
   collating sequence.  */

int
gfc_compare_string (gfc_expr * a, gfc_expr * b, const int *xcoll_table)
{
  int len, alen, blen, i, ac, bc;

  alen = a->value.character.length;
  blen = b->value.character.length;

  len = (alen > blen) ? alen : blen;

  for (i = 0; i < len; i++)
    {
      ac = (i < alen) ? a->value.character.string[i] : ' ';
      bc = (i < blen) ? b->value.character.string[i] : ' ';

      if (xcoll_table != NULL)
	{
	  ac = xcoll_table[ac];
	  bc = xcoll_table[bc];
	}

      if (ac < bc)
	return -1;
      if (ac > bc)
	return 1;
    }

  /* Strings are equal */

  return 0;
}


/* Specific comparison subroutines.  */

static arith
gfc_arith_eq (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

1218
  result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
				&op1->where);
  result->value.logical = (op1->ts.type == BT_COMPLEX) ?
    compare_complex (op1, op2) : (gfc_compare_expr (op1, op2) == 0);

  *resultp = result;
  return ARITH_OK;
}


static arith
gfc_arith_ne (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

1233
  result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
				&op1->where);
  result->value.logical = (op1->ts.type == BT_COMPLEX) ?
    !compare_complex (op1, op2) : (gfc_compare_expr (op1, op2) != 0);

  *resultp = result;
  return ARITH_OK;
}


static arith
gfc_arith_gt (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

1248
  result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
				&op1->where);
  result->value.logical = (gfc_compare_expr (op1, op2) > 0);
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_ge (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

1262
  result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
				&op1->where);
  result->value.logical = (gfc_compare_expr (op1, op2) >= 0);
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_lt (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

1276
  result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
				&op1->where);
  result->value.logical = (gfc_compare_expr (op1, op2) < 0);
  *resultp = result;

  return ARITH_OK;
}


static arith
gfc_arith_le (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
{
  gfc_expr *result;

1290
  result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
				&op1->where);
  result->value.logical = (gfc_compare_expr (op1, op2) <= 0);
  *resultp = result;

  return ARITH_OK;
}


static arith
reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr * op,
	      gfc_expr ** result)
{
  gfc_constructor *c, *head;
  gfc_expr *r;
  arith rc;

  if (op->expr_type == EXPR_CONSTANT)
    return eval (op, result);

  rc = ARITH_OK;
  head = gfc_copy_constructor (op->value.constructor);

  for (c = head; c; c = c->next)
    {
      rc = eval (c->expr, &r);
      if (rc != ARITH_OK)
	break;

      gfc_replace_expr (c->expr, r);
    }

  if (rc != ARITH_OK)
    gfc_free_constructor (head);
  else
    {
      r = gfc_get_expr ();
      r->expr_type = EXPR_ARRAY;
      r->value.constructor = head;
      r->shape = gfc_copy_shape (op->shape, op->rank);

      r->ts = head->expr->ts;
      r->where = op->where;
      r->rank = op->rank;

      *result = r;
    }

  return rc;
}


static arith
reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
		  gfc_expr * op1, gfc_expr * op2,
		  gfc_expr ** result)
{
  gfc_constructor *c, *head;
  gfc_expr *r;
  arith rc;

  head = gfc_copy_constructor (op1->value.constructor);
  rc = ARITH_OK;

  for (c = head; c; c = c->next)
    {
      rc = eval (c->expr, op2, &r);
      if (rc != ARITH_OK)
	break;

      gfc_replace_expr (c->expr, r);
    }

  if (rc != ARITH_OK)
    gfc_free_constructor (head);
  else
    {
      r = gfc_get_expr ();
      r->expr_type = EXPR_ARRAY;
      r->value.constructor = head;
      r->shape = gfc_copy_shape (op1->shape, op1->rank);

      r->ts = head->expr->ts;
      r->where = op1->where;
      r->rank = op1->rank;

      *result = r;
    }

  return rc;
}


static arith
reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
		  gfc_expr * op1, gfc_expr * op2,
		  gfc_expr ** result)
{
  gfc_constructor *c, *head;
  gfc_expr *r;
  arith rc;

  head = gfc_copy_constructor (op2->value.constructor);
  rc = ARITH_OK;

  for (c = head; c; c = c->next)
    {
      rc = eval (op1, c->expr, &r);
      if (rc != ARITH_OK)
	break;

      gfc_replace_expr (c->expr, r);
    }

  if (rc != ARITH_OK)
    gfc_free_constructor (head);
  else
    {
      r = gfc_get_expr ();
      r->expr_type = EXPR_ARRAY;
      r->value.constructor = head;
      r->shape = gfc_copy_shape (op2->shape, op2->rank);

      r->ts = head->expr->ts;
      r->where = op2->where;
      r->rank = op2->rank;

