lambda.h 14.6 KB
Newer Older
1
/* Lambda matrix and vector interface.
2
   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 4 5 6 7 8
   Contributed by Daniel Berlin <dberlin@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20

21 22 23
#ifndef LAMBDA_H
#define LAMBDA_H

Daniel Berlin committed
24 25
#include "vec.h"

26 27 28 29
/* An integer vector.  A vector formally consists of an element of a vector
   space. A vector space is a set that is closed under vector addition
   and scalar multiplication.  In this vector space, an element is a list of
   integers.  */
30
typedef int *lambda_vector;
31

32 33 34
DEF_VEC_P(lambda_vector);
DEF_VEC_ALLOC_P(lambda_vector,heap);

35 36 37 38
/* An integer matrix.  A matrix consists of m vectors of length n (IE
   all vectors are the same length).  */
typedef lambda_vector *lambda_matrix;

39 40 41
/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
   matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
   represents the denominator for every element in the matrix.  */
42
typedef struct lambda_trans_matrix_s
Daniel Berlin committed
43 44 45 46 47 48 49 50 51 52 53
{
  lambda_matrix matrix;
  int rowsize;
  int colsize;
  int denominator;
} *lambda_trans_matrix;
#define LTM_MATRIX(T) ((T)->matrix)
#define LTM_ROWSIZE(T) ((T)->rowsize)
#define LTM_COLSIZE(T) ((T)->colsize)
#define LTM_DENOMINATOR(T) ((T)->denominator)

54 55 56 57 58 59 60 61 62
/* A vector representing a statement in the body of a loop.
   The COEFFICIENTS vector contains a coefficient for each induction variable
   in the loop nest containing the statement.
   The DENOMINATOR represents the denominator for each coefficient in the
   COEFFICIENT vector.

   This structure is used during code generation in order to rewrite the old
   induction variable uses in a statement in terms of the newly created
   induction variables.  */
63
typedef struct lambda_body_vector_s
Daniel Berlin committed
64 65 66 67 68 69 70 71 72
{
  lambda_vector coefficients;
  int size;
  int denominator;
} *lambda_body_vector;
#define LBV_COEFFICIENTS(T) ((T)->coefficients)
#define LBV_SIZE(T) ((T)->size)
#define LBV_DENOMINATOR(T) ((T)->denominator)

73 74 75 76 77 78 79 80 81 82 83 84
/* Piecewise linear expression.  
   This structure represents a linear expression with terms for the invariants
   and induction variables of a loop. 
   COEFFICIENTS is a vector of coefficients for the induction variables, one
   per loop in the loop nest.
   CONSTANT is the constant portion of the linear expression
   INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
   one per invariant.
   DENOMINATOR is the denominator for all of the coefficients and constants in
   the expression.  
   The linear expressions can be linked together using the NEXT field, in
   order to represent MAX or MIN of a group of linear expressions.  */
Daniel Berlin committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
typedef struct lambda_linear_expression_s
{
  lambda_vector coefficients;
  int constant;
  lambda_vector invariant_coefficients;
  int denominator;
  struct lambda_linear_expression_s *next;
} *lambda_linear_expression;

#define LLE_COEFFICIENTS(T) ((T)->coefficients)
#define LLE_CONSTANT(T) ((T)->constant)
#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
#define LLE_DENOMINATOR(T) ((T)->denominator)
#define LLE_NEXT(T) ((T)->next)

100 101 102 103
struct obstack;

lambda_linear_expression lambda_linear_expression_new (int, int,
                                                       struct obstack *);
Daniel Berlin committed
104 105 106
void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
				     int, char);

107 108 109 110 111 112
/* Loop structure.  Our loop structure consists of a constant representing the
   STEP of the loop, a set of linear expressions representing the LOWER_BOUND
   of the loop, a set of linear expressions representing the UPPER_BOUND of
   the loop, and a set of linear expressions representing the LINEAR_OFFSET of
   the loop.  The linear offset is a set of linear expressions that are
   applied to *both* the lower bound, and the upper bound.  */
Daniel Berlin committed
113 114 115 116 117 118 119 120 121 122 123 124 125
typedef struct lambda_loop_s
{
  lambda_linear_expression lower_bound;
  lambda_linear_expression upper_bound;
  lambda_linear_expression linear_offset;
  int step;
} *lambda_loop;

#define LL_LOWER_BOUND(T) ((T)->lower_bound)
#define LL_UPPER_BOUND(T) ((T)->upper_bound)
#define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
#define LL_STEP(T)   ((T)->step)

