tree-data-ref.c 161 KB
Newer Older
1
/* Data references and dependences detectors.
2
   Copyright (C) 2003-2018 Free Software Foundation, Inc.
3
   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 5 6 7 8

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20 21 22

/* This pass walks a given loop structure searching for array
   references.  The information about the array accesses is recorded
H.J. Lu committed
23 24 25 26 27
   in DATA_REFERENCE structures.

   The basic test for determining the dependences is:
   given two access functions chrec1 and chrec2 to a same array, and
   x and y two vectors from the iteration domain, the same element of
28 29
   the array is accessed twice at iterations x and y if and only if:
   |             chrec1 (x) == chrec2 (y).
H.J. Lu committed
30

31
   The goals of this analysis are:
H.J. Lu committed
32

33 34 35
   - to determine the independence: the relation between two
     independent accesses is qualified with the chrec_known (this
     information allows a loop parallelization),
H.J. Lu committed
36

37 38
   - when two data references access the same data, to qualify the
     dependence relation with classic dependence representations:
H.J. Lu committed
39

40 41 42 43 44
       - distance vectors
       - direction vectors
       - loop carried level dependence
       - polyhedron dependence
     or with the chains of recurrences based representation,
H.J. Lu committed
45 46

   - to define a knowledge base for storing the data dependence
47
     information,
H.J. Lu committed
48

49
   - to define an interface to access this data.
H.J. Lu committed
50 51


52
   Definitions:
H.J. Lu committed
53

54 55 56 57 58 59
   - subscript: given two array accesses a subscript is the tuple
   composed of the access functions for a given dimension.  Example:
   Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
   (f1, g1), (f2, g2), (f3, g3).

   - Diophantine equation: an equation whose coefficients and
H.J. Lu committed
60
   solutions are integer constants, for example the equation
61 62
   |   3*x + 2*y = 1
   has an integer solution x = 1 and y = -1.
H.J. Lu committed
63

64
   References:
H.J. Lu committed
65

66 67
   - "Advanced Compilation for High Performance Computing" by Randy
   Allen and Ken Kennedy.
H.J. Lu committed
68 69 70
   http://citeseer.ist.psu.edu/goff91practical.html

   - "Loop Transformations for Restructuring Compilers - The Foundations"
71 72
   by Utpal Banerjee.

H.J. Lu committed
73

74 75 76 77 78
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
79
#include "backend.h"
80
#include "rtl.h"
81
#include "tree.h"
82
#include "gimple.h"
83 84
#include "gimple-pretty-print.h"
#include "alias.h"
85
#include "fold-const.h"
86
#include "expr.h"
87
#include "gimple-iterator.h"
88
#include "tree-ssa-loop-niter.h"
89
#include "tree-ssa-loop.h"
Andrew MacLeod committed
90
#include "tree-ssa.h"
91 92 93
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
94
#include "dumpfile.h"
95
#include "tree-affine.h"
96
#include "params.h"
97
#include "builtins.h"
98 99 100
#include "stringpool.h"
#include "tree-vrp.h"
#include "tree-ssanames.h"
101
#include "tree-eh.h"
102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static struct datadep_stats
{
  int num_dependence_tests;
  int num_dependence_dependent;
  int num_dependence_independent;
  int num_dependence_undetermined;

  int num_subscript_tests;
  int num_subscript_undetermined;
  int num_same_subscript_function;

  int num_ziv;
  int num_ziv_independent;
  int num_ziv_dependent;
  int num_ziv_unimplemented;

  int num_siv;
  int num_siv_independent;
  int num_siv_dependent;
  int num_siv_unimplemented;

  int num_miv;
  int num_miv_independent;
  int num_miv_dependent;
  int num_miv_unimplemented;
} dependence_stats;

130
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
131
					   unsigned int, unsigned int,
132
					   struct loop *);
133 134
/* Returns true iff A divides B.  */

H.J. Lu committed
135
static inline bool
136
tree_fold_divides_p (const_tree a, const_tree b)
137
{
138 139
  gcc_assert (TREE_CODE (a) == INTEGER_CST);
  gcc_assert (TREE_CODE (b) == INTEGER_CST);
140
  return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
141 142
}

143 144
/* Returns true iff A divides B.  */

H.J. Lu committed
145
static inline bool
146 147 148
int_divides_p (int a, int b)
{
  return ((b % a) == 0);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* Return true if reference REF contains a union access.  */

static bool
ref_contains_union_access_p (tree ref)
{
  while (handled_component_p (ref))
    {
      ref = TREE_OPERAND (ref, 0);
      if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
	  || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
	return true;
    }
  return false;
}

166 167


H.J. Lu committed
168
/* Dump into FILE all the data references from DATAREFS.  */
169

170
static void
171
dump_data_references (FILE *file, vec<data_reference_p> datarefs)
172 173
{
  unsigned int i;
174 175
  struct data_reference *dr;

176
  FOR_EACH_VEC_ELT (datarefs, i, dr)
177
    dump_data_reference (file, dr);
178 179
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/* Unified dump into FILE all the data references from DATAREFS.  */

DEBUG_FUNCTION void
debug (vec<data_reference_p> &ref)
{
  dump_data_references (stderr, ref);
}

DEBUG_FUNCTION void
debug (vec<data_reference_p> *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}


H.J. Lu committed
198
/* Dump into STDERR all the data references from DATAREFS.  */
199

200
DEBUG_FUNCTION void
201
debug_data_references (vec<data_reference_p> datarefs)
202 203 204 205 206 207
{
  dump_data_references (stderr, datarefs);
}

/* Print to STDERR the data_reference DR.  */

208
DEBUG_FUNCTION void
209 210 211 212 213
debug_data_reference (struct data_reference *dr)
{
  dump_data_reference (stderr, dr);
}

214 215
/* Dump function for a DATA_REFERENCE structure.  */

H.J. Lu committed
216 217
void
dump_data_reference (FILE *outf,
218 219 220
		     struct data_reference *dr)
{
  unsigned int i;
H.J. Lu committed
221

222 223 224
  fprintf (outf, "#(Data Ref: \n");
  fprintf (outf, "#  bb: %d \n", gimple_bb (DR_STMT (dr))->index);
  fprintf (outf, "#  stmt: ");
225
  print_gimple_stmt (outf, DR_STMT (dr), 0);
226
  fprintf (outf, "#  ref: ");
227
  print_generic_stmt (outf, DR_REF (dr));
228
  fprintf (outf, "#  base_object: ");
229
  print_generic_stmt (outf, DR_BASE_OBJECT (dr));
H.J. Lu committed
230

231 232
  for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
    {
233
      fprintf (outf, "#  Access function %d: ", i);
234
      print_generic_stmt (outf, DR_ACCESS_FN (dr, i));
235
    }
236
  fprintf (outf, "#)\n");
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* Unified dump function for a DATA_REFERENCE structure.  */

DEBUG_FUNCTION void
debug (data_reference &ref)
{
  dump_data_reference (stderr, &ref);
}

DEBUG_FUNCTION void
debug (data_reference *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}


257 258
/* Dumps the affine function described by FN to the file OUTF.  */

259
DEBUG_FUNCTION void
260 261 262 263 264
dump_affine_function (FILE *outf, affine_fn fn)
{
  unsigned i;
  tree coef;

265 266
  print_generic_expr (outf, fn[0], TDF_SLIM);
  for (i = 1; fn.iterate (i, &coef); i++)
267 268 269 270 271 272 273 274 275
    {
      fprintf (outf, " + ");
      print_generic_expr (outf, coef, TDF_SLIM);
      fprintf (outf, " * x_%u", i);
    }
}

/* Dumps the conflict function CF to the file OUTF.  */

276
DEBUG_FUNCTION void
277 278 279 280 281
dump_conflict_function (FILE *outf, conflict_function *cf)
{
  unsigned i;

  if (cf->n == NO_DEPENDENCE)
282
    fprintf (outf, "no dependence");
283
  else if (cf->n == NOT_KNOWN)
284
    fprintf (outf, "not known");
285 286 287 288
  else
    {
      for (i = 0; i < cf->n; i++)
	{
289 290
	  if (i != 0)
	    fprintf (outf, " ");
291 292
	  fprintf (outf, "[");
	  dump_affine_function (outf, cf->fns[i]);
293
	  fprintf (outf, "]");
294 295 296 297
	}
    }
}

298 299
/* Dump function for a SUBSCRIPT structure.  */

300
DEBUG_FUNCTION void
301 302
dump_subscript (FILE *outf, struct subscript *subscript)
{
303
  conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
304 305 306

  fprintf (outf, "\n (subscript \n");
  fprintf (outf, "  iterations_that_access_an_element_twice_in_A: ");
307 308
  dump_conflict_function (outf, cf);
  if (CF_NONTRIVIAL_P (cf))
309 310
    {
      tree last_iteration = SUB_LAST_CONFLICT (subscript);
311
      fprintf (outf, "\n  last_conflict: ");
312
      print_generic_expr (outf, last_iteration);
313
    }
H.J. Lu committed
314

315
  cf = SUB_CONFLICTS_IN_B (subscript);
316
  fprintf (outf, "\n  iterations_that_access_an_element_twice_in_B: ");
317 318
  dump_conflict_function (outf, cf);
  if (CF_NONTRIVIAL_P (cf))
319 320
    {
      tree last_iteration = SUB_LAST_CONFLICT (subscript);
321
      fprintf (outf, "\n  last_conflict: ");
322
      print_generic_expr (outf, last_iteration);
323 324
    }

325
  fprintf (outf, "\n  (Subscript distance: ");
326
  print_generic_expr (outf, SUB_DISTANCE (subscript));
327
  fprintf (outf, " ))\n");
328 329
}

330 331
/* Print the classic direction vector DIRV to OUTF.  */

332
DEBUG_FUNCTION void
333 334 335 336 337 338 339 340
print_direction_vector (FILE *outf,
			lambda_vector dirv,
			int length)
{
  int eq;

  for (eq = 0; eq < length; eq++)
    {
341 342
      enum data_dependence_direction dir = ((enum data_dependence_direction)
					    dirv[eq]);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

      switch (dir)
	{
	case dir_positive:
	  fprintf (outf, "    +");
	  break;
	case dir_negative:
	  fprintf (outf, "    -");
	  break;
	case dir_equal:
	  fprintf (outf, "    =");
	  break;
	case dir_positive_or_equal:
	  fprintf (outf, "   +=");
	  break;
	case dir_positive_or_negative:
	  fprintf (outf, "   +-");
	  break;
	case dir_negative_or_equal:
	  fprintf (outf, "   -=");
	  break;
	case dir_star:
	  fprintf (outf, "    *");
	  break;
	default:
	  fprintf (outf, "indep");
	  break;
	}
    }
  fprintf (outf, "\n");
}