      *result = r;
    }

  return rc;
}


static arith
reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
		  gfc_expr * op1, gfc_expr * op2,
		  gfc_expr ** result)
{
  gfc_constructor *c, *d, *head;
  gfc_expr *r;
  arith rc;

  head = gfc_copy_constructor (op1->value.constructor);

  rc = ARITH_OK;
  d = op2->value.constructor;

  if (gfc_check_conformance ("Elemental binary operation", op1, op2)
      != SUCCESS)
    rc = ARITH_INCOMMENSURATE;
  else
    {

      for (c = head; c; c = c->next, d = d->next)
	{
	  if (d == NULL)
	    {
	      rc = ARITH_INCOMMENSURATE;
	      break;
	    }

	  rc = eval (c->expr, d->expr, &r);
	  if (rc != ARITH_OK)
	    break;

	  gfc_replace_expr (c->expr, r);
	}

      if (d != NULL)
	rc = ARITH_INCOMMENSURATE;
    }

  if (rc != ARITH_OK)
    gfc_free_constructor (head);
  else
    {
      r = gfc_get_expr ();
      r->expr_type = EXPR_ARRAY;
      r->value.constructor = head;
      r->shape = gfc_copy_shape (op1->shape, op1->rank);

      r->ts = head->expr->ts;
      r->where = op1->where;
      r->rank = op1->rank;

      *result = r;
    }

  return rc;
}


static arith
reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
	       gfc_expr * op1, gfc_expr * op2,
	       gfc_expr ** result)
{
  if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
    return eval (op1, op2, result);

  if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
    return reduce_binary_ca (eval, op1, op2, result);

  if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
    return reduce_binary_ac (eval, op1, op2, result);

  return reduce_binary_aa (eval, op1, op2, result);
}


typedef union
{
  arith (*f2)(gfc_expr *, gfc_expr **);
  arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
}
eval_f;

/* High level arithmetic subroutines.  These subroutines go into
   eval_intrinsic(), which can do one of several things to its
   operands.  If the operands are incompatible with the intrinsic
   operation, we return a node pointing to the operands and hope that
   an operator interface is found during resolution.

   If the operands are compatible and are constants, then we try doing
   the arithmetic.  We also handle the cases where either or both
   operands are array constructors.  */

static gfc_expr *
eval_intrinsic (gfc_intrinsic_op operator,
		eval_f eval, gfc_expr * op1, gfc_expr * op2)
{
  gfc_expr temp, *result;
  int unary;
  arith rc;

  gfc_clear_ts (&temp.ts);

  switch (operator)
    {
    case INTRINSIC_NOT:	/* Logical unary */
      if (op1->ts.type != BT_LOGICAL)
	goto runtime;

      temp.ts.type = BT_LOGICAL;
1535
      temp.ts.kind = gfc_default_logical_kind;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

      unary = 1;
      break;

      /* Logical binary operators */
    case INTRINSIC_OR:
    case INTRINSIC_AND:
    case INTRINSIC_NEQV:
    case INTRINSIC_EQV:
      if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
	goto runtime;

      temp.ts.type = BT_LOGICAL;
1549
      temp.ts.kind = gfc_default_logical_kind;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

      unary = 0;
      break;

    case INTRINSIC_UPLUS:
    case INTRINSIC_UMINUS:	/* Numeric unary */
      if (!gfc_numeric_ts (&op1->ts))
	goto runtime;

      temp.ts = op1->ts;

      unary = 1;
      break;

    case INTRINSIC_GE:
    case INTRINSIC_LT:		/* Additional restrictions  */
    case INTRINSIC_LE:          /* for ordering relations.  */
    case INTRINSIC_GT:
      if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
	{
	  temp.ts.type = BT_LOGICAL;
1571
	  temp.ts.kind = gfc_default_logical_kind;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	  goto runtime;
	}

