iparity_i8.c 12.6 KB
Newer Older
1
/* Implementation of the IPARITY intrinsic
2
   Copyright (C) 2010-2019 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
   Contributed by Tobias Burnus <burnus@net-b.de>

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "libgfortran.h"


#if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_8)


extern void iparity_i8 (gfc_array_i8 * const restrict, 
	gfc_array_i8 * const restrict, const index_type * const restrict);
export_proto(iparity_i8);

void
iparity_i8 (gfc_array_i8 * const restrict retarray, 
	gfc_array_i8 * const restrict array, 
	const index_type * const restrict pdim)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  const GFC_INTEGER_8 * restrict base;
  GFC_INTEGER_8 * restrict dest;
  index_type rank;
  index_type n;
  index_type len;
  index_type delta;
  index_type dim;
  int continue_loop;

  /* Make dim zero based to avoid confusion.  */
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 57 58 59 60 61 62 63
  dim = (*pdim) - 1;

  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in IPARITY intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  if (len < 0)
    len = 0;
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);

  for (n = 0; n < dim; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);

      if (extent[n] < 0)
	extent[n] = 0;
    }
  for (n = dim; n < rank; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);

      if (extent[n] < 0)
	extent[n] = 0;
    }

87
  if (retarray->base_addr == NULL)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    {
      size_t alloc_size, str;

      for (n = 0; n < rank; n++)
	{
	  if (n == 0)
	    str = 1;
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

	}

      retarray->offset = 0;
103
      retarray->dtype.rank = rank;
104

105
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106

107
      retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
	  return;

	}
    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in"
		       " IPARITY intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);

      if (unlikely (compile_options.bounds_check))
	bounds_ifunction_return ((array_t *) retarray, extent,
				 "return value", "IPARITY");
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      if (extent[n] <= 0)
134
	return;
135 136
    }

137 138
  base = array->base_addr;
  dest = retarray->base_addr;
139 140 141 142 143 144 145 146 147 148 149 150 151 152

  continue_loop = 1;
  while (continue_loop)
    {
      const GFC_INTEGER_8 * restrict src;
      GFC_INTEGER_8 result;
      src = base;
      {

  result = 0;
	if (len <= 0)
	  *dest = 0;
	else
	  {
153
#if ! defined HAVE_BACK_ARG
154 155
	    for (n = 0; n < len; n++, src += delta)
	      {
156
#endif
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

  result ^= *src;
	      }
	    
	    *dest = result;
	  }
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
179
	  if (n >= rank)
180
	    {
181
	      /* Break out of the loop.  */
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	      continue_loop = 0;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      dest += dstride[n];
	    }
	}
    }
}


extern void miparity_i8 (gfc_array_i8 * const restrict, 
	gfc_array_i8 * const restrict, const index_type * const restrict,
	gfc_array_l1 * const restrict);
export_proto(miparity_i8);

void
miparity_i8 (gfc_array_i8 * const restrict retarray, 
	gfc_array_i8 * const restrict array, 
	const index_type * const restrict pdim, 
	gfc_array_l1 * const restrict mask)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  GFC_INTEGER_8 * restrict dest;
  const GFC_INTEGER_8 * restrict base;
  const GFC_LOGICAL_1 * restrict mbase;
215 216
  index_type rank;
  index_type dim;
217 218 219 220 221 222
  index_type n;
  index_type len;
  index_type delta;
  index_type mdelta;
  int mask_kind;

223 224 225 226 227 228 229 230 231 232
  if (mask == NULL)
    {
#ifdef HAVE_BACK_ARG
      iparity_i8 (retarray, array, pdim, back);
#else
      iparity_i8 (retarray, array, pdim);
#endif
      return;
    }

233 234 235
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

236 237 238 239 240 241 242 243

  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in IPARITY intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

244 245 246 247
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  if (len <= 0)
    return;

248
  mbase = mask->base_addr;
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
  else
    runtime_error ("Funny sized logical array");

  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);

  for (n = 0; n < dim; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);

      if (extent[n] < 0)
	extent[n] = 0;

    }
  for (n = dim; n < rank; n++)
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);

      if (extent[n] < 0)
	extent[n] = 0;
    }

284
  if (retarray->base_addr == NULL)
285 286 287 288 289 290 291 292 293 294 295 296 297 298
    {
      size_t alloc_size, str;

      for (n = 0; n < rank; n++)
	{
	  if (n == 0)
	    str = 1;
	  else
	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

	}

299
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
300 301

      retarray->offset = 0;
302
      retarray->dtype.rank = rank;
303 304 305 306 307 308 309 310