375 376
/* Print a vector of direction vectors.  */

377
DEBUG_FUNCTION void
378
print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
379 380 381 382 383
		   int length)
{
  unsigned j;
  lambda_vector v;

384
  FOR_EACH_VEC_ELT (dir_vects, j, v)
385 386 387
    print_direction_vector (outf, v, length);
}

388 389
/* Print out a vector VEC of length N to OUTFILE.  */

390
DEBUG_FUNCTION void
391 392 393 394 395 396 397 398 399
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
{
  int i;

  for (i = 0; i < n; i++)
    fprintf (outfile, "%3d ", vector[i]);
  fprintf (outfile, "\n");
}

400 401
/* Print a vector of distance vectors.  */

402
DEBUG_FUNCTION void
403
print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
404
		    int length)
405 406 407 408
{
  unsigned j;
  lambda_vector v;

409
  FOR_EACH_VEC_ELT (dist_vects, j, v)
410 411 412
    print_lambda_vector (outf, v, length);
}

413 414
/* Dump function for a DATA_DEPENDENCE_RELATION structure.  */

415
DEBUG_FUNCTION void
H.J. Lu committed
416
dump_data_dependence_relation (FILE *outf,
417 418 419
			       struct data_dependence_relation *ddr)
{
  struct data_reference *dra, *drb;
420 421

  fprintf (outf, "(Data Dep: \n");
422

423 424
  if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
    {
425 426 427 428 429 430 431 432 433 434 435 436 437
      if (ddr)
	{
	  dra = DDR_A (ddr);
	  drb = DDR_B (ddr);
	  if (dra)
	    dump_data_reference (outf, dra);
	  else
	    fprintf (outf, "    (nil)\n");
	  if (drb)
	    dump_data_reference (outf, drb);
	  else
	    fprintf (outf, "    (nil)\n");
	}
438 439 440 441 442 443
      fprintf (outf, "    (don't know)\n)\n");
      return;
    }

  dra = DDR_A (ddr);
  drb = DDR_B (ddr);
444 445 446
  dump_data_reference (outf, dra);
  dump_data_reference (outf, drb);

447
  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
448
    fprintf (outf, "    (no dependence)\n");
H.J. Lu committed
449

450
  else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
451
    {
452
      unsigned int i;
453
      struct loop *loopi;
454

455 456
      subscript *sub;
      FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
457 458
	{
	  fprintf (outf, "  access_fn_A: ");
459
	  print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
460
	  fprintf (outf, "  access_fn_B: ");
461 462
	  print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
	  dump_subscript (outf, sub);
463
	}
464

465
      fprintf (outf, "  inner loop index: %d\n", DDR_INNER_LOOP (ddr));
466
      fprintf (outf, "  loop nest: (");
467
      FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
468 469 470
	fprintf (outf, "%d ", loopi->num);
      fprintf (outf, ")\n");

471
      for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
472
	{
473 474
	  fprintf (outf, "  distance_vector: ");
	  print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
475
			       DDR_NB_LOOPS (ddr));
476
	}
477 478

      for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
479
	{
480
	  fprintf (outf, "  direction_vector: ");
481
	  print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
482
				  DDR_NB_LOOPS (ddr));
483 484 485 486 487 488
	}
    }

  fprintf (outf, ")\n");
}

489
/* Debug version.  */
490

491 492
DEBUG_FUNCTION void
debug_data_dependence_relation (struct data_dependence_relation *ddr)
493
{
494 495
  dump_data_dependence_relation (stderr, ddr);
}
H.J. Lu committed
496

497
/* Dump into FILE all the dependence relations from DDRS.  */
H.J. Lu committed
498

499
DEBUG_FUNCTION void
500
dump_data_dependence_relations (FILE *file,
501
				vec<ddr_p> ddrs)
502 503 504
{
  unsigned int i;
  struct data_dependence_relation *ddr;
H.J. Lu committed
505

506
  FOR_EACH_VEC_ELT (ddrs, i, ddr)
507 508
    dump_data_dependence_relation (file, ddr);
}
H.J. Lu committed
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
DEBUG_FUNCTION void
debug (vec<ddr_p> &ref)
{
  dump_data_dependence_relations (stderr, ref);
}

DEBUG_FUNCTION void
debug (vec<ddr_p> *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}


526
/* Dump to STDERR all the dependence relations from DDRS.  */
H.J. Lu committed
527

528
DEBUG_FUNCTION void
529
debug_data_dependence_relations (vec<ddr_p> ddrs)
530 531
{
  dump_data_dependence_relations (stderr, ddrs);
532 533
}

534 535 536 537 538
/* Dumps the distance and direction vectors in FILE.  DDRS contains
   the dependence relations, and VECT_SIZE is the size of the
   dependence vectors, or in other words the number of loops in the
   considered nest.  */

539
DEBUG_FUNCTION void
540
dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
541
{
542
  unsigned int i, j;
543 544
  struct data_dependence_relation *ddr;
  lambda_vector v;
545

546
  FOR_EACH_VEC_ELT (ddrs, i, ddr)
547 548
    if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
      {
549
	FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
550 551 552 553 554 555
	  {
	    fprintf (file, "DISTANCE_V (");
	    print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
	    fprintf (file, ")\n");
	  }

556
	FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
557 558 559 560 561 562
	  {
	    fprintf (file, "DIRECTION_V (");
	    print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
	    fprintf (file, ")\n");
	  }
      }
563

564 565 566 567 568
  fprintf (file, "\n\n");
}

/* Dumps the data dependence relations DDRS in FILE.  */

569
DEBUG_FUNCTION void
570
dump_ddrs (FILE *file, vec<ddr_p> ddrs)
571 572
{
  unsigned int i;
573 574
  struct data_dependence_relation *ddr;

575
  FOR_EACH_VEC_ELT (ddrs, i, ddr)
576
    dump_data_dependence_relation (file, ddr);
577 578 579 580

  fprintf (file, "\n\n");
}

581
DEBUG_FUNCTION void
582
debug_ddrs (vec<ddr_p> ddrs)
583 584 585 586
{
  dump_ddrs (stderr, ddrs);
}

587 588 589 590 591
/* Helper function for split_constant_offset.  Expresses OP0 CODE OP1
   (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
   constant of type ssizetype, and returns true.  If we cannot do this
   with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
   is returned.  */
592

593 594 595
static bool
split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
			 tree *var, tree *off)
596
{
597 598
  tree var0, var1;
  tree off0, off1;
599
  enum tree_code ocode = code;
600

601 602
  *var = NULL_TREE;
  *off = NULL_TREE;
603

Andrew Pinski committed
604
  switch (code)
605
    {
606 607
    case INTEGER_CST:
      *var = build_int_cst (type, 0);
608 609
      *off = fold_convert (ssizetype, op0);
      return true;
610

Andrew Pinski committed
611
    case POINTER_PLUS_EXPR:
612
      ocode = PLUS_EXPR;
Andrew Pinski committed
613
      /* FALLTHROUGH */
614 615
    case PLUS_EXPR:
    case MINUS_EXPR:
616 617 618 619 620
      split_constant_offset (op0, &var0, &off0);
      split_constant_offset (op1, &var1, &off1);
      *var = fold_build2 (code, type, var0, var1);
      *off = size_binop (ocode, off0, off1);
      return true;
621 622

    case MULT_EXPR:
623 624
      if (TREE_CODE (op1) != INTEGER_CST)
	return false;
625

626 627 628 629
      split_constant_offset (op0, &var0, &off0);
      *var = fold_build2 (MULT_EXPR, type, var0, op1);
      *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
      return true;
630

631 632
    case ADDR_EXPR:
      {
633
	tree base, poffset;
634
	poly_int64 pbitsize, pbitpos, pbytepos;
635
	machine_mode pmode;
636
	int punsignedp, preversep, pvolatilep;
637

638
	op0 = TREE_OPERAND (op0, 0);
639 640
	base
	  = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
641
				 &punsignedp, &preversep, &pvolatilep);
642

643
	if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
644
	  return false;
645
	base = build_fold_addr_expr (base);
646
	off0 = ssize_int (pbytepos);
647

648 649 650 651
	if (poffset)
	  {
	    split_constant_offset (poffset, &poffset, &off1);
	    off0 = size_binop (PLUS_EXPR, off0, off1);
652
	    if (POINTER_TYPE_P (TREE_TYPE (base)))
653
	      base = fold_build_pointer_plus (base, poffset);
654 655 656
	    else
	      base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
				  fold_convert (TREE_TYPE (base), poffset));
657 658
	  }

659 660 661 662 663 664 665
	var0 = fold_convert (type, base);

	/* If variable length types are involved, punt, otherwise casts
	   might be converted into ARRAY_REFs in gimplify_conversion.
	   To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
	   possibly no longer appears in current GIMPLE, might resurface.
	   This perhaps could run
666
	   if (CONVERT_EXPR_P (var0))
667 668 669 670 671 672 673 674 675
	     {
	       gimplify_conversion (&var0);
	       // Attempt to fill in any within var0 found ARRAY_REF's
	       // element size from corresponding op embedded ARRAY_REF,
	       // if unsuccessful, just punt.
	     }  */
	while (POINTER_TYPE_P (type))
	  type = TREE_TYPE (type);
	if (int_size_in_bytes (type) < 0)
676
	  return false;
677 678

	*var = var0;
679
	*off = off0;
680
	return true;
681
      }
682

683 684
    case SSA_NAME:
      {
685 686 687
	if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
	  return false;

688
	gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
689
	enum tree_code subcode;
690

