vec.h 36.1 KB
Newer Older
1
/* Vector API for GNU compiler.
2
   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Kelley Cook committed
19 20
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */
21 22 23 24 25 26 27 28 29 30 31

#ifndef GCC_VEC_H
#define GCC_VEC_H

/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

32 33 34 35 36 37 38 39
   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.
40

41 42 43 44 45
   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

46 47 48 49 50
   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
51 52 53 54 55 56
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.
57 58 59 60

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
61
   (it dies if there is not).  The latter will reallocate the
62 63 64
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
65 66 67 68 69 70 71
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
   (for instance, you know this is the last allocation), use a
   negative number for reservation.  You can also create a vector of a
   specific size from the get go.
72 73

   You should prefer the push and pop operations, as they append and
74 75
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
76 77 78 79
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
80 81
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
82
   array using insert that will maintain sorted order.
83

84 85 86 87 88 89
   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
90
   
91 92 93 94
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
95
   
96
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97
   get the non-memory allocation version, and then a
98
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99 100 101 102 103
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
104 105 106 107 108 109 110 111 112 113
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.
114 115 116

   An example of their use would be,

117 118 119
   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.
120 121

   struct my_struct {
122
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
123 124 125 126
   };

   struct my_struct *s;

127
   if (VEC_length(tree,s->v)) { we have some contents }
128
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129 130
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }
131 132 133 134 135

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
136 137 138 139 140
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */
141 142

/* Length of vector
143
   unsigned VEC_T_length(const VEC(T) *v);
144 145 146

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */
147

148
#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
149

150 151 152 153

/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

154
   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
155 156 157 158

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


159
/* Get the final element of the vector.
160
   T VEC_T_last(VEC(T) *v); // Integer
161 162 163
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

164
   Return the final element.  V must not be empty.  */
165

166
#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167 168

/* Index into vector
169
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170 171
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172

173
   Return the IX'th element.  If IX must be in the domain of V.  */
174

175
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176 177

/* Iterate over vector
178
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179 180
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181

182 183 184
   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,
185

186
     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187
       continue;  */
188

189
#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190 191

/* Allocate new vector.
192
   VEC(T,A) *VEC_T_A_alloc(int reserve);
193

194
   Allocate a new vector with space for RESERVE objects.  If RESERVE
195
   is zero, NO vector is created.  */
196

197
#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198

199
/* Free a vector.
200
   void VEC_T_A_free(VEC(T,A) *&);
201 202 203

   Free a vector and set it to NULL.  */

204
#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
205

206 207 208
/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
   
209 210
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
211 212
   
   These allow the caller to perform the memory allocation.  */
213

214 215
#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216

217 218 219 220
/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
221
   old vectors need not be allocated by the same mechanism.  */
222 223 224

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

225 226 227 228
/* Determine if a vector has additional capacity.
   
   int VEC_T_space (VEC(T) *v,int reserve)

229
   If V has space for RESERVE additional entries, return nonzero.  You
230 231
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
232
   nonzero in exactly the same circumstances that VEC_T_reserve
233 234
   will.  */

235 236
#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237 238

/* Reserve space.
239
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240

241 242 243 244 245 246
   Ensure that V has at least abs(RESERVE) slots available.  The
   signedness of RESERVE determines the reallocation behavior.  A
   negative value will not create additional headroom beyond that
   requested.  A positive value will create additional headroom.  Note
   this can cause V to be reallocated.  Returns nonzero iff
   reallocation actually occurred.  */
247

248 249
#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
250 251

/* Push object with no reallocation
252
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
253 254 255 256 257
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
   
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
258 259
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */
260

261 262
#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
263 264

/* Push object with reallocation
265
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
266 267
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
268 269 270 271
   
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */
272

273 274
#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
275 276

/* Pop element off end
277
   T VEC_T_pop (VEC(T) *v);		// Integer
278 279 280 281 282
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */
283

284
#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
285

286
/* Truncate to specific length
287
   void VEC_T_truncate (VEC(T) *v, unsigned len);
288
   
289 290
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */
291

292 293 294 295 296 297 298 299 300 301 302
#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
303
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
304