      /* else fall through */

    case INTRINSIC_EQ:
    case INTRINSIC_NE:
      if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
	{
	  unary = 0;
	  temp.ts.type = BT_LOGICAL;
1583
	  temp.ts.kind = gfc_default_logical_kind;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	  break;
	}

      /* else fall through */

    case INTRINSIC_PLUS:
    case INTRINSIC_MINUS:
    case INTRINSIC_TIMES:
    case INTRINSIC_DIVIDE:
    case INTRINSIC_POWER:	/* Numeric binary */
      if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
	goto runtime;

      /* Insert any necessary type conversions to make the operands compatible.  */

      temp.expr_type = EXPR_OP;
      gfc_clear_ts (&temp.ts);
      temp.operator = operator;

      temp.op1 = op1;
      temp.op2 = op2;

      gfc_type_convert_binary (&temp);

      if (operator == INTRINSIC_EQ || operator == INTRINSIC_NE
	  || operator == INTRINSIC_GE || operator == INTRINSIC_GT
	  || operator == INTRINSIC_LE || operator == INTRINSIC_LT)
	{
	  temp.ts.type = BT_LOGICAL;
1613
	  temp.ts.kind = gfc_default_logical_kind;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	}

      unary = 0;
      break;

    case INTRINSIC_CONCAT:	/* Character binary */
      if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER)
	goto runtime;

      temp.ts.type = BT_CHARACTER;
1624
      temp.ts.kind = gfc_default_character_kind;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

      unary = 0;
      break;

    case INTRINSIC_USER:
      goto runtime;

    default:
      gfc_internal_error ("eval_intrinsic(): Bad operator");
    }

  /* Try to combine the operators.  */
  if (operator == INTRINSIC_POWER && op2->ts.type != BT_INTEGER)
    goto runtime;

  if (op1->expr_type != EXPR_CONSTANT
      && (op1->expr_type != EXPR_ARRAY
	  || !gfc_is_constant_expr (op1)
	  || !gfc_expanded_ac (op1)))
    goto runtime;

  if (op2 != NULL
      && op2->expr_type != EXPR_CONSTANT
      && (op2->expr_type != EXPR_ARRAY
	  || !gfc_is_constant_expr (op2)
	  || !gfc_expanded_ac (op2)))
    goto runtime;

  if (unary)
    rc = reduce_unary (eval.f2, op1, &result);
  else
    rc = reduce_binary (eval.f3, op1, op2, &result);

  if (rc != ARITH_OK)
    {				/* Something went wrong */
      gfc_error ("%s at %L", gfc_arith_error (rc), &op1->where);
      return NULL;
    }

  gfc_free_expr (op1);
  gfc_free_expr (op2);
  return result;

runtime:
  /* Create a run-time expression */
  result = gfc_get_expr ();
  result->ts = temp.ts;

  result->expr_type = EXPR_OP;
  result->operator = operator;

  result->op1 = op1;
  result->op2 = op2;

  result->where = op1->where;

  return result;
}


/* Modify type of expression for zero size array.  */
static gfc_expr *
eval_type_intrinsic0 (gfc_intrinsic_op operator, gfc_expr *op)
{
  if (op == NULL)
1690
    gfc_internal_error ("eval_type_intrinsic0(): op NULL");
1691

1692
  switch (operator)
1693 1694 1695 1696 1697 1698 1699 1700
    {
    case INTRINSIC_GE:
    case INTRINSIC_LT:
    case INTRINSIC_LE:
    case INTRINSIC_GT:
    case INTRINSIC_EQ:
    case INTRINSIC_NE:
      op->ts.type = BT_LOGICAL;
1701
      op->ts.kind = gfc_default_logical_kind;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
      break;

    default:
      break;
    }

  return op;
}


/* Return nonzero if the expression is a zero size array.  */

static int
gfc_zero_size_array (gfc_expr * e)
{
  if (e->expr_type != EXPR_ARRAY)
    return 0;

  return e->value.constructor == NULL;
}


/* Reduce a binary expression where at least one of the operands
   involves a zero-length array.  Returns NULL if neither of the
   operands is a zero-length array.  */

static gfc_expr *
reduce_binary0 (gfc_expr * op1, gfc_expr * op2)
{
  if (gfc_zero_size_array (op1))
    {
      gfc_free_expr (op2);
      return op1;
    }

  if (gfc_zero_size_array (op2))
    {
      gfc_free_expr (op1);
      return op2;
    }