691 692 693 694 695 696 697 698
	if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
	  return false;

	var0 = gimple_assign_rhs1 (def_stmt);
	subcode = gimple_assign_rhs_code (def_stmt);
	var1 = gimple_assign_rhs2 (def_stmt);

	return split_constant_offset_1 (type, var0, subcode, var1, var, off);
699
      }
700 701 702 703 704 705 706 707
    CASE_CONVERT:
      {
	/* We must not introduce undefined overflow, and we must not change the value.
	   Hence we're okay if the inner type doesn't overflow to start with
	   (pointer or signed), the outer type also is an integer or pointer
	   and the outer precision is at least as large as the inner.  */
	tree itype = TREE_TYPE (op0);
	if ((POINTER_TYPE_P (itype)
708
	     || (INTEGRAL_TYPE_P (itype) && !TYPE_OVERFLOW_TRAPS (itype)))
709 710 711
	    && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
	    && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
	  {
712 713 714 715 716 717 718 719 720 721 722 723
	    if (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_WRAPS (itype))
	      {
		/* Split the unconverted operand and try to prove that
		   wrapping isn't a problem.  */
		tree tmp_var, tmp_off;
		split_constant_offset (op0, &tmp_var, &tmp_off);

		/* See whether we have an SSA_NAME whose range is known
		   to be [A, B].  */
		if (TREE_CODE (tmp_var) != SSA_NAME)
		  return false;
		wide_int var_min, var_max;
724 725 726 727 728 729 730
		value_range_type vr_type = get_range_info (tmp_var, &var_min,
							   &var_max);
		wide_int var_nonzero = get_nonzero_bits (tmp_var);
		signop sgn = TYPE_SIGN (itype);
		if (intersect_range_with_nonzero_bits (vr_type, &var_min,
						       &var_max, var_nonzero,
						       sgn) != VR_RANGE)
731 732 733 734 735 736
		  return false;

		/* See whether the range of OP0 (i.e. TMP_VAR + TMP_OFF)
		   is known to be [A + TMP_OFF, B + TMP_OFF], with all
		   operations done in ITYPE.  The addition must overflow
		   at both ends of the range or at neither.  */
737
		wi::overflow_type overflow[2];
738 739 740 741
		unsigned int prec = TYPE_PRECISION (itype);
		wide_int woff = wi::to_wide (tmp_off, prec);
		wide_int op0_min = wi::add (var_min, woff, sgn, &overflow[0]);
		wi::add (var_max, woff, sgn, &overflow[1]);
742
		if ((overflow[0] != wi::OVF_NONE) != (overflow[1] != wi::OVF_NONE))
743 744 745 746 747 748 749 750 751 752
		  return false;

		/* Calculate (ssizetype) OP0 - (ssizetype) TMP_VAR.  */
		widest_int diff = (widest_int::from (op0_min, sgn)
				   - widest_int::from (var_min, sgn));
		var0 = tmp_var;
		*off = wide_int_to_tree (ssizetype, diff);
	      }
	    else
	      split_constant_offset (op0, &var0, off);
753 754 755 756 757
	    *var = fold_convert (type, var0);
	    return true;
	  }
	return false;
      }
758

759
    default:
760
      return false;
761
    }
762 763 764 765 766 767 768 769
}

/* Expresses EXP as VAR + OFF, where off is a constant.  The type of OFF
   will be ssizetype.  */

void
split_constant_offset (tree exp, tree *var, tree *off)
{
770
  tree type = TREE_TYPE (exp), op0, op1, e, o;
771
  enum tree_code code;
772

773
  *var = exp;
774
  *off = ssize_int (0);
775

776 777
  if (tree_is_chrec (exp)
      || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
778 779 780 781
    return;

  code = TREE_CODE (exp);
  extract_ops_from_tree (exp, &code, &op0, &op1);
782
  if (split_constant_offset_1 (type, op0, code, op1, &e, &o))
783
    {
784
      *var = e;
785 786
      *off = o;
    }
787 788
}

789 790
/* Returns the address ADDR of an object in a canonical shape (without nop
   casts, and with type of pointer to the object).  */
791 792

static tree
793
canonicalize_base_object_address (tree addr)
794
{
795 796
  tree orig = addr;

797
  STRIP_NOPS (addr);
798

799 800 801 802 803
  /* The base address may be obtained by casting from integer, in that case
     keep the cast.  */
  if (!POINTER_TYPE_P (TREE_TYPE (addr)))
    return orig;

804 805
  if (TREE_CODE (addr) != ADDR_EXPR)
    return addr;
806

807
  return build_fold_addr_expr (TREE_OPERAND (addr, 0));
808 809
}

810
/* Analyze the behavior of memory reference REF.  There are two modes:
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

   - BB analysis.  In this case we simply split the address into base,
     init and offset components, without reference to any containing loop.
     The resulting base and offset are general expressions and they can
     vary arbitrarily from one iteration of the containing loop to the next.
     The step is always zero.

   - loop analysis.  In this case we analyze the reference both wrt LOOP
     and on the basis that the reference occurs (is "used") in LOOP;
     see the comment above analyze_scalar_evolution_in_loop for more
     information about this distinction.  The base, init, offset and
     step fields are all invariant in LOOP.

   Perform BB analysis if LOOP is null, or if LOOP is the function's
   dummy outermost loop.  In other cases perform loop analysis.

827
   Return true if the analysis succeeded and store the results in DRB if so.
828
   BB analysis can only fail for bitfield or reversed-storage accesses.  */
829

830
bool
831 832
dr_analyze_innermost (innermost_loop_behavior *drb, tree ref,
		      struct loop *loop)
833
{
834
  poly_int64 pbitsize, pbitpos;
835
  tree base, poffset;
836
  machine_mode pmode;
837
  int punsignedp, preversep, pvolatilep;
838 839
  affine_iv base_iv, offset_iv;
  tree init, dinit, step;
840
  bool in_loop = (loop && loop->num);
841 842 843

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "analyze_innermost: ");
844

845
  base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
846
			      &punsignedp, &preversep, &pvolatilep);
847
  gcc_assert (base != NULL_TREE);
848

849 850
  poly_int64 pbytepos;
  if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
851
    {
852 853
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "failed: bit offset alignment.\n");
854
      return false;
855
    }
856

857 858 859 860 861 862 863
  if (preversep)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "failed: reverse storage order.\n");
      return false;
    }

864
  /* Calculate the alignment and misalignment for the inner reference.  */
865 866 867
  unsigned int HOST_WIDE_INT bit_base_misalignment;
  unsigned int bit_base_alignment;
  get_object_alignment_1 (base, &bit_base_alignment, &bit_base_misalignment);
868 869 870

  /* There are no bitfield references remaining in BASE, so the values
     we got back must be whole bytes.  */
871 872 873 874
  gcc_assert (bit_base_alignment % BITS_PER_UNIT == 0
	      && bit_base_misalignment % BITS_PER_UNIT == 0);
  unsigned int base_alignment = bit_base_alignment / BITS_PER_UNIT;
  poly_int64 base_misalignment = bit_base_misalignment / BITS_PER_UNIT;
875

876 877 878 879
  if (TREE_CODE (base) == MEM_REF)
    {
      if (!integer_zerop (TREE_OPERAND (base, 1)))
	{
880 881
	  /* Subtract MOFF from the base and add it to POFFSET instead.
	     Adjust the misalignment to reflect the amount we subtracted.  */
882 883
	  poly_offset_int moff = mem_ref_offset (base);
	  base_misalignment -= moff.force_shwi ();
Kenneth Zadeck committed
884
	  tree mofft = wide_int_to_tree (sizetype, moff);
885
	  if (!poffset)
886
	    poffset = mofft;
887
	  else
888
	    poffset = size_binop (PLUS_EXPR, poffset, mofft);
889 890 891 892 893
	}
      base = TREE_OPERAND (base, 0);
    }
  else
    base = build_fold_addr_expr (base);
894

895
  if (in_loop)
896
    {
897
      if (!simple_iv (loop, loop, base, &base_iv, true))
898
        {
899 900 901
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "failed: evolution of base is not affine.\n");
	  return false;
902 903 904 905 906 907 908
        }
    }
  else
    {
      base_iv.base = base;
      base_iv.step = ssize_int (0);
      base_iv.no_overflow = true;
909
    }
910

911
  if (!poffset)
912 913 914 915
    {
      offset_iv.base = ssize_int (0);
      offset_iv.step = ssize_int (0);
    }
916
  else
917
    {
918 919 920 921 922
      if (!in_loop)
        {
          offset_iv.base = poffset;
          offset_iv.step = ssize_int (0);
        }
923
      else if (!simple_iv (loop, loop, poffset, &offset_iv, true))
924
        {
925 926 927
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "failed: evolution of offset is not affine.\n");
	  return false;
928
        }
929
    }
930

931
  init = ssize_int (pbytepos);
932 933 934

  /* Subtract any constant component from the base and add it to INIT instead.
     Adjust the misalignment to reflect the amount we subtracted.  */
935
  split_constant_offset (base_iv.base, &base_iv.base, &dinit);
936 937 938
  init = size_binop (PLUS_EXPR, init, dinit);
  base_misalignment -= TREE_INT_CST_LOW (dinit);

939
  split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
940
  init = size_binop (PLUS_EXPR, init, dinit);
941

942 943 944
  step = size_binop (PLUS_EXPR,
		     fold_convert (ssizetype, base_iv.step),
		     fold_convert (ssizetype, offset_iv.step));
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
  base = canonicalize_base_object_address (base_iv.base);

  /* See if get_pointer_alignment can guarantee a higher alignment than
     the one we calculated above.  */
  unsigned int HOST_WIDE_INT alt_misalignment;
  unsigned int alt_alignment;
  get_pointer_alignment_1 (base, &alt_alignment, &alt_misalignment);

  /* As above, these values must be whole bytes.  */
  gcc_assert (alt_alignment % BITS_PER_UNIT == 0
	      && alt_misalignment % BITS_PER_UNIT == 0);
  alt_alignment /= BITS_PER_UNIT;
  alt_misalignment /= BITS_PER_UNIT;

  if (base_alignment < alt_alignment)
    {
      base_alignment = alt_alignment;
      base_misalignment = alt_misalignment;
    }
965

966
  drb->base_address = base;
967 968 969
  drb->offset = fold_convert (ssizetype, offset_iv.base);
  drb->init = init;
  drb->step = step;
970 971 972 973 974 975 976 977
  if (known_misalignment (base_misalignment, base_alignment,
			  &drb->base_misalignment))
    drb->base_alignment = base_alignment;
  else
    {
      drb->base_alignment = known_alignment (base_misalignment);
      drb->base_misalignment = 0;
    }
978
  drb->offset_alignment = highest_pow2_factor (offset_iv.base);
979
  drb->step_alignment = highest_pow2_factor (step);
980