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
	  return;
	}
      else
311
	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in IPARITY intrinsic");

      if (unlikely (compile_options.bounds_check))
	{
	  bounds_ifunction_return ((array_t *) retarray, extent,
				   "return value", "IPARITY");
	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
	  			"MASK argument", "IPARITY");
	}
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      if (extent[n] <= 0)
	return;
    }

336 337
  dest = retarray->base_addr;
  base = array->base_addr;
338 339 340 341 342 343 344 345 346 347 348

  while (base)
    {
      const GFC_INTEGER_8 * restrict src;
      const GFC_LOGICAL_1 * restrict msrc;
      GFC_INTEGER_8 result;
      src = base;
      msrc = mbase;
      {

  result = 0;
349
	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
350 351 352 353 354
	  {

  if (*msrc)
    result ^= *src;
	  }
355
	*dest = result;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      }
      /* Advance to the next element.  */
      count[0]++;
      base += sstride[0];
      mbase += mstride[0];
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  base -= sstride[n] * extent[n];
	  mbase -= mstride[n] * extent[n];
	  dest -= dstride[n] * extent[n];
	  n++;
374
	  if (n >= rank)
375
	    {
376
	      /* Break out of the loop.  */
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	      base = NULL;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      base += sstride[n];
	      mbase += mstride[n];
	      dest += dstride[n];
	    }
	}
    }
}


extern void siparity_i8 (gfc_array_i8 * const restrict, 
	gfc_array_i8 * const restrict, const index_type * const restrict,
	GFC_LOGICAL_4 *);
export_proto(siparity_i8);

void
siparity_i8 (gfc_array_i8 * const restrict retarray, 
	gfc_array_i8 * const restrict array, 
	const index_type * const restrict pdim, 
	GFC_LOGICAL_4 * mask)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  GFC_INTEGER_8 * restrict dest;
  index_type rank;
  index_type n;
  index_type dim;


412
  if (mask == NULL || *mask)
413
    {
414 415 416
#ifdef HAVE_BACK_ARG
      iparity_i8 (retarray, array, pdim, back);
#else
417
      iparity_i8 (retarray, array, pdim);
418
#endif
419 420 421 422 423 424
      return;
    }
  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;

425 426 427 428 429 430 431
  if (unlikely (dim < 0 || dim > rank))
    {
      runtime_error ("Dim argument incorrect in IPARITY intrinsic: "
 		     "is %ld, should be between 1 and %ld",
		     (long int) dim + 1, (long int) rank + 1);
    }

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  for (n = 0; n < dim; n++)
    {
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);

      if (extent[n] <= 0)
	extent[n] = 0;
    }

  for (n = dim; n < rank; n++)
    {
      extent[n] =
	GFC_DESCRIPTOR_EXTENT(array,n + 1);

      if (extent[n] <= 0)
	extent[n] = 0;
    }

449
  if (retarray->base_addr == NULL)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    {
      size_t alloc_size, str;

      for (n = 0; n < rank; n++)
	{
	  if (n == 0)
	    str = 1;
	  else
	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];

	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);

	}

      retarray->offset = 0;
465
      retarray->dtype.rank = rank;
466

467
      alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
468 469 470 471 472 473 474 475

      if (alloc_size == 0)
	{
	  /* Make sure we have a zero-sized array.  */
	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
	  return;
	}
      else
476
	retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_8));
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    }
  else
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
	runtime_error ("rank of return array incorrect in"
		       " IPARITY intrinsic: is %ld, should be %ld",
		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
		       (long int) rank);

      if (unlikely (compile_options.bounds_check))
	{
	  for (n=0; n < rank; n++)
	    {
	      index_type ret_extent;

	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
	      if (extent[n] != ret_extent)
		runtime_error ("Incorrect extent in return value of"
			       " IPARITY intrinsic in dimension %ld:"
			       " is %ld, should be %ld", (long int) n + 1,
			       (long int) ret_extent, (long int) extent[n]);
	    }
	}
    }

  for (n = 0; n < rank; n++)
    {
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
    }

508
  dest = retarray->base_addr;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

  while(1)
    {
      *dest = 0;
      count[0]++;
      dest += dstride[0];
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension, reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products, but this is a less
	     frequently used path so probably not worth it.  */
	  dest -= dstride[n] * extent[n];
	  n++;
525
	  if (n >= rank)
526 527 528 529 530 531 532 533 534 535 536
	    return;
	  else
	    {
	      count[n]++;
	      dest += dstride[n];
	    }
      	}
    }
}

#endif