126 127 128 129 130 131
/* Loop nest structure.  
   The loop nest structure consists of a set of loop structures (defined
   above) in LOOPS, along with an integer representing the DEPTH of the loop,
   and an integer representing the number of INVARIANTS in the loop.  Both of
   these integers are used to size the associated coefficient vectors in the
   linear expression structures.  */
132
typedef struct lambda_loopnest_s
Daniel Berlin committed
133 134 135 136 137 138 139 140 141 142
{
  lambda_loop *loops;
  int depth;
  int invariants;
} *lambda_loopnest;

#define LN_LOOPS(T) ((T)->loops)
#define LN_DEPTH(T) ((T)->depth)
#define LN_INVARIANTS(T) ((T)->invariants)

143 144 145 146
lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
                                           lambda_trans_matrix,
                                           struct obstack *);
Daniel Berlin committed
147 148
struct loop;
bool perfect_nest_p (struct loop *);
Daniel Berlin committed
149 150 151 152 153 154
void print_lambda_loopnest (FILE *, lambda_loopnest, char);

#define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))

void print_lambda_loop (FILE *, lambda_loop, int, int, char);

155 156 157
lambda_matrix lambda_matrix_new (int, int);

void lambda_matrix_id (lambda_matrix, int);
Daniel Berlin committed
158
bool lambda_matrix_id_p (lambda_matrix, int);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
			int);
void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
			   lambda_matrix, int, int);
void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
			 int, int, int);
void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
void lambda_matrix_row_exchange (lambda_matrix, int, int);
void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
void lambda_matrix_row_negate (lambda_matrix mat, int, int);
void lambda_matrix_row_mc (lambda_matrix, int, int, int);
void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
void lambda_matrix_col_negate (lambda_matrix, int, int);
void lambda_matrix_col_mc (lambda_matrix, int, int, int);
int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
void lambda_matrix_project_to_null (lambda_matrix, int, int, int, 
				    lambda_vector);
void print_lambda_matrix (FILE *, lambda_matrix, int, int);

Daniel Berlin committed
186 187 188 189 190 191 192 193
lambda_trans_matrix lambda_trans_matrix_new (int, int);
bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
int lambda_trans_matrix_rank (lambda_trans_matrix);
lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
194 195
void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector, 
				lambda_vector);
Daniel Berlin committed
196
bool lambda_trans_matrix_id_p (lambda_trans_matrix);
197

198 199 200 201
lambda_body_vector lambda_body_vector_new (int, struct obstack *);
lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
                                                   lambda_body_vector,
                                                   struct obstack *);
Daniel Berlin committed
202
void print_lambda_body_vector (FILE *, lambda_body_vector);
203
lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
204
						 VEC(tree,heap) **,
205 206
                                                 VEC(tree,heap) **,
                                                 struct obstack *);
207 208
void lambda_loopnest_to_gcc_loopnest (struct loop *,
				      VEC(tree,heap) *, VEC(tree,heap) *,
209
				      VEC(tree,heap) **,
210 211
                                      lambda_loopnest, lambda_trans_matrix,
                                      struct obstack *);
212
void remove_iv (tree);
Daniel Berlin committed
213

214 215 216 217 218 219 220 221 222 223 224 225 226
static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
static inline void lambda_vector_add (lambda_vector, lambda_vector,
				      lambda_vector, int);
static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
					 lambda_vector, int);
static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
static inline bool lambda_vector_zerop (lambda_vector, int);
static inline void lambda_vector_clear (lambda_vector, int);
static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
static inline int lambda_vector_min_nz (lambda_vector, int, int);
static inline int lambda_vector_first_nz (lambda_vector, int, int);
static inline void print_lambda_vector (FILE *, lambda_vector, int);
227 228 229 230 231 232

/* Allocate a new vector of given SIZE.  */

static inline lambda_vector
lambda_vector_new (int size)
{
233
  return GGC_CNEWVEC (int, size);
234 235
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306


/* Multiply vector VEC1 of length SIZE by a constant CONST1,
   and store the result in VEC2.  */

static inline void
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
			  int size, int const1)
{
  int i;

  if (const1 == 0)
    lambda_vector_clear (vec2, size);
  else
    for (i = 0; i < size; i++)
      vec2[i] = const1 * vec1[i];
}

/* Negate vector VEC1 with length SIZE and store it in VEC2.  */

static inline void 
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
		      int size)
{
  lambda_vector_mult_const (vec1, vec2, size, -1);
}