981 982
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "success.\n");
983 984

  return true;
985
}
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/* Return true if OP is a valid component reference for a DR access
   function.  This accepts a subset of what handled_component_p accepts.  */

static bool
access_fn_component_p (tree op)
{
  switch (TREE_CODE (op))
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case ARRAY_REF:
      return true;

    case COMPONENT_REF:
      return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;

    default:
      return false;
    }
}

1008
/* Determines the base object and the list of indices of memory reference
1009
   DR, analyzed in LOOP and instantiated before NEST.  */
1010

1011
static void
1012
dr_analyze_indices (struct data_reference *dr, edge nest, loop_p loop)
1013
{
1014
  vec<tree> access_fns = vNULL;
1015
  tree ref, op;
1016
  tree base, off, access_fn;
H.J. Lu committed
1017

1018 1019
  /* If analyzing a basic-block there are no indices to analyze
     and thus no access functions.  */
1020 1021
  if (!nest)
    {
1022
      DR_BASE_OBJECT (dr) = DR_REF (dr);
1023
      DR_ACCESS_FNS (dr).create (0);
1024 1025 1026
      return;
    }

1027
  ref = DR_REF (dr);
H.J. Lu committed
1028

1029 1030 1031 1032 1033 1034
  /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
     into a two element array with a constant index.  The base is
     then just the immediate underlying object.  */
  if (TREE_CODE (ref) == REALPART_EXPR)
    {
      ref = TREE_OPERAND (ref, 0);
1035
      access_fns.safe_push (integer_zero_node);
1036 1037 1038 1039
    }
  else if (TREE_CODE (ref) == IMAGPART_EXPR)
    {
      ref = TREE_OPERAND (ref, 0);
1040
      access_fns.safe_push (integer_one_node);
1041 1042
    }

1043 1044 1045
  /* Analyze access functions of dimensions we know to be independent.
     The list of component references handled here should be kept in
     sync with access_fn_component_p.  */
1046
  while (handled_component_p (ref))
1047
    {
1048
      if (TREE_CODE (ref) == ARRAY_REF)
1049
	{
1050
	  op = TREE_OPERAND (ref, 1);
1051
	  access_fn = analyze_scalar_evolution (loop, op);
1052
	  access_fn = instantiate_scev (nest, loop, access_fn);
1053
	  access_fns.safe_push (access_fn);
1054
	}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
      else if (TREE_CODE (ref) == COMPONENT_REF
	       && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
	{
	  /* For COMPONENT_REFs of records (but not unions!) use the
	     FIELD_DECL offset as constant access function so we can
	     disambiguate a[i].f1 and a[i].f2.  */
	  tree off = component_ref_field_offset (ref);
	  off = size_binop (PLUS_EXPR,
			    size_binop (MULT_EXPR,
					fold_convert (bitsizetype, off),
					bitsize_int (BITS_PER_UNIT)),
			    DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
1067
	  access_fns.safe_push (off);
1068 1069 1070 1071 1072 1073
	}
      else
	/* If we have an unhandled component we could not translate
	   to an access function stop analyzing.  We have determined
	   our base object in this case.  */
	break;
H.J. Lu committed
1074

1075
      ref = TREE_OPERAND (ref, 0);
1076 1077
    }

1078 1079
  /* If the address operand of a MEM_REF base has an evolution in the
     analyzed nest, add it as an additional independent access-function.  */
1080
  if (TREE_CODE (ref) == MEM_REF)
1081
    {
1082
      op = TREE_OPERAND (ref, 0);
1083
      access_fn = analyze_scalar_evolution (loop, op);
1084
      access_fn = instantiate_scev (nest, loop, access_fn);
1085
      if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1086
	{
1087
	  tree orig_type;
1088
	  tree memoff = TREE_OPERAND (ref, 1);
1089
	  base = initial_condition (access_fn);
1090 1091
	  orig_type = TREE_TYPE (base);
	  STRIP_USELESS_TYPE_CONVERSION (base);
1092
	  split_constant_offset (base, &base, &off);
1093
	  STRIP_USELESS_TYPE_CONVERSION (base);
1094 1095
	  /* Fold the MEM_REF offset into the evolutions initial
	     value to make more bases comparable.  */
1096
	  if (!integer_zerop (memoff))
1097 1098
	    {
	      off = size_binop (PLUS_EXPR, off,
1099 1100
				fold_convert (ssizetype, memoff));
	      memoff = build_int_cst (TREE_TYPE (memoff), 0);
1101
	    }
1102 1103 1104 1105 1106 1107 1108 1109
	  /* Adjust the offset so it is a multiple of the access type
	     size and thus we separate bases that can possibly be used
	     to produce partial overlaps (which the access_fn machinery
	     cannot handle).  */
	  wide_int rem;
	  if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
	      && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
	      && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
1110 1111 1112 1113
	    rem = wi::mod_trunc
	      (wi::to_wide (off),
	       wi::to_wide (TYPE_SIZE_UNIT (TREE_TYPE (ref))),
	       SIGNED);
1114 1115 1116
	  else
	    /* If we can't compute the remainder simply force the initial
	       condition to zero.  */
1117 1118
	    rem = wi::to_wide (off);
	  off = wide_int_to_tree (ssizetype, wi::to_wide (off) - rem);
1119 1120
	  memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
	  /* And finally replace the initial condition.  */
1121
	  access_fn = chrec_replace_initial_condition
1122
	      (access_fn, fold_convert (orig_type, off));
1123 1124 1125 1126 1127 1128 1129
	  /* ???  This is still not a suitable base object for
	     dr_may_alias_p - the base object needs to be an
	     access that covers the object as whole.  With
	     an evolution in the pointer this cannot be
	     guaranteed.
	     As a band-aid, mark the access so we can special-case
	     it in dr_may_alias_p.  */
1130
	  tree old = ref;
1131 1132 1133
	  ref = fold_build2_loc (EXPR_LOCATION (ref),
				 MEM_REF, TREE_TYPE (ref),
				 base, memoff);
1134 1135
	  MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
	  MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
1136
	  DR_UNCONSTRAINED_BASE (dr) = true;
1137
	  access_fns.safe_push (access_fn);
1138
	}
1139
    }
1140 1141 1142 1143 1144 1145 1146
  else if (DECL_P (ref))
    {
      /* Canonicalize DR_BASE_OBJECT to MEM_REF form.  */
      ref = build2 (MEM_REF, TREE_TYPE (ref),
		    build_fold_addr_expr (ref),
		    build_int_cst (reference_alias_ptr_type (ref), 0));
    }
1147

1148 1149
  DR_BASE_OBJECT (dr) = ref;
  DR_ACCESS_FNS (dr) = access_fns;
1150 1151
}

1152
/* Extracts the alias analysis information from the memory reference DR.  */
1153

1154 1155
static void
dr_analyze_alias (struct data_reference *dr)
1156
{
1157
  tree ref = DR_REF (dr);
1158 1159
  tree base = get_base_address (ref), addr;

1160 1161
  if (INDIRECT_REF_P (base)
      || TREE_CODE (base) == MEM_REF)
1162 1163 1164
    {
      addr = TREE_OPERAND (base, 0);
      if (TREE_CODE (addr) == SSA_NAME)
1165
	DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1166 1167
    }
}
1168

1169
/* Frees data reference DR.  */
1170

1171
void
1172 1173
free_data_ref (data_reference_p dr)
{
1174
  DR_ACCESS_FNS (dr).release ();
1175 1176
  free (dr);
}
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186
/* Analyze memory reference MEMREF, which is accessed in STMT.
   The reference is a read if IS_READ is true, otherwise it is a write.
   IS_CONDITIONAL_IN_STMT indicates that the reference is conditional
   within STMT, i.e. that it might not occur even if STMT is executed
   and runs to completion.

   Return the data_reference description of MEMREF.  NEST is the outermost
   loop in which the reference should be instantiated, LOOP is the loop
   in which the data reference should be analyzed.  */
1187

1188
struct data_reference *
1189
create_data_ref (edge nest, loop_p loop, tree memref, gimple *stmt,
1190
		 bool is_read, bool is_conditional_in_stmt)
1191
{
1192
  struct data_reference *dr;
1193

1194
  if (dump_file && (dump_flags & TDF_DETAILS))
1195
    {
1196 1197 1198
      fprintf (dump_file, "Creating dr for ");
      print_generic_expr (dump_file, memref, TDF_SLIM);
      fprintf (dump_file, "\n");
1199
    }
1200

1201 1202 1203 1204
  dr = XCNEW (struct data_reference);
  DR_STMT (dr) = stmt;
  DR_REF (dr) = memref;
  DR_IS_READ (dr) = is_read;
1205
  DR_IS_CONDITIONAL_IN_STMT (dr) = is_conditional_in_stmt;
1206

1207 1208
  dr_analyze_innermost (&DR_INNERMOST (dr), memref,
			nest != NULL ? loop : NULL);
1209
  dr_analyze_indices (dr, nest, loop);
1210
  dr_analyze_alias (dr);
1211 1212 1213

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
1214
      unsigned i;
1215
      fprintf (dump_file, "\tbase_address: ");
1216 1217 1218 1219 1220 1221 1222
      print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
      fprintf (dump_file, "\n\toffset from base address: ");
      print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
      fprintf (dump_file, "\n\tconstant offset from base address: ");
      print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
      fprintf (dump_file, "\n\tstep: ");
      print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1223 1224 1225
      fprintf (dump_file, "\n\tbase alignment: %d", DR_BASE_ALIGNMENT (dr));
      fprintf (dump_file, "\n\tbase misalignment: %d",
	       DR_BASE_MISALIGNMENT (dr));
1226 1227
      fprintf (dump_file, "\n\toffset alignment: %d",
	       DR_OFFSET_ALIGNMENT (dr));
1228
      fprintf (dump_file, "\n\tstep alignment: %d", DR_STEP_ALIGNMENT (dr));
1229 1230
      fprintf (dump_file, "\n\tbase_object: ");
      print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1231
      fprintf (dump_file, "\n");
1232 1233 1234 1235 1236
      for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
	{
	  fprintf (dump_file, "\tAccess function %d: ", i);
	  print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
	}
1237 1238
    }