305
/* Replace element
306
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
307 308
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
309 310 311 312 313 314
   
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */
315

316 317
#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
318 319

/* Insert object with no reallocation
320
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
321 322
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
323 324 325 326
   
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
327
   place. There must be sufficient space.  */
328

329 330
#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
331 332

/* Insert object with reallocation
333
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
334 335
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
336 337 338 339 340
   
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */
341

342 343
#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
344 345
     
/* Remove element retaining order
346
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
347 348
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
349 350
   
   Remove an element from the IXth position of V. Ordering of
351
   remaining elements is preserved.  For pointer vectors returns the
352
   removed object.  This is an O(N) operation due to a memmove.  */
353

354 355
#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
356 357

/* Remove element destroying order
358
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
359 360
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
361 362 363 364
   
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */
365

366 367
#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
368

369 370 371 372 373
/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */
374

375
#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
376

377 378
/* Find the first index in the vector not less than the object.
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 
379 380
                               bool (*lessthan) (const T, const T)); // Integer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 
381 382 383 384 385 386
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
   
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
387
   true if the first argument is strictly less than the second.  */
388
   
389 390
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
391

392 393
#if !IN_GENGTYPE
/* Reallocate an array of elements with prefix.  */
394 395
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
396 397
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
398 399
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
400
#define vec_heap_free(V) free (V)
401 402

#if ENABLE_CHECKING
403 404 405
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
406
     
407 408
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
409 410 411 412

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
413
#else
414 415 416
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
417
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
418 419
#endif

420 421
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
422
#else  /* IN_GENGTYPE */
423
#define VEC(T,A) VEC_ T _ A
424 425 426 427 428
#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
#define VEC_STRINGIFY_(X) #X
#undef GTY
#endif /* IN_GENGTYPE */

429 430
/* Base of vector type, not user visible.  */     
#define VEC_T(T,B)							  \
431 432 433 434 435 436 437 438
typedef struct VEC(T,B) 				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
439
typedef struct VEC(T,B) GTY(())				 		  \
440
{									  \
441 442
  unsigned num;								  \
  unsigned alloc;							  \
443 444 445 446
  T GTY ((length ("%h.num"))) vec[1];					  \
} VEC(T,B)

/* Derived vector type, user visible.  */
447
#define VEC_TA_GTY(T,B,A,GTY)						  \
448 449 450 451 452 453 454
typedef struct VEC(T,A) GTY						  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

/* Convert to base type.  */
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/* Vector of integer-like object.  */
#if IN_GENGTYPE
{"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
#else
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
struct vec_swallow_trailing_semi
#endif

477 478
/* Vector of pointer to object.  */
#if IN_GENGTYPE
479 480
{"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
481
#else
482
#define DEF_VEC_P(T) 							  \
483
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
484
{									  \
485
  (void)((T)1 == (void *)1);						  \
486 487
}									  \
									  \
488 489 490 491 492 493 494 495 496 497 498
VEC_T_GTY(T,base);							  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
struct vec_swallow_trailing_semi
#endif