/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE.  */

static inline void
lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
		   lambda_vector vec3, int size)
{
  int i;
  for (i = 0; i < size; i++)
    vec3[i] = vec1[i] + vec2[i];
}

/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2.  All vectors have length SIZE.  */

static inline void
lambda_vector_add_mc (lambda_vector vec1, int const1,
		      lambda_vector vec2, int const2,
		      lambda_vector vec3, int size)
{
  int i;
  for (i = 0; i < size; i++)
    vec3[i] = const1 * vec1[i] + const2 * vec2[i];
}

/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */

static inline void
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
		    int size)
{
  memcpy (vec2, vec1, size * sizeof (*vec1));
}

/* Return true if vector VEC1 of length SIZE is the zero vector.  */

static inline bool 
lambda_vector_zerop (lambda_vector vec1, int size)
{
  int i;
  for (i = 0; i < size; i++)
    if (vec1[i] != 0)
      return false;
  return true;
}

307 308 309 310 311
/* Clear out vector VEC1 of length SIZE.  */

static inline void
lambda_vector_clear (lambda_vector vec1, int size)
{
312
  memset (vec1, 0, size * sizeof (*vec1));
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326
/* Return true if two vectors are equal.  */
 
static inline bool
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
{
  int i;
  for (i = 0; i < size; i++)
    if (vec1[i] != vec2[i])
      return false;
  return true;
}

327
/* Return the minimum nonzero element in vector VEC1 between START and N.
328 329 330 331 332 333 334
   We must have START <= N.  */

static inline int
lambda_vector_min_nz (lambda_vector vec1, int n, int start)
{
  int j;
  int min = -1;
335 336

  gcc_assert (start <= n);
337 338 339 340 341 342
  for (j = start; j < n; j++)
    {
      if (vec1[j])
	if (min < 0 || vec1[j] < vec1[min])
	  min = j;
    }
343
  gcc_assert (min >= 0);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

  return min;
}

/* Return the first nonzero element of vector VEC1 between START and N.
   We must have START <= N.   Returns N if VEC1 is the zero vector.  */

static inline int
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
{
  int j = start;
  while (j < n && vec1[j] == 0)
    j++;
  return j;
}


/* Multiply a vector by a matrix.  */

static inline void
lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat, 
			   int n, lambda_vector dest)
{
  int i, j;
  lambda_vector_clear (dest, n);
  for (i = 0; i < n; i++)
    for (j = 0; j < m; j++)
      dest[i] += mat[j][i] * vect[j];
}


375 376 377 378 379 380 381 382 383 384 385
/* Print out a vector VEC of length N to OUTFILE.  */

static inline void
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
{
  int i;

  for (i = 0; i < n; i++)
    fprintf (outfile, "%3d ", vector[i]);
  fprintf (outfile, "\n");
}
386

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/* Compute the greatest common divisor of two numbers using
   Euclid's algorithm.  */

static inline int 
gcd (int a, int b)
{
  int x, y, z;

  x = abs (a);
  y = abs (b);

  while (x > 0)
    {
      z = y % x;
      y = x;
      x = z;
    }

  return y;
}

/* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */

static inline int
lambda_vector_gcd (lambda_vector vector, int size)
{
  int i;
  int gcd1 = 0;

  if (size > 0)
    {
      gcd1 = vector[0];
      for (i = 1; i < size; i++)
	gcd1 = gcd (gcd1, vector[i]);
    }
  return gcd1;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/* Returns true when the vector V is lexicographically positive, in
   other words, when the first nonzero element is positive.  */

static inline bool
lambda_vector_lexico_pos (lambda_vector v, 
			  unsigned n)
{
  unsigned i;
  for (i = 0; i < n; i++)
    {
      if (v[i] == 0)
	continue;
      if (v[i] < 0)
	return false;
      if (v[i] > 0)
	return true;
    }
  return true;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/* Given a vector of induction variables IVS, and a vector of
   coefficients COEFS, build a tree that is a linear combination of
   the induction variables.  */

static inline tree
build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
{
  unsigned i;
  tree iv;
  tree expr = fold_convert (type, integer_zero_node);

  for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
    {
      int k = coefs[i];

      if (k == 1)
	expr = fold_build2 (PLUS_EXPR, type, expr, iv);

      else if (k != 0)
	expr = fold_build2 (PLUS_EXPR, type, expr,
			    fold_build2 (MULT_EXPR, type, iv,
					 build_int_cst (type, k)));
    }

  return expr;
}

472 473
#endif /* LAMBDA_H  */