H.J. Lu committed
1239
  return dr;
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*  A helper function computes order between two tree epxressions T1 and T2.
    This is used in comparator functions sorting objects based on the order
    of tree expressions.  The function returns -1, 0, or 1.  */

int
data_ref_compare_tree (tree t1, tree t2)
{
  int i, cmp;
  enum tree_code code;
  char tclass;

  if (t1 == t2)
    return 0;
  if (t1 == NULL)
    return -1;
  if (t2 == NULL)
    return 1;

1260 1261 1262 1263
  STRIP_USELESS_TYPE_CONVERSION (t1);
  STRIP_USELESS_TYPE_CONVERSION (t2);
  if (t1 == t2)
    return 0;
1264

1265 1266
  if (TREE_CODE (t1) != TREE_CODE (t2)
      && ! (CONVERT_EXPR_P (t1) && CONVERT_EXPR_P (t2)))
1267 1268 1269 1270 1271 1272
    return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;

  code = TREE_CODE (t1);
  switch (code)
    {
    case INTEGER_CST:
1273 1274
      return tree_int_cst_compare (t1, t2);

1275
    case STRING_CST:
1276 1277 1278 1279
      if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
	return TREE_STRING_LENGTH (t1) < TREE_STRING_LENGTH (t2) ? -1 : 1;
      return memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
		     TREE_STRING_LENGTH (t1));
1280 1281 1282 1283 1284 1285 1286

    case SSA_NAME:
      if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
	return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
      break;

    default:
1287 1288 1289 1290
      if (POLY_INT_CST_P (t1))
	return compare_sizes_for_sort (wi::to_poly_widest (t1),
				       wi::to_poly_widest (t2));

1291 1292
      tclass = TREE_CODE_CLASS (code);

1293
      /* For decls, compare their UIDs.  */
1294 1295 1296 1297 1298 1299
      if (tclass == tcc_declaration)
	{
	  if (DECL_UID (t1) != DECL_UID (t2))
	    return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
	  break;
	}
1300 1301
      /* For expressions, compare their operands recursively.  */
      else if (IS_EXPR_CODE_CLASS (tclass))
1302
	{
1303 1304 1305 1306 1307 1308 1309
	  for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
	    {
	      cmp = data_ref_compare_tree (TREE_OPERAND (t1, i),
					   TREE_OPERAND (t2, i));
	      if (cmp != 0)
		return cmp;
	    }
1310
	}
1311 1312
      else
	gcc_unreachable ();
1313 1314 1315 1316 1317
    }

  return 0;
}

1318 1319 1320 1321 1322 1323 1324
/* Return TRUE it's possible to resolve data dependence DDR by runtime alias
   check.  */

bool
runtime_alias_check_p (ddr_p ddr, struct loop *loop, bool speed_p)
{
  if (dump_enabled_p ())
1325 1326 1327
    dump_printf (MSG_NOTE,
		 "consider run-time aliasing test between %T and %T\n",
		 DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

  if (!speed_p)
    {
      if (dump_enabled_p ())
	dump_printf (MSG_MISSED_OPTIMIZATION,
		     "runtime alias check not supported when optimizing "
		     "for size.\n");
      return false;
    }

  /* FORNOW: We don't support versioning with outer-loop in either
     vectorization or loop distribution.  */
  if (loop != NULL && loop->inner != NULL)
    {
      if (dump_enabled_p ())
	dump_printf (MSG_MISSED_OPTIMIZATION,
		     "runtime alias check not supported for outer loop.\n");
      return false;
    }

  return true;
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/* Operator == between two dr_with_seg_len objects.

   This equality operator is used to make sure two data refs
   are the same one so that we will consider to combine the
   aliasing checks of those two pairs of data dependent data
   refs.  */

static bool
operator == (const dr_with_seg_len& d1,
	     const dr_with_seg_len& d2)
{
1362 1363 1364 1365 1366 1367 1368
  return (operand_equal_p (DR_BASE_ADDRESS (d1.dr),
			   DR_BASE_ADDRESS (d2.dr), 0)
	  && data_ref_compare_tree (DR_OFFSET (d1.dr), DR_OFFSET (d2.dr)) == 0
	  && data_ref_compare_tree (DR_INIT (d1.dr), DR_INIT (d2.dr)) == 0
	  && data_ref_compare_tree (d1.seg_len, d2.seg_len) == 0
	  && known_eq (d1.access_size, d2.access_size)
	  && d1.align == d2.align);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}

/* Comparison function for sorting objects of dr_with_seg_len_pair_t
   so that we can combine aliasing checks in one scan.  */

static int
comp_dr_with_seg_len_pair (const void *pa_, const void *pb_)
{
  const dr_with_seg_len_pair_t* pa = (const dr_with_seg_len_pair_t *) pa_;
  const dr_with_seg_len_pair_t* pb = (const dr_with_seg_len_pair_t *) pb_;
  const dr_with_seg_len &a1 = pa->first, &a2 = pa->second;
  const dr_with_seg_len &b1 = pb->first, &b2 = pb->second;

  /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
     if a and c have the same basic address snd step, and b and d have the same
     address and step.  Therefore, if any a&c or b&d don't have the same address
     and step, we don't care the order of those two pairs after sorting.  */
  int comp_res;

  if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a1.dr),
					 DR_BASE_ADDRESS (b1.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a2.dr),
					 DR_BASE_ADDRESS (b2.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_STEP (a1.dr),
					 DR_STEP (b1.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_STEP (a2.dr),
					 DR_STEP (b2.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_OFFSET (a1.dr),
					 DR_OFFSET (b1.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_INIT (a1.dr),
					 DR_INIT (b1.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_OFFSET (a2.dr),
					 DR_OFFSET (b2.dr))) != 0)
    return comp_res;
  if ((comp_res = data_ref_compare_tree (DR_INIT (a2.dr),
					 DR_INIT (b2.dr))) != 0)
    return comp_res;

  return 0;
}

/* Merge alias checks recorded in ALIAS_PAIRS and remove redundant ones.
   FACTOR is number of iterations that each data reference is accessed.

   Basically, for each pair of dependent data refs store_ptr_0 & load_ptr_0,
   we create an expression:

   ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
   || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))

   for aliasing checks.  However, in some cases we can decrease the number
   of checks by combining two checks into one.  For example, suppose we have
   another pair of data refs store_ptr_0 & load_ptr_1, and if the following
   condition is satisfied:

   load_ptr_0 < load_ptr_1  &&
   load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0

   (this condition means, in each iteration of vectorized loop, the accessed
   memory of store_ptr_0 cannot be between the memory of load_ptr_0 and
   load_ptr_1.)

   we then can use only the following expression to finish the alising checks
   between store_ptr_0 & load_ptr_0 and store_ptr_0 & load_ptr_1:

   ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
   || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))

   Note that we only consider that load_ptr_0 and load_ptr_1 have the same
   basic address.  */

void
prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *alias_pairs,
1448
			       poly_uint64)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
{
  /* Sort the collected data ref pairs so that we can scan them once to
     combine all possible aliasing checks.  */
  alias_pairs->qsort (comp_dr_with_seg_len_pair);

  /* Scan the sorted dr pairs and check if we can combine alias checks
     of two neighboring dr pairs.  */
  for (size_t i = 1; i < alias_pairs->length (); ++i)
    {
      /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2).  */
      dr_with_seg_len *dr_a1 = &(*alias_pairs)[i-1].first,
		      *dr_b1 = &(*alias_pairs)[i-1].second,
		      *dr_a2 = &(*alias_pairs)[i].first,
		      *dr_b2 = &(*alias_pairs)[i].second;

      /* Remove duplicate data ref pairs.  */
      if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
	{
	  if (dump_enabled_p ())
1468 1469 1470
	    dump_printf (MSG_NOTE, "found equal ranges %T, %T and %T, %T\n",
			 DR_REF (dr_a1->dr), DR_REF (dr_b1->dr),
			 DR_REF (dr_a2->dr), DR_REF (dr_b2->dr));
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	  alias_pairs->ordered_remove (i--);
	  continue;
	}

      if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
	{
	  /* We consider the case that DR_B1 and DR_B2 are same memrefs,
	     and DR_A1 and DR_A2 are two consecutive memrefs.  */
	  if (*dr_a1 == *dr_a2)
	    {
	      std::swap (dr_a1, dr_b1);
	      std::swap (dr_a2, dr_b2);
	    }

1485
	  poly_int64 init_a1, init_a2;
1486 1487
	  /* Only consider cases in which the distance between the initial
	     DR_A1 and the initial DR_A2 is known at compile time.  */
1488 1489 1490 1491
	  if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
				DR_BASE_ADDRESS (dr_a2->dr), 0)
	      || !operand_equal_p (DR_OFFSET (dr_a1->dr),
				   DR_OFFSET (dr_a2->dr), 0)
1492 1493
	      || !poly_int_tree_p (DR_INIT (dr_a1->dr), &init_a1)
	      || !poly_int_tree_p (DR_INIT (dr_a2->dr), &init_a2))
1494 1495
	    continue;

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	  /* Don't combine if we can't tell which one comes first.  */
	  if (!ordered_p (init_a1, init_a2))
	    continue;

	  /* Make sure dr_a1 starts left of dr_a2.  */
	  if (maybe_gt (init_a1, init_a2))
	    {
	      std::swap (*dr_a1, *dr_a2);
	      std::swap (init_a1, init_a2);
	    }

1507 1508
	  /* Work out what the segment length would be if we did combine
	     DR_A1 and DR_A2:
1509

1510 1511
	     - If DR_A1 and DR_A2 have equal lengths, that length is
	       also the combined length.
1512

1513 1514
	     - If DR_A1 and DR_A2 both have negative "lengths", the combined
	       length is the lower bound on those lengths.
1515

1516 1517
	     - If DR_A1 and DR_A2 both have positive lengths, the combined
	       length is the upper bound on those lengths.
1518