  return NULL;
}


static gfc_expr *
eval_intrinsic_f2 (gfc_intrinsic_op operator,
		   arith (*eval) (gfc_expr *, gfc_expr **),
		   gfc_expr * op1, gfc_expr * op2)
{
  gfc_expr *result;
  eval_f f;

  if (op2 == NULL)
    {
      if (gfc_zero_size_array (op1))
1758
	return eval_type_intrinsic0 (operator, op1);
1759 1760 1761 1762 1763
    }
  else
    {
      result = reduce_binary0 (op1, op2);
      if (result != NULL)
1764
	return eval_type_intrinsic0 (operator, result);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    }

  f.f2 = eval;
  return eval_intrinsic (operator, f, op1, op2);
}


static gfc_expr *
eval_intrinsic_f3 (gfc_intrinsic_op operator,
		   arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
		   gfc_expr * op1, gfc_expr * op2)
{
  gfc_expr *result;
  eval_f f;

  result = reduce_binary0 (op1, op2);
  if (result != NULL)
    return eval_type_intrinsic0(operator, result);

  f.f3 = eval;
  return eval_intrinsic (operator, f, op1, op2);
}



gfc_expr *
gfc_uplus (gfc_expr * op)
{
  return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_uplus, op, NULL);
}

gfc_expr *
gfc_uminus (gfc_expr * op)
{
  return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
}

gfc_expr *
gfc_add (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
}

gfc_expr *
gfc_subtract (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
}

gfc_expr *
gfc_multiply (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
}

gfc_expr *
gfc_divide (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
}

gfc_expr *
gfc_power (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_POWER, gfc_arith_power, op1, op2);
}

gfc_expr *
gfc_concat (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
}

gfc_expr *
gfc_and (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
}

gfc_expr *
gfc_or (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
}

gfc_expr *
gfc_not (gfc_expr * op1)
{
  return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
}

gfc_expr *
gfc_eqv (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
}

gfc_expr *
gfc_neqv (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
}

gfc_expr *
gfc_eq (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_EQ, gfc_arith_eq, op1, op2);
}

gfc_expr *
gfc_ne (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_NE, gfc_arith_ne, op1, op2);
}

gfc_expr *
gfc_gt (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_GT, gfc_arith_gt, op1, op2);
}

gfc_expr *
gfc_ge (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_GE, gfc_arith_ge, op1, op2);
}

gfc_expr *
gfc_lt (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_LT, gfc_arith_lt, op1, op2);
}

gfc_expr *
gfc_le (gfc_expr * op1, gfc_expr * op2)
{
  return eval_intrinsic_f3 (INTRINSIC_LE, gfc_arith_le, op1, op2);
}


/* Convert an integer string to an expression node.  */

gfc_expr *
gfc_convert_integer (const char *buffer, int kind, int radix, locus * where)
{
  gfc_expr *e;
  const char *t;

  e = gfc_constant_result (BT_INTEGER, kind, where);
  /* a leading plus is allowed, but not by mpz_set_str */
  if (buffer[0] == '+')
    t = buffer + 1;
  else
    t = buffer;
  mpz_set_str (e->value.integer, t, radix);

  return e;
}


/* Convert a real string to an expression node.  */

gfc_expr *
gfc_convert_real (const char *buffer, int kind, locus * where)
{
  gfc_expr *e;

  e = gfc_constant_result (BT_REAL, kind, where);
1933
  mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

  return e;
}


/* Convert a pair of real, constant expression nodes to a single
   complex expression node.  */

gfc_expr *
gfc_convert_complex (gfc_expr * real, gfc_expr * imag, int kind)
{
  gfc_expr *e;

  e = gfc_constant_result (BT_COMPLEX, kind, &real->where);
1948 1949
  mpfr_set (e->value.complex.r, real->value.real, GFC_RND_MODE);
  mpfr_set (e->value.complex.i, imag->value.real, GFC_RND_MODE);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

  return e;
}


/******* Simplification of intrinsic functions with constant arguments *****/


/* Deal with an arithmetic error.  */

static void
arith_error (arith rc, gfc_typespec * from, gfc_typespec * to, locus * where)
{
  gfc_error ("%s converting %s to %s at %L", gfc_arith_error (rc),
	     gfc_typename (from), gfc_typename (to), where);

1966 1967
  /* TODO: Do something about the error, ie, throw exception, return
     NaN, etc.  */
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
}

