vec.h 45.9 KB
Newer Older
1
/* Vector API for GNU compiler.
2 3
   Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
4 5 6 7 8 9
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21 22 23 24

#ifndef GCC_VEC_H
#define GCC_VEC_H

25 26
#include "statistics.h"		/* For MEM_STAT_DECL.  */

27 28 29 30 31 32 33
/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

34 35 36 37 38 39 40 41
   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.
42

43 44 45 46 47
   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

48 49 50 51 52
   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
53 54 55 56 57 58
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.
59 60 61 62

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
63
   (it dies if there is not).  The latter will reallocate the
64 65 66
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
67 68 69 70
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
71 72
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
73
   specific size from the get go.
74 75

   You should prefer the push and pop operations, as they append and
76 77
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
78 79 80 81
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
82 83
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
84
   array using insert that will maintain sorted order.
85

86 87 88 89 90 91
   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
H.J. Lu committed
92

93 94 95 96
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
H.J. Lu committed
97

98
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
99
   get the non-memory allocation version, and then a
100
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
101 102 103 104 105
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
106 107 108 109 110 111 112 113 114 115
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.
116 117 118

   An example of their use would be,

119 120 121
   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.
122 123

   struct my_struct {
124
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
125 126 127 128
   };

   struct my_struct *s;

129
   if (VEC_length(tree,s->v)) { we have some contents }
130
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
131 132
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }
133 134 135 136 137

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
138 139 140 141 142
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */
143 144

/* Length of vector
145
   unsigned VEC_T_length(const VEC(T) *v);
146 147 148

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */
149

150
#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
151

152 153 154 155

/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

156
   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
157 158 159 160

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


161
/* Get the final element of the vector.
162
   T VEC_T_last(VEC(T) *v); // Integer
163 164 165
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

166
   Return the final element.  V must not be empty.  */
167

168
#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
169 170

/* Index into vector
171
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
172 173
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
174

175
   Return the IX'th element.  If IX must be in the domain of V.  */
176

177
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
178 179

/* Iterate over vector
180
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
181 182
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
183

184 185 186
   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,
187

188
     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
189
       continue;  */
190

191
#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
192 193

/* Allocate new vector.
194
   VEC(T,A) *VEC_T_A_alloc(int reserve);
195

196
   Allocate a new vector with space for RESERVE objects.  If RESERVE
197
   is zero, NO vector is created.  */
198

199
#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
200

201
/* Free a vector.
202
   void VEC_T_A_free(VEC(T,A) *&);
203 204 205

   Free a vector and set it to NULL.  */

206
#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
207

208 209
/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
H.J. Lu committed
210

211 212
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
H.J. Lu committed
213

214
   These allow the caller to perform the memory allocation.  */
215

216 217
#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
218

219 220 221 222
/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
223
   old vectors need not be allocated by the same mechanism.  */
224 225 226

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

227
/* Determine if a vector has additional capacity.
H.J. Lu committed
228

229 230
   int VEC_T_space (VEC(T) *v,int reserve)

231
   If V has space for RESERVE additional entries, return nonzero.  You
232 233
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
234
   nonzero in exactly the same circumstances that VEC_T_reserve
235 236
   will.  */

237 238
#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
239 240

/* Reserve space.
241
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
242

243 244 245 246
   Ensure that V has at least RESERVE slots available.  This will
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */
247

248 249
#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
250

251 252 253 254 255 256 257 258 259 260 261
/* Reserve space exactly.
   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will not
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve_exact(T,A,V,R)	\
	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

262
/* Push object with no reallocation
263
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
264 265
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
H.J. Lu committed
266

267 268
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
269 270
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */
271

272 273
#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
274 275

/* Push object with reallocation
276
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
277 278
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
H.J. Lu committed
279

280 281 282
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */
283

284 285
#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
286 287

/* Pop element off end
288
   T VEC_T_pop (VEC(T) *v);		// Integer
289 290 291 292 293
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */
294

295
#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
296

297
/* Truncate to specific length
298
   void VEC_T_truncate (VEC(T) *v, unsigned len);
H.J. Lu committed
299

300 301
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */
302

303 304 305 306 307 308 309 310 311 312 313
#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
314
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
315

316 317 318 319 320 321 322 323 324 325
/* Grow to a specific length.
   void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  */

#define VEC_safe_grow_cleared(T,A,V,I)		\
	(VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))