1519
	     Other cases are unlikely to give a useful combination.
1520

1521 1522 1523
	     The lengths both have sizetype, so the sign is taken from
	     the step instead.  */
	  if (!operand_equal_p (dr_a1->seg_len, dr_a2->seg_len, 0))
1524
	    {
1525 1526 1527
	      poly_uint64 seg_len_a1, seg_len_a2;
	      if (!poly_int_tree_p (dr_a1->seg_len, &seg_len_a1)
		  || !poly_int_tree_p (dr_a2->seg_len, &seg_len_a2))
1528
		continue;
1529

1530 1531 1532
	      tree indicator_a = dr_direction_indicator (dr_a1->dr);
	      if (TREE_CODE (indicator_a) != INTEGER_CST)
		continue;
1533

1534 1535 1536
	      tree indicator_b = dr_direction_indicator (dr_a2->dr);
	      if (TREE_CODE (indicator_b) != INTEGER_CST)
		continue;
1537

1538 1539
	      int sign_a = tree_int_cst_sgn (indicator_a);
	      int sign_b = tree_int_cst_sgn (indicator_b);
1540

1541 1542 1543 1544 1545 1546 1547
	      poly_uint64 new_seg_len;
	      if (sign_a <= 0 && sign_b <= 0)
		new_seg_len = lower_bound (seg_len_a1, seg_len_a2);
	      else if (sign_a >= 0 && sign_b >= 0)
		new_seg_len = upper_bound (seg_len_a1, seg_len_a2);
	      else
		continue;
1548

1549 1550 1551 1552
	      dr_a1->seg_len = build_int_cst (TREE_TYPE (dr_a1->seg_len),
					      new_seg_len);
	      dr_a1->align = MIN (dr_a1->align, known_alignment (new_seg_len));
	    }
1553

1554 1555
	  /* This is always positive due to the swap above.  */
	  poly_uint64 diff = init_a2 - init_a1;
1556

1557 1558 1559
	  /* The new check will start at DR_A1.  Make sure that its access
	     size encompasses the initial DR_A2.  */
	  if (maybe_lt (dr_a1->access_size, diff + dr_a2->access_size))
1560
	    {
1561 1562 1563 1564
	      dr_a1->access_size = upper_bound (dr_a1->access_size,
						diff + dr_a2->access_size);
	      unsigned int new_align = known_alignment (dr_a1->access_size);
	      dr_a1->align = MIN (dr_a1->align, new_align);
1565
	    }
1566
	  if (dump_enabled_p ())
1567 1568 1569
	    dump_printf (MSG_NOTE, "merging ranges for %T, %T and %T, %T\n",
			 DR_REF (dr_a1->dr), DR_REF (dr_b1->dr),
			 DR_REF (dr_a2->dr), DR_REF (dr_b2->dr));
1570 1571
	  alias_pairs->ordered_remove (i);
	  i--;
1572 1573 1574 1575
	}
    }
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/* Given LOOP's two data references and segment lengths described by DR_A
   and DR_B, create expression checking if the two addresses ranges intersect
   with each other based on index of the two addresses.  This can only be
   done if DR_A and DR_B referring to the same (array) object and the index
   is the only difference.  For example:

                       DR_A                           DR_B
      data-ref         arr[i]                         arr[j]
      base_object      arr                            arr
      index            {i_0, +, 1}_loop               {j_0, +, 1}_loop

   The addresses and their index are like:

        |<- ADDR_A    ->|          |<- ADDR_B    ->|
     ------------------------------------------------------->
        |   |   |   |   |          |   |   |   |   |
     ------------------------------------------------------->
        i_0 ...         i_0+4      j_0 ...         j_0+4

   We can create expression based on index rather than address:

     (i_0 + 4 < j_0 || j_0 + 4 < i_0)

   Note evolution step of index needs to be considered in comparison.  */

static bool
create_intersect_range_checks_index (struct loop *loop, tree *cond_expr,
				     const dr_with_seg_len& dr_a,
				     const dr_with_seg_len& dr_b)
{
  if (integer_zerop (DR_STEP (dr_a.dr))
      || integer_zerop (DR_STEP (dr_b.dr))
      || DR_NUM_DIMENSIONS (dr_a.dr) != DR_NUM_DIMENSIONS (dr_b.dr))
    return false;

1611 1612 1613
  poly_uint64 seg_len1, seg_len2;
  if (!poly_int_tree_p (dr_a.seg_len, &seg_len1)
      || !poly_int_tree_p (dr_b.seg_len, &seg_len2))
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    return false;

  if (!tree_fits_shwi_p (DR_STEP (dr_a.dr)))
    return false;

  if (!operand_equal_p (DR_BASE_OBJECT (dr_a.dr), DR_BASE_OBJECT (dr_b.dr), 0))
    return false;

  if (!operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0))
    return false;

  gcc_assert (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST);

  bool neg_step = tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
  unsigned HOST_WIDE_INT abs_step = tree_to_shwi (DR_STEP (dr_a.dr));
  if (neg_step)
    {
      abs_step = -abs_step;
      seg_len1 = -seg_len1;
      seg_len2 = -seg_len2;
    }
  else
    {
      /* Include the access size in the length, so that we only have one
	 tree addition below.  */
      seg_len1 += dr_a.access_size;
      seg_len2 += dr_b.access_size;
    }
1642 1643 1644 1645 1646 1647 1648

  /* Infer the number of iterations with which the memory segment is accessed
     by DR.  In other words, alias is checked if memory segment accessed by
     DR_A in some iterations intersect with memory segment accessed by DR_B
     in the same amount iterations.
     Note segnment length is a linear function of number of iterations with
     DR_STEP as the coefficient.  */
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
  poly_uint64 niter_len1, niter_len2;
  if (!can_div_trunc_p (seg_len1 + abs_step - 1, abs_step, &niter_len1)
      || !can_div_trunc_p (seg_len2 + abs_step - 1, abs_step, &niter_len2))
    return false;

  poly_uint64 niter_access1 = 0, niter_access2 = 0;
  if (neg_step)
    {
      /* Divide each access size by the byte step, rounding up.  */
      if (!can_div_trunc_p (dr_a.access_size - abs_step - 1,
			    abs_step, &niter_access1)
	  || !can_div_trunc_p (dr_b.access_size + abs_step - 1,
			       abs_step, &niter_access2))
	return false;
    }
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

  unsigned int i;
  for (i = 0; i < DR_NUM_DIMENSIONS (dr_a.dr); i++)
    {
      tree access1 = DR_ACCESS_FN (dr_a.dr, i);
      tree access2 = DR_ACCESS_FN (dr_b.dr, i);
      /* Two indices must be the same if they are not scev, or not scev wrto
	 current loop being vecorized.  */
      if (TREE_CODE (access1) != POLYNOMIAL_CHREC
	  || TREE_CODE (access2) != POLYNOMIAL_CHREC
	  || CHREC_VARIABLE (access1) != (unsigned)loop->num
	  || CHREC_VARIABLE (access2) != (unsigned)loop->num)
	{
	  if (operand_equal_p (access1, access2, 0))
	    continue;

	  return false;
	}
      /* The two indices must have the same step.  */
      if (!operand_equal_p (CHREC_RIGHT (access1), CHREC_RIGHT (access2), 0))
	return false;

      tree idx_step = CHREC_RIGHT (access1);
      /* Index must have const step, otherwise DR_STEP won't be constant.  */
      gcc_assert (TREE_CODE (idx_step) == INTEGER_CST);
      /* Index must evaluate in the same direction as DR.  */
      gcc_assert (!neg_step || tree_int_cst_sign_bit (idx_step) == 1);

      tree min1 = CHREC_LEFT (access1);
      tree min2 = CHREC_LEFT (access2);
      if (!types_compatible_p (TREE_TYPE (min1), TREE_TYPE (min2)))
	return false;

      /* Ideally, alias can be checked against loop's control IV, but we
	 need to prove linear mapping between control IV and reference
	 index.  Although that should be true, we check against (array)
	 index of data reference.  Like segment length, index length is
	 linear function of the number of iterations with index_step as
	 the coefficient, i.e, niter_len * idx_step.  */
      tree idx_len1 = fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
				   build_int_cst (TREE_TYPE (min1),
						  niter_len1));
      tree idx_len2 = fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
				   build_int_cst (TREE_TYPE (min2),
						  niter_len2));
      tree max1 = fold_build2 (PLUS_EXPR, TREE_TYPE (min1), min1, idx_len1);
      tree max2 = fold_build2 (PLUS_EXPR, TREE_TYPE (min2), min2, idx_len2);
      /* Adjust ranges for negative step.  */
      if (neg_step)
	{
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	  /* IDX_LEN1 and IDX_LEN2 are negative in this case.  */
	  std::swap (min1, max1);
	  std::swap (min2, max2);

	  /* As with the lengths just calculated, we've measured the access
	     sizes in iterations, so multiply them by the index step.  */
	  tree idx_access1
	    = fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
			   build_int_cst (TREE_TYPE (min1), niter_access1));
	  tree idx_access2
	    = fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
			   build_int_cst (TREE_TYPE (min2), niter_access2));

	  /* MINUS_EXPR because the above values are negative.  */
	  max1 = fold_build2 (MINUS_EXPR, TREE_TYPE (max1), max1, idx_access1);
	  max2 = fold_build2 (MINUS_EXPR, TREE_TYPE (max2), max2, idx_access2);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	}
      tree part_cond_expr
	= fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
	    fold_build2 (LE_EXPR, boolean_type_node, max1, min2),
	    fold_build2 (LE_EXPR, boolean_type_node, max2, min1));
      if (*cond_expr)
	*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				  *cond_expr, part_cond_expr);
      else
	*cond_expr = part_cond_expr;
    }
  return true;
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/* If ALIGN is nonzero, set up *SEQ_MIN_OUT and *SEQ_MAX_OUT so that for
   every address ADDR accessed by D:

     *SEQ_MIN_OUT <= ADDR (== ADDR & -ALIGN) <= *SEQ_MAX_OUT

   In this case, every element accessed by D is aligned to at least
   ALIGN bytes.

   If ALIGN is zero then instead set *SEG_MAX_OUT so that:

     *SEQ_MIN_OUT <= ADDR < *SEQ_MAX_OUT.  */

static void
get_segment_min_max (const dr_with_seg_len &d, tree *seg_min_out,
		     tree *seg_max_out, HOST_WIDE_INT align)
{
  /* Each access has the following pattern:

	  <- |seg_len| ->
	  <--- A: -ve step --->
	  +-----+-------+-----+-------+-----+
	  | n-1 | ,.... |  0  | ..... | n-1 |
	  +-----+-------+-----+-------+-----+
			<--- B: +ve step --->
			<- |seg_len| ->
			|
		   base address

     where "n" is the number of scalar iterations covered by the segment.
     (This should be VF for a particular pair if we know that both steps
     are the same, otherwise it will be the full number of scalar loop
     iterations.)