/* Convert integers to integers.  */

gfc_expr *
gfc_int2int (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_INTEGER, kind, &src->where);

  mpz_set (result->value.integer, src->value.integer);

  if ((rc = gfc_check_integer_range (result->value.integer, kind))
      != ARITH_OK)
    {
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
      if (rc == ARITH_ASYMMETRIC)
        {
          gfc_warning ("%s at %L", gfc_arith_error (rc), &src->where);
        }
      else
        {
          arith_error (rc, &src->ts, &result->ts, &src->where);
          gfc_free_expr (result);
          return NULL;
        }
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    }

  return result;
}


/* Convert integers to reals.  */

gfc_expr *
gfc_int2real (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_REAL, kind, &src->where);

2011
  mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

  if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert default integer to default complex.  */

gfc_expr *
gfc_int2complex (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_COMPLEX, kind, &src->where);

2034 2035
  mpfr_set_z (result->value.complex.r, src->value.integer, GFC_RND_MODE);
  mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
2036

2037
  if ((rc = gfc_check_real_range (result->value.complex.r, kind)) != ARITH_OK)
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert default real to default integer.  */

gfc_expr *
gfc_real2int (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_INTEGER, kind, &src->where);

2058
  gfc_mpfr_to_mpz (result->value.integer, src->value.real);
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

  if ((rc = gfc_check_integer_range (result->value.integer, kind))
      != ARITH_OK)
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert real to real.  */

gfc_expr *
gfc_real2real (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_REAL, kind, &src->where);

2082
  mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
2083

2084 2085 2086 2087 2088 2089
  rc = gfc_check_real_range (result->value.real, kind);

  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &src->where);
2090
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2091 2092
    }
  else if (rc != ARITH_OK)
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert real to complex.  */

gfc_expr *
gfc_real2complex (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_COMPLEX, kind, &src->where);

2113 2114
  mpfr_set (result->value.complex.r, src->value.real, GFC_RND_MODE);
  mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
2115

2116 2117 2118 2119 2120 2121
  rc = gfc_check_real_range (result->value.complex.r, kind);

  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &src->where);
2122
      mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE);
2123 2124
    }
  else if (rc != ARITH_OK)
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert complex to integer.  */

gfc_expr *
gfc_complex2int (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_INTEGER, kind, &src->where);

2145
  gfc_mpfr_to_mpz (result->value.integer, src->value.complex.r);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

  if ((rc = gfc_check_integer_range (result->value.integer, kind))
      != ARITH_OK)
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert complex to real.  */

gfc_expr *
gfc_complex2real (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_REAL, kind, &src->where);

2169
  mpfr_set (result->value.real, src->value.complex.r, GFC_RND_MODE);
2170

2171 2172
  rc = gfc_check_real_range (result->value.real, kind);

2173
  if (rc == ARITH_UNDERFLOW)
2174 2175 2176
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &src->where);
2177
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2178 2179
    }
  if (rc != ARITH_OK)
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Convert complex to complex.  */

gfc_expr *
gfc_complex2complex (gfc_expr * src, int kind)
{
  gfc_expr *result;
  arith rc;

  result = gfc_constant_result (BT_COMPLEX, kind, &src->where);

2200 2201
  mpfr_set (result->value.complex.r, src->value.complex.r, GFC_RND_MODE);
  mpfr_set (result->value.complex.i, src->value.complex.i, GFC_RND_MODE);
2202

2203 2204 2205 2206 2207 2208
  rc = gfc_check_real_range (result->value.complex.r, kind);

  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &src->where);
2209
      mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE);
2210 2211 2212 2213 2214 2215 2216
    }
  else if (rc != ARITH_OK)
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }
2217

2218 2219 2220 2221 2222 2223
  rc = gfc_check_real_range (result->value.complex.i, kind);

  if (rc == ARITH_UNDERFLOW)
    {
      if (gfc_option.warn_underflow)
        gfc_warning ("%s at %L", gfc_arith_error (rc), &src->where);
2224
      mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
2225 2226
    }
  else if (rc != ARITH_OK)
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    {
      arith_error (rc, &src->ts, &result->ts, &src->where);
      gfc_free_expr (result);
      return NULL;
    }

  return result;
}


/* Logical kind conversion.  */

gfc_expr *
gfc_log2log (gfc_expr * src, int kind)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_LOGICAL, kind, &src->where);
  result->value.logical = src->value.logical;

  return result;
}