326
/* Replace element
327
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
328 329
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
H.J. Lu committed
330

331 332 333 334 335
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */
336

337 338
#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
339 340

/* Insert object with no reallocation
341
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
342 343
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
H.J. Lu committed
344

345 346 347
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
348
   place. There must be sufficient space.  */
349

350 351
#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
352 353

/* Insert object with reallocation
354
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
355 356
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
H.J. Lu committed
357

358 359 360 361
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */
362

363 364
#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
H.J. Lu committed
365

366
/* Remove element retaining order
367
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
368 369
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
370

371
   Remove an element from the IXth position of V. Ordering of
372
   remaining elements is preserved.  For pointer vectors returns the
373
   removed object.  This is an O(N) operation due to a memmove.  */
374

375 376
#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
377 378

/* Remove element destroying order
379
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
380 381
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
H.J. Lu committed
382

383 384 385
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */
386

387 388
#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
389

390 391
/* Remove a block of elements
   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
H.J. Lu committed
392

393 394 395 396 397 398
   Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(1) operation.  */

#define VEC_block_remove(T,V,I,L)	\
	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))

399 400 401 402 403
/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */
404

405
#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
406

407
/* Find the first index in the vector not less than the object.
H.J. Lu committed
408
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
409
                               bool (*lessthan) (const T, const T)); // Integer
H.J. Lu committed
410
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
411 412 413
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
H.J. Lu committed
414

415 416
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
417
   true if the first argument is strictly less than the second.  */
H.J. Lu committed
418

419 420
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
421

422
/* Reallocate an array of elements with prefix.  */
423
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
424
extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
425
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
426 427
extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
				     MEM_STAT_DECL);
428 429
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
430
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
431
extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
432
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
433 434
extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
				       MEM_STAT_DECL);
435 436 437 438
extern void dump_vec_loc_statistics (void);
#ifdef GATHER_STATISTICS
void vec_heap_free (void *);
#else
439
#define vec_heap_free(V) free (V)
440
#endif
441 442

#if ENABLE_CHECKING
443 444 445
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
H.J. Lu committed
446

447 448
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
449 450 451 452

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
453
#else
454 455 456
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
457
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
458 459
#endif

460 461 462 463
/* Note: gengtype has hardwired knowledge of the expansions of the
   VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros.  If you change the
   expansions of these macros you may need to change gengtype too.  */

464 465
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
466

H.J. Lu committed
467
/* Base of vector type, not user visible.  */
468
#define VEC_T(T,B)							  \
469 470 471 472 473 474 475 476
typedef struct VEC(T,B) 				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
477
typedef struct GTY(()) VEC(T,B)				 		  \
478
{									  \
479 480
  unsigned num;								  \
  unsigned alloc;							  \
481 482 483 484
  T GTY ((length ("%h.num"))) vec[1];					  \
} VEC(T,B)

/* Derived vector type, user visible.  */
485
#define VEC_TA_GTY(T,B,A,GTY)						  \
486
typedef struct GTY VEC(T,A)						  \
487 488 489 490
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

491 492 493 494 495 496
#define VEC_TA(T,B,A)							  \
typedef struct VEC(T,A)							  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

497 498
/* Convert to base type.  */
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)
499

500 501 502 503 504 505 506 507
/* Vector of integer-like object.  */
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
508
VEC_TA(T,base,none);							  \
509 510 511
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
512
VEC_TA(T,base,A);							  \
513
DEF_VEC_ALLOC_FUNC_I(T,A)						  \
514
DEF_VEC_NONALLOC_FUNCS_I(T,A)						  \
515 516
struct vec_swallow_trailing_semi

517
/* Vector of pointer to object.  */
518
#define DEF_VEC_P(T) 							  \
519
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
520
{									  \
521
  (void)((T)1 == (void *)1);						  \
522 523
}									  \
									  \
524
VEC_T_GTY(T,base);							  \
525
VEC_TA(T,base,none);							  \
526 527 528
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
529
VEC_TA(T,base,A);							  \
530
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
531
DEF_VEC_NONALLOC_FUNCS_P(T,A)						  \
532 533 534
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_P(T)						  \
535
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
536 537 538 539
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
540 541
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
542
{									  \
543
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
544
  									  \
Nathan Sidwell committed
545
  return vec_->vec[vec_->num - 1];					  \
546 547
}									  \
									  \
548 549
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
550
{									  \
551
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
552 553 554 555
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
556 557
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
558
{									  \
559 560 561 562 563 564 565
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
566
      *ptr = (T) 0;							  \
567 568
      return 0;								  \
    }									  \
569 570
}									  \
									  \
571
static inline size_t VEC_OP (T,base,embedded_size)			  \
572
     (int alloc_)							  \
573
{									  \
574
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
575 576
}									  \
									  \
577 578
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
579 580 581
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
582 583
}									  \
									  \
584 585
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
586
{									  \
587 588
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
589 590
}									  \
									  \
591 592
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
593
{									  \
594
  T *slot_;								  \
595
  									  \
596
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
597 598 599 600 601 602
  slot_ = &vec_->vec[vec_->num++];					  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
603
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
604
{									  \
605
  T obj_;								  \
606
									  \
607
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
608 609 610 611 612
  obj_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
613 614
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
615
{									  \
616
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
617 618
  if (vec_)								  \
    vec_->num = size_;							  \
619 620
}									  \
									  \
621 622
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
623
{									  \
624
  T old_obj_;								  \
625
									  \
626
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
627 628 629 630 631 632
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
633 634 635 636 637 638 639
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
640
  slot_ = &vec_->vec[ix_];						  \
641
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
642 643 644 645 646
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
647 648
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
649
{									  \
650 651
  T *slot_;								  \
  T obj_;								  \
652
									  \
653
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
654 655
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
656
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
657 658 659 660
									  \
  return obj_;								  \
}									  \
									  \
661 662
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
663
{									  \
664 665
  T *slot_;								  \
  T obj_;								  \
666
									  \
667
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
668 669 670 671 672 673 674
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  *slot_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
675 676 677 678 679 680 681 682 683 684 685
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
686 687
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
688 689 690 691
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
716 717 718
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
719 720 721
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
722 723
  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
						 PASS_MEM_STAT);	  \
724 725 726 727
}


#define DEF_VEC_NONALLOC_FUNCS_P(T,A)					  \
728 729 730 731 732 733 734 735
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
736 737 738 739 740 741 742
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
743 744
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
			       (NULL, len_ PASS_MEM_STAT));		  \
745 746 747 748 749 750 751
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
752 753 754
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
755
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
756 757 758 759 760 761 762 763
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
764 765 766 767 768 769 770 771 772 773 774 775 776
static inline int VEC_OP (T,A,reserve_exact)  				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
						    PASS_MEM_STAT);	  \
		  							  \
  return extend;							  \
}									  \
									  \
777 778 779 780 781 782
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
783 784 785
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
786 787 788
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
789 790 791 792 793 794 795 796 797
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
813
}
814 815

/* Vector of object.  */
816
#define DEF_VEC_O(T)							  \
817
VEC_T_GTY(T,base);							  \
818
VEC_TA(T,base,none);						  \
819 820 821
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
822
VEC_TA(T,base,A);							  \
823
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
824
DEF_VEC_NONALLOC_FUNCS_O(T,A)						  \
825 826 827
struct vec_swallow_trailing_semi

#define DEF_VEC_FUNC_O(T)						  \
828
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
829 830 831 832
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
833
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
834
{									  \
835
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
836 837 838 839
  									  \
  return &vec_->vec[vec_->num - 1];					  \
}									  \
									  \
840 841
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
842
{									  \
843
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
844 845 846 847
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
848 849
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
850
{									  \
851 852 853 854 855 856 857 858 859 860
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
861 862
}									  \
									  \
863
static inline size_t VEC_OP (T,base,embedded_size)			  \
864
     (int alloc_)							  \
865
{									  \
866
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
867 868
}									  \
									  \
869 870
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
871
{									  \
872 873
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
874 875
}									  \
									  \
876 877
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
878
{									  \
879 880
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
881 882
}									  \
									  \
883 884
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
885
{									  \
886
  T *slot_;								  \
887
  									  \
888
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
889 890 891 892 893 894 895
  slot_ = &vec_->vec[vec_->num++];					  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
896
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
897
{									  \
898
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
899 900 901
  --vec_->num;								  \
}									  \
									  \
902 903
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
904
{									  \
905
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
906 907
  if (vec_)								  \
    vec_->num = size_;							  \
908 909
}									  \
									  \
910 911
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
912
{									  \
913
  T *slot_;								  \
914
									  \
915
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
916 917 918 919 920 921 922
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
923 924 925 926 927 928 929
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
930
  slot_ = &vec_->vec[ix_];						  \
931
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
932 933 934 935 936 937
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
938 939
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
940
{									  \
941
  T *slot_;								  \
942
									  \
943 944 945
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
946 947
}									  \
									  \
948 949
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
950
{									  \
951 952 953
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
}									  \
954
									  \
955 956 957 958 959 960 961 962 963 964 965
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
966 967 968 969
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
970 971
}									  \
									  \
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
996
}
997

998
#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
999 1000
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
1001
{									  \
1002 1003 1004 1005
  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
						 offsetof (VEC(T,A),base.vec), \
						 sizeof (T)		  \
						 PASS_MEM_STAT);	  \
1006 1007 1008
}

#define DEF_VEC_NONALLOC_FUNCS_O(T,A)					  \
1009 1010 1011 1012 1013 1014 1015
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1016 1017
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1018 1019 1020 1021 1022 1023 1024 1025 1026
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
1027 1028
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
1029
{									  \
1030 1031 1032 1033 1034 1035 1036 1037
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1038
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_,				  \
			  offsetof (VEC(T,A),base.vec),			  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1065 1066 1067 1068 1069 1070
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1071 1072 1073
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1074 1075 1076
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1077 1078 1079 1080 1081 1082 1083 1084 1085
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
1102
}
1103 1104 1105 1106 1107

#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
1108 1109 1110
  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
		       sizeof (T) PASS_MEM_STAT);			  \
1111 1112 1113
}

#define DEF_VEC_NONALLOC_FUNCS_I(T,A)					  \
1114 1115 1116 1117 1118 1119 1120
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
1121 1122
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
1143
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
1169 1170 1171 1172 1173 1174
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
1175 1176 1177
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1178 1179 1180
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
1181 1182 1183 1184 1185 1186 1187 1188 1189
static inline void VEC_OP (T,A,safe_grow_cleared)			  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_);			  \
  VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT);	  \
  memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0,	  \
	  sizeof (T) * (size_ - oldsize));				  \
}									  \
									  \
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/* We support a vector which starts out with space on the stack and
   switches to heap space when forced to reallocate.  This works a
   little differently.  Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
   DEF_VEC_ALLOC_P_STACK(TYPE).  This uses alloca to get the initial
   space; because alloca can not be usefully called in an inline
   function, and because a macro can not define a macro, you must then
   write a #define for each type:

   #define VEC_{TYPE}_stack_alloc(alloc)                          \
     VEC_stack_alloc({TYPE}, alloc)

   This is really a hack and perhaps can be made better.  Note that
   this macro will wind up evaluating the ALLOC parameter twice.

   Only the initial allocation will be made using alloca, so pass a
   reasonable estimate that doesn't use too much stack space; don't
   pass zero.  Don't return a VEC(TYPE,stack) vector from the function
   which allocated it.  */

extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
extern void *vec_stack_p_reserve_exact_1 (int, void *);
extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
					 MEM_STAT_DECL);
extern void vec_stack_free (void *);

1235 1236 1237 1238 1239
#ifdef GATHER_STATISTICS
#define VEC_stack_alloc(T,alloc,name,line,function)			  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
#else
1240 1241 1242
#define VEC_stack_alloc(T,alloc)					  \
  (VEC_OP (T,stack,alloc1)						  \
   (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1243
#endif
1244 1245 1246 1247 1248 1249 1250 1251 1252

#define DEF_VEC_ALLOC_P_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_P_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_P(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_P_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1253
     (int alloc_, VEC(T,stack)* space)					  \
1254
{									  \
1255
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
}

#define DEF_VEC_ALLOC_O_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_O_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_O(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_O_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1266
     (int alloc_, VEC(T,stack)* space)					  \
1267
{									  \
1268
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);	  \
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
}

#define DEF_VEC_ALLOC_I_STACK(T)					  \
VEC_TA(T,base,stack);							  \
DEF_VEC_ALLOC_FUNC_I_STACK(T)						  \
DEF_VEC_NONALLOC_FUNCS_I(T,stack)					  \
struct vec_swallow_trailing_semi

#define DEF_VEC_ALLOC_FUNC_I_STACK(T)					  \
static inline VEC(T,stack) *VEC_OP (T,stack,alloc1)			  \
1279
     (int alloc_, VEC(T,stack)* space)					  \
1280
{									  \
1281
  return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space);   \
1282 1283
}

1284
#endif /* GCC_VEC_H */