     A is the range of bytes accessed when the step is negative,
     B is the range when the step is positive.

     If the access size is "access_size" bytes, the lowest addressed byte is:

	 base + (step < 0 ? seg_len : 0)   [LB]

     and the highest addressed byte is always below:

	 base + (step < 0 ? 0 : seg_len) + access_size   [UB]

     Thus:

	 LB <= ADDR < UB

     If ALIGN is nonzero, all three values are aligned to at least ALIGN
     bytes, so:

	 LB <= ADDR <= UB - ALIGN

     where "- ALIGN" folds naturally with the "+ access_size" and often
     cancels it out.

     We don't try to simplify LB and UB beyond this (e.g. by using
     MIN and MAX based on whether seg_len rather than the stride is
     negative) because it is possible for the absolute size of the
     segment to overflow the range of a ssize_t.

     Keeping the pointer_plus outside of the cond_expr should allow
     the cond_exprs to be shared with other alias checks.  */
  tree indicator = dr_direction_indicator (d.dr);
  tree neg_step = fold_build2 (LT_EXPR, boolean_type_node,
			       fold_convert (ssizetype, indicator),
			       ssize_int (0));
  tree addr_base = fold_build_pointer_plus (DR_BASE_ADDRESS (d.dr),
					    DR_OFFSET (d.dr));
  addr_base = fold_build_pointer_plus (addr_base, DR_INIT (d.dr));
1814 1815
  tree seg_len
    = fold_convert (sizetype, rewrite_to_non_trapping_overflow (d.seg_len));
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

  tree min_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
				seg_len, size_zero_node);
  tree max_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
				size_zero_node, seg_len);
  max_reach = fold_build2 (PLUS_EXPR, sizetype, max_reach,
			   size_int (d.access_size - align));

  *seg_min_out = fold_build_pointer_plus (addr_base, min_reach);
  *seg_max_out = fold_build_pointer_plus (addr_base, max_reach);
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
/* Given two data references and segment lengths described by DR_A and DR_B,
   create expression checking if the two addresses ranges intersect with
   each other:

     ((DR_A_addr_0 + DR_A_segment_length_0) <= DR_B_addr_0)
     || (DR_B_addr_0 + DER_B_segment_length_0) <= DR_A_addr_0))  */

static void
create_intersect_range_checks (struct loop *loop, tree *cond_expr,
			       const dr_with_seg_len& dr_a,
			       const dr_with_seg_len& dr_b)
{
  *cond_expr = NULL_TREE;
  if (create_intersect_range_checks_index (loop, cond_expr, dr_a, dr_b))
    return;

1844 1845 1846 1847
  unsigned HOST_WIDE_INT min_align;
  tree_code cmp_code;
  if (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST
      && TREE_CODE (DR_STEP (dr_b.dr)) == INTEGER_CST)
1848
    {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
      /* In this case adding access_size to seg_len is likely to give
	 a simple X * step, where X is either the number of scalar
	 iterations or the vectorization factor.  We're better off
	 keeping that, rather than subtracting an alignment from it.

	 In this case the maximum values are exclusive and so there is
	 no alias if the maximum of one segment equals the minimum
	 of another.  */
      min_align = 0;
      cmp_code = LE_EXPR;
1859
    }
1860
  else
1861
    {
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
      /* Calculate the minimum alignment shared by all four pointers,
	 then arrange for this alignment to be subtracted from the
	 exclusive maximum values to get inclusive maximum values.
	 This "- min_align" is cumulative with a "+ access_size"
	 in the calculation of the maximum values.  In the best
	 (and common) case, the two cancel each other out, leaving
	 us with an inclusive bound based only on seg_len.  In the
	 worst case we're simply adding a smaller number than before.

	 Because the maximum values are inclusive, there is an alias
	 if the maximum value of one segment is equal to the minimum
	 value of the other.  */
      min_align = MIN (dr_a.align, dr_b.align);
      cmp_code = LT_EXPR;
1876
    }
1877 1878 1879 1880 1881

  tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
  get_segment_min_max (dr_a, &seg_a_min, &seg_a_max, min_align);
  get_segment_min_max (dr_b, &seg_b_min, &seg_b_max, min_align);

1882 1883
  *cond_expr
    = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1884 1885
	fold_build2 (cmp_code, boolean_type_node, seg_a_max, seg_b_min),
	fold_build2 (cmp_code, boolean_type_node, seg_b_max, seg_a_min));
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
}

/* Create a conditional expression that represents the run-time checks for
   overlapping of address ranges represented by a list of data references
   pairs passed in ALIAS_PAIRS.  Data references are in LOOP.  The returned
   COND_EXPR is the conditional expression to be used in the if statement
   that controls which version of the loop gets executed at runtime.  */

void
create_runtime_alias_checks (struct loop *loop,
			     vec<dr_with_seg_len_pair_t> *alias_pairs,
			     tree * cond_expr)
{
  tree part_cond_expr;

1901
  fold_defer_overflow_warnings ();
1902 1903 1904 1905 1906 1907
  for (size_t i = 0, s = alias_pairs->length (); i < s; ++i)
    {
      const dr_with_seg_len& dr_a = (*alias_pairs)[i].first;
      const dr_with_seg_len& dr_b = (*alias_pairs)[i].second;

      if (dump_enabled_p ())
1908 1909 1910
	dump_printf (MSG_NOTE,
		     "create runtime check for data references %T and %T\n",
		     DR_REF (dr_a.dr), DR_REF (dr_b.dr));
1911 1912 1913 1914 1915 1916 1917 1918 1919

      /* Create condition expression for each pair data references.  */
      create_intersect_range_checks (loop, &part_cond_expr, dr_a, dr_b);
      if (*cond_expr)
	*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				  *cond_expr, part_cond_expr);
      else
	*cond_expr = part_cond_expr;
    }
1920
  fold_undefer_and_ignore_overflow_warnings ();
1921 1922
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
   expressions.  */
static bool
dr_equal_offsets_p1 (tree offset1, tree offset2)
{
  bool res;

  STRIP_NOPS (offset1);
  STRIP_NOPS (offset2);

  if (offset1 == offset2)
    return true;

  if (TREE_CODE (offset1) != TREE_CODE (offset2)
      || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
    return false;

  res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
                             TREE_OPERAND (offset2, 0));

  if (!res || !BINARY_CLASS_P (offset1))
    return res;

  res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
                             TREE_OPERAND (offset2, 1));

  return res;
}

/* Check if DRA and DRB have equal offsets.  */
bool
dr_equal_offsets_p (struct data_reference *dra,
                    struct data_reference *drb)
{
  tree offset1, offset2;

  offset1 = DR_OFFSET (dra);
  offset2 = DR_OFFSET (drb);

  return dr_equal_offsets_p1 (offset1, offset2);
}

1965 1966 1967 1968 1969
/* Returns true if FNA == FNB.  */

static bool
affine_function_equal_p (affine_fn fna, affine_fn fnb)
{
1970
  unsigned i, n = fna.length ();
1971

1972
  if (n != fnb.length ())
1973
    return false;
1974

1975
  for (i = 0; i < n; i++)
1976
    if (!operand_equal_p (fna[i], fnb[i], 0))
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
      return false;

  return true;
}

/* If all the functions in CF are the same, returns one of them,
   otherwise returns NULL.  */

static affine_fn
common_affine_function (conflict_function *cf)
1987
{
1988 1989 1990 1991
  unsigned i;
  affine_fn comm;

  if (!CF_NONTRIVIAL_P (cf))
1992
    return affine_fn ();
1993 1994 1995 1996 1997

  comm = cf->fns[0];

  for (i = 1; i < cf->n; i++)
    if (!affine_function_equal_p (comm, cf->fns[i]))
1998
      return affine_fn ();
1999 2000 2001

  return comm;
}
2002

2003 2004 2005 2006 2007
/* Returns the base of the affine function FN.  */

static tree
affine_function_base (affine_fn fn)
{
2008
  return fn[0];
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
}

/* Returns true if FN is a constant.  */

static bool
affine_function_constant_p (affine_fn fn)
{
  unsigned i;
  tree coef;

2019
  for (i = 1; fn.iterate (i, &coef); i++)
2020
    if (!integer_zerop (coef))
2021 2022
      return false;

2023 2024 2025
  return true;
}

2026 2027 2028 2029 2030 2031 2032 2033 2034
/* Returns true if FN is the zero constant function.  */

static bool
affine_function_zero_p (affine_fn fn)
{
  return (integer_zerop (affine_function_base (fn))
	  && affine_function_constant_p (fn));
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/* Returns a signed integer type with the largest precision from TA
   and TB.  */

static tree
signed_type_for_types (tree ta, tree tb)
{
  if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
    return signed_type_for (ta);
  else
    return signed_type_for (tb);
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/* Applies operation OP on affine functions FNA and FNB, and returns the
   result.  */

static affine_fn
affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
{
  unsigned i, n, m;
  affine_fn ret;
  tree coef;

2057
  if (fnb.length () > fna.length ())
2058
    {
2059 2060
      n = fna.length ();
      m = fnb.length ();
2061 2062 2063
    }
  else
    {
2064 2065
      n = fnb.length ();
      m = fna.length ();
2066 2067
    }

2068
  ret.create (m);
2069
  for (i = 0; i < n; i++)
2070
    {
2071 2072 2073
      tree type = signed_type_for_types (TREE_TYPE (fna[i]),
					 TREE_TYPE (fnb[i]));
      ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
2074
    }
2075

2076 2077
  for (; fna.iterate (i, &coef); i++)
    ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
2078
				 coef, integer_zero_node));
2079 2080
  for (; fnb.iterate (i, &coef); i++)
    ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
				 integer_zero_node, coef));

  return ret;
}

/* Returns the sum of affine functions FNA and FNB.  */

static affine_fn
affine_fn_plus (affine_fn fna, affine_fn fnb)
{
  return affine_fn_op (PLUS_EXPR, fna, fnb);
}

/* Returns the difference of affine functions FNA and FNB.  */

static affine_fn
affine_fn_minus (affine_fn fna, affine_fn fnb)
{
  return affine_fn_op (MINUS_EXPR, fna, fnb);
}

/* Frees affine function FN.  */

static void
affine_fn_free (affine_fn fn)
{
2107
  fn.release ();
2108 2109
}

2110 2111
/* Determine for each subscript in the data dependence relation DDR
   the distance.  */
2112

2113
static void
2114
compute_subscript_distance (struct data_dependence_relation *ddr)
2115
{
2116 2117 2118
  conflict_function *cf_a, *cf_b;
  affine_fn fn_a, fn_b, diff;

2119 2120 2121
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
    {
      unsigned int i;
H.J. Lu committed
2122

2123 2124 2125
      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
 	{
 	  struct subscript *subscript;
H.J. Lu committed
2126

2127
 	  subscript = DDR_SUBSCRIPT (ddr, i);
2128 2129
 	  cf_a = SUB_CONFLICTS_IN_A (subscript);
 	  cf_b = SUB_CONFLICTS_IN_B (subscript);
2130

2131 2132
	  fn_a = common_affine_function (cf_a);
	  fn_b = common_affine_function (cf_b);
2133
	  if (!fn_a.exists () || !fn_b.exists ())
2134
	    {
2135 2136
	      SUB_DISTANCE (subscript) = chrec_dont_know;
	      return;
2137
	    }
2138
	  diff = affine_fn_minus (fn_a, fn_b);
H.J. Lu committed
2139

2140 2141
 	  if (affine_function_constant_p (diff))
 	    SUB_DISTANCE (subscript) = affine_function_base (diff);
2142 2143
 	  else
 	    SUB_DISTANCE (subscript) = chrec_dont_know;
2144 2145

	  affine_fn_free (diff);
2146 2147 2148 2149
 	}
    }
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
/* Returns the conflict function for "unknown".  */

static conflict_function *
conflict_fn_not_known (void)
{
  conflict_function *fn = XCNEW (conflict_function);
  fn->n = NOT_KNOWN;

  return fn;
}

/* Returns the conflict function for "independent".  */

static conflict_function *
conflict_fn_no_dependence (void)
{
  conflict_function *fn = XCNEW (conflict_function);
  fn->n = NO_DEPENDENCE;

  return fn;
}

2172 2173 2174
/* Returns true if the address of OBJ is invariant in LOOP.  */

static bool
2175
object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
2176 2177 2178 2179 2180
{
  while (handled_component_p (obj))
    {
      if (TREE_CODE (obj) == ARRAY_REF)
	{
2181 2182 2183 2184
	  for (int i = 1; i < 4; ++i)
	    if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, i),
							loop->num))
	      return false;
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	}
      else if (TREE_CODE (obj) == COMPONENT_REF)
	{
	  if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
						      loop->num))
	    return false;
	}
      obj = TREE_OPERAND (obj, 0);
    }

2195 2196
  if (!INDIRECT_REF_P (obj)
      && TREE_CODE (obj) != MEM_REF)
2197 2198 2199 2200 2201 2202 2203
    return true;

  return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
						  loop->num);
}

/* Returns false if we can prove that data references A and B do not alias,
2204 2205
   true otherwise.  If LOOP_NEST is false no cross-iteration aliases are
   considered.  */
2206

2207
bool
2208 2209
dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
		bool loop_nest)
2210
{
2211 2212
  tree addr_a = DR_BASE_OBJECT (a);
  tree addr_b = DR_BASE_OBJECT (b);
2213

2214 2215 2216 2217 2218 2219 2220 2221
  /* If we are not processing a loop nest but scalar code we
     do not need to care about possible cross-iteration dependences
     and thus can process the full original reference.  Do so,
     similar to how loop invariant motion applies extra offset-based
     disambiguation.  */
  if (!loop_nest)
    {
      aff_tree off1, off2;
2222
      poly_widest_int size1, size2;
2223 2224
      get_inner_reference_aff (DR_REF (a), &off1, &size1);
      get_inner_reference_aff (DR_REF (b), &off2, &size2);
Kenneth Zadeck committed
2225
      aff_combination_scale (&off1, -1);
2226 2227 2228 2229 2230
      aff_combination_add (&off2, &off1);
      if (aff_comb_cannot_overlap_p (&off2, size1, size2))
	return false;
    }

2231 2232 2233 2234 2235 2236
  if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
      && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
      && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
      && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
    return false;

2237 2238 2239 2240
  /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
     do not know the size of the base-object.  So we cannot do any
     offset/overlap based analysis but have to rely on points-to
     information only.  */
2241
  if (TREE_CODE (addr_a) == MEM_REF
2242 2243
      && (DR_UNCONSTRAINED_BASE (a)
	  || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
2244
    {
2245 2246 2247 2248 2249 2250 2251
      /* For true dependences we can apply TBAA.  */
      if (flag_strict_aliasing
	  && DR_IS_WRITE (a) && DR_IS_READ (b)
	  && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
				     get_alias_set (DR_REF (b))))
	return false;
      if (TREE_CODE (addr_b) == MEM_REF)
2252 2253 2254 2255 2256 2257 2258
	return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
				       TREE_OPERAND (addr_b, 0));
      else
	return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
				       build_fold_addr_expr (addr_b));
    }
  else if (TREE_CODE (addr_b) == MEM_REF
2259 2260
	   && (DR_UNCONSTRAINED_BASE (b)
	       || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
    {
      /* For true dependences we can apply TBAA.  */
      if (flag_strict_aliasing
	  && DR_IS_WRITE (a) && DR_IS_READ (b)
	  && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
				     get_alias_set (DR_REF (b))))
	return false;
      if (TREE_CODE (addr_a) == MEM_REF)
	return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
				       TREE_OPERAND (addr_b, 0));
      else
	return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
				       TREE_OPERAND (addr_b, 0));
    }
2275 2276 2277

  /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
     that is being subsetted in the loop nest.  */
2278
  if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
2279
    return refs_output_dependent_p (addr_a, addr_b);
2280
  else if (DR_IS_READ (a) && DR_IS_WRITE (b))
2281 2282
    return refs_anti_dependent_p (addr_a, addr_b);
  return refs_may_alias_p (addr_a, addr_b);
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
/* REF_A and REF_B both satisfy access_fn_component_p.  Return true
   if it is meaningful to compare their associated access functions
   when checking for dependencies.  */

static bool
access_fn_components_comparable_p (tree ref_a, tree ref_b)
{
  /* Allow pairs of component refs from the following sets:

       { REALPART_EXPR, IMAGPART_EXPR }
       { COMPONENT_REF }
       { ARRAY_REF }.  */
  tree_code code_a = TREE_CODE (ref_a);
  tree_code code_b = TREE_CODE (ref_b);
  if (code_a == IMAGPART_EXPR)
    code_a = REALPART_EXPR;
  if (code_b == IMAGPART_EXPR)
    code_b = REALPART_EXPR;
  if (code_a != code_b)
    return false;

  if (TREE_CODE (ref_a) == COMPONENT_REF)
    /* ??? We cannot simply use the type of operand #0 of the refs here as
       the Fortran compiler smuggles type punning into COMPONENT_REFs.
       Use the DECL_CONTEXT of the FIELD_DECLs instead.  */
    return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
	    == DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));

  return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
			     TREE_TYPE (TREE_OPERAND (ref_b, 0)));
}

2317 2318 2319
/* Initialize a data dependence relation between data accesses A and
   B.  NB_LOOPS is the number of loops surrounding the references: the
   size of the classic distance/direction vectors.  */
2320

2321
struct data_dependence_relation *
H.J. Lu committed
2322
initialize_data_dependence_relation (struct data_reference *a,
2323
				     struct data_reference *b,
2324
 				     vec<loop_p> loop_nest)
2325 2326
{
  struct data_dependence_relation *res;
2327
  unsigned int i;
H.J. Lu committed
2328

2329
  res = XCNEW (struct data_dependence_relation);
2330 2331
  DDR_A (res) = a;
  DDR_B (res) = b;
2332 2333 2334 2335
  DDR_LOOP_NEST (res).create (0);
  DDR_SUBSCRIPTS (res).create (0);
  DDR_DIR_VECTS (res).create (0);
  DDR_DIST_VECTS (res).create (0);
2336

2337 2338
  if (a == NULL || b == NULL)
    {
H.J. Lu committed
2339
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
2340
      return res;
H.J. Lu committed
2341
    }
2342

2343
  /* If the data references do not alias, then they are independent.  */
2344
  if (!dr_may_alias_p (a, b, loop_nest.exists ()))
2345
    {
H.J. Lu committed
2346
      DDR_ARE_DEPENDENT (res) = chrec_known;
2347 2348
      return res;
    }
2349

2350 2351 2352
  unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
  unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
  if (num_dimensions_a == 0 || num_dimensions_b == 0)
2353
    {
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
      return res;
    }

  /* For unconstrained bases, the root (highest-indexed) subscript
     describes a variation in the base of the original DR_REF rather
     than a component access.  We have no type that accurately describes
     the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
     applying this subscript) so limit the search to the last real
     component access.

     E.g. for:

	void
	f (int a[][8], int b[][8])
2369
	{
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	  for (int i = 0; i < 8; ++i)
	    a[i * 2][0] = b[i][0];
	}

     the a and b accesses have a single ARRAY_REF component reference [0]
     but have two subscripts.  */
  if (DR_UNCONSTRAINED_BASE (a))
    num_dimensions_a -= 1;
  if (DR_UNCONSTRAINED_BASE (b))
    num_dimensions_b -= 1;

  /* These structures describe sequences of component references in
     DR_REF (A) and DR_REF (B).  Each component reference is tied to a
     specific access function.  */
  struct {
    /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
       DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
       indices.  In C notation, these are the indices of the rightmost
       component references; e.g. for a sequence .b.c.d, the start
       index is for .d.  */
    unsigned int start_a;
    unsigned int start_b;

    /* The sequence contains LENGTH consecutive access functions from
       each DR.  */
    unsigned int length;

    /* The enclosing objects for the A and B sequences respectively,
       i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
       and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied.  */
    tree object_a;
    tree object_b;
  } full_seq = {}, struct_seq