#define DEF_VEC_FUNC_P(T)						  \
499
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
500 501 502 503
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
504 505
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
506
{									  \
507
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
508
  									  \
Nathan Sidwell committed
509
  return vec_->vec[vec_->num - 1];					  \
510 511
}									  \
									  \
512 513
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
514
{									  \
515
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
516 517 518 519
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
520 521
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
522
{									  \
523 524 525 526 527 528 529 530 531 532
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
533 534
}									  \
									  \
535
static inline size_t VEC_OP (T,base,embedded_size)			  \
536
     (int alloc_)							  \
537
{									  \
538
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
539 540
}									  \
									  \
541 542
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
543 544 545
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
546 547
}									  \
									  \
548 549
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
550
{									  \
551 552
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
553 554
}									  \
									  \
555 556
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
557
{									  \
558
  T *slot_;								  \
559
  									  \
560
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
561 562 563 564 565 566
  slot_ = &vec_->vec[vec_->num++];					  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
567
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
568
{									  \
569
  T obj_;								  \
570
									  \
571
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
572 573 574 575 576
  obj_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
577 578
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
579
{									  \
580
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
581 582
  if (vec_)								  \
    vec_->num = size_;							  \
583 584
}									  \
									  \
585 586
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
587
{									  \
588
  T old_obj_;								  \
589
									  \
590
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
591 592 593 594 595 596
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
597 598 599 600 601 602 603
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
604
  slot_ = &vec_->vec[ix_];						  \
605
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
606 607 608 609 610
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
611 612
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
613
{									  \
614 615
  T *slot_;								  \
  T obj_;								  \
616
									  \
617
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
618 619
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
620
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
621 622 623 624
									  \
  return obj_;								  \
}									  \
									  \
625 626
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
627
{									  \
628 629
  T *slot_;								  \
  T obj_;								  \
630
									  \
631
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
632 633 634 635 636 637 638
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  *slot_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
639 640
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
641 642 643 644
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
669 670 671
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
  /* We must request exact size allocation, hence the negation.  */	  \
  return (VEC(T,A) *) vec_##A##_p_reserve (NULL, -alloc_ PASS_MEM_STAT);  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
      /* We must request exact size allocation, hence the negation. */	  \
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve			  \
			       (NULL, -len_ PASS_MEM_STAT));		  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_),			  \
				       alloc_ < 0 ? -alloc_ : alloc_	  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
  VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
			VEC_CHECK_PASS PASS_MEM_STAT);			  \
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
743
}
744 745 746

/* Vector of object.  */
#if IN_GENGTYPE
747 748
{"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
749
#else
750
#define DEF_VEC_O(T)							  \
751 752 753 754 755 756 757 758 759 760 761
VEC_T_GTY(T,base);							  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
struct vec_swallow_trailing_semi
#endif

#define DEF_VEC_FUNC_O(T)						  \
762
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
763 764 765 766
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
767
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
768
{									  \
769
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
770 771 772 773
  									  \
  return &vec_->vec[vec_->num - 1];					  \
}									  \
									  \
774 775
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
776
{									  \
777
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
778 779 780 781
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
782 783
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
784
{									  \
785 786 787 788 789 790 791 792 793 794
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
795 796
}									  \
									  \
797
static inline size_t VEC_OP (T,base,embedded_size)			  \
798
     (int alloc_)							  \
799
{									  \
800
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
801 802
}									  \
									  \
803 804
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
805
{									  \
806 807
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
808 809
}									  \
									  \
810 811
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
812
{									  \
813 814
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
815 816
}									  \
									  \
817 818
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
819
{									  \
820
  T *slot_;								  \
821
  									  \
822
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
823 824 825 826 827 828 829
  slot_ = &vec_->vec[vec_->num++];					  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
830
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
831
{									  \
832
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
833 834 835
  --vec_->num;								  \
}									  \
									  \
836 837
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
838
{									  \
839
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
840 841
  if (vec_)								  \
    vec_->num = size_;							  \
842 843
}									  \
									  \
844 845
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
846
{									  \
847
  T *slot_;								  \
848
									  \
849
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
850 851 852 853 854 855 856
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
857 858 859 860 861 862 863
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
864
  slot_ = &vec_->vec[ix_];						  \
865
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
866 867 868 869 870 871
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
872 873
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
874
{									  \
875
  T *slot_;								  \
876
									  \
877 878 879
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
880 881
}									  \
									  \
882 883
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
884
{									  \
885 886 887
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
}									  \
888
									  \
889 890 891 892
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
893 894
}									  \
									  \
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
919
}
920

921
#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
922 923
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
924
{									  \
925 926 927 928 929
  /* We must request exact size allocation, hence the negation.  */	  \
  return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_,		  \
                                           offsetof (VEC(T,A),base.vec),  \
					   sizeof (T)			  \
                                           PASS_MEM_STAT);		  \
930 931
}									  \
									  \
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
      /* We must request exact size allocation, hence the negation. */	  \
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve			  \
			       (NULL, -len_,				  \
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
951 952
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
953
{									  \
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_),			  \
				       alloc_ < 0 ? -alloc_ : alloc_	  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
  VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
			VEC_CHECK_PASS PASS_MEM_STAT);			  \
  VEC_BASE (*vec_)->num = size_;					  \
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
1003
}
1004
#endif /* GCC_VEC_H */