pack_i1.c 7.44 KB
Newer Older
1
/* Specific implementation of the PACK intrinsic
2 3
   Copyright (C) 2002, 2004, 2005, 2006, 2007, 2008, 2009, 2012
   Free Software Foundation, Inc.
4 5
   Contributed by Paul Brook <paul@nowt.org>

6
This file is part of the GNU Fortran runtime library (libgfortran).
7 8 9 10

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
11
version 3 of the License, or (at your option) any later version.
12 13 14 15 16 17

Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

18 19 20 21 22 23 24 25
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>


#if defined (HAVE_GFC_INTEGER_1)

/* PACK is specified as follows:

   13.14.80 PACK (ARRAY, MASK, [VECTOR])

   Description: Pack an array into an array of rank one under the
   control of a mask.

   Class: Transformational function.

   Arguments:
      ARRAY   may be of any type. It shall not be scalar.
      MASK    shall be of type LOGICAL. It shall be conformable with ARRAY.
      VECTOR  (optional) shall be of the same type and type parameters
              as ARRAY. VECTOR shall have at least as many elements as
              there are true elements in MASK. If MASK is a scalar
              with the value true, VECTOR shall have at least as many
              elements as there are in ARRAY.

   Result Characteristics: The result is an array of rank one with the
   same type and type parameters as ARRAY. If VECTOR is present, the
   result size is that of VECTOR; otherwise, the result size is the
   number /t/ of true elements in MASK unless MASK is scalar with the
   value true, in which case the result size is the size of ARRAY.

   Result Value: Element /i/ of the result is the element of ARRAY
   that corresponds to the /i/th true element of MASK, taking elements
   in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
   present and has size /n/ > /t/, element /i/ of the result has the
   value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.

   Examples: The nonzero elements of an array M with the value
   | 0 0 0 |
   | 9 0 0 | may be "gathered" by the function PACK. The result of
   | 0 0 7 |
   PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
   VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].

There are two variants of the PACK intrinsic: one, where MASK is
array valued, and the other one where MASK is scalar.  */

void
pack_i1 (gfc_array_i1 *ret, const gfc_array_i1 *array,
	       const gfc_array_l1 *mask, const gfc_array_i1 *vector)
{
  /* r.* indicates the return array.  */
  index_type rstride0;
81
  GFC_INTEGER_1 * restrict rptr;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  const GFC_INTEGER_1 *sptr;
  /* m.* indicates the mask array.  */
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride0;
  const GFC_LOGICAL_1 *mptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  int zero_sized;
  index_type n;
  index_type dim;
  index_type nelem;
  index_type total;
  int mask_kind;

  dim = GFC_DESCRIPTOR_RANK (array);

102
  mptr = mask->base_addr;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  /* Use the same loop for all logical types, by using GFC_LOGICAL_1
     and using shifting to address size and endian issues.  */

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    {
      /*  Do not convert a NULL pointer as we use test for NULL below.  */
      if (mptr)
	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
    }
  else
    runtime_error ("Funny sized logical array");

  zero_sized = 0;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
126
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
127 128
      if (extent[n] <= 0)
       zero_sized = 1;
129 130
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
131 132 133 134 135 136
    }
  if (sstride[0] == 0)
    sstride[0] = 1;
  if (mstride[0] == 0)
    mstride[0] = mask_kind;

137 138 139
  if (zero_sized)
    sptr = NULL;
  else
140
    sptr = array->base_addr;
141

142
  if (ret->base_addr == NULL || unlikely (compile_options.bounds_check))
143 144 145 146 147 148 149 150
    {
      /* Count the elements, either for allocating memory or
	 for bounds checking.  */

      if (vector != NULL)
	{
	  /* The return array will have as many
	     elements as there are in VECTOR.  */
151
	  total = GFC_DESCRIPTOR_EXTENT(vector,0);
152 153 154 155 156
	  if (total < 0)
	    {
	      total = 0;
	      vector = NULL;
	    }
157 158
	}
      else
159 160 161 162
        {
      	  /* We have to count the true elements in MASK.  */
	  total = count_0 (mask);
        }
163

164
      if (ret->base_addr == NULL)
165 166
	{
	  /* Setup the array descriptor.  */
167
	  GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1);
168 169

	  ret->offset = 0;
170

171 172
	  /* xmalloc allocates a single byte for zero size.  */
	  ret->base_addr = xmalloc (sizeof (GFC_INTEGER_1) * total);
173

174
	  if (total == 0)
175
	    return;
176 177 178 179 180 181
	}
      else 
	{
	  /* We come here because of range checking.  */
	  index_type ret_extent;

182
	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0);
183 184 185 186 187 188 189
	  if (total != ret_extent)
	    runtime_error ("Incorrect extent in return value of PACK intrinsic;"
			   " is %ld, should be %ld", (long int) total,
			   (long int) ret_extent);
	}
    }

190
  rstride0 = GFC_DESCRIPTOR_STRIDE(ret,0);
191 192 193 194
  if (rstride0 == 0)
    rstride0 = 1;
  sstride0 = sstride[0];
  mstride0 = mstride[0];
195
  rptr = ret->base_addr;
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

  while (sptr && mptr)
    {
      /* Test this element.  */
      if (*mptr)
        {
          /* Add it.  */
	  *rptr = *sptr;
          rptr += rstride0;
        }
      /* Advance to the next element.  */
      sptr += sstride0;
      mptr += mstride0;
      count[0]++;
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          sptr -= sstride[n] * extent[n];
          mptr -= mstride[n] * extent[n];
          n++;
          if (n >= dim)
            {
              /* Break out of the loop.  */
              sptr = NULL;
              break;
            }
          else
            {
              count[n]++;
              sptr += sstride[n];
              mptr += mstride[n];
            }
        }
    }

  /* Add any remaining elements from VECTOR.  */
  if (vector)
    {
239
      n = GFC_DESCRIPTOR_EXTENT(vector,0);
240
      nelem = ((rptr - ret->base_addr) / rstride0);
241 242
      if (n > nelem)
        {
243
          sstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
244 245 246
          if (sstride0 == 0)
            sstride0 = 1;

247
          sptr = vector->base_addr + sstride0 * nelem;
248 249 250 251 252 253 254 255 256 257 258 259
          n -= nelem;
          while (n--)
            {
	      *rptr = *sptr;
              rptr += rstride0;
              sptr += sstride0;
            }
        }
    }
}

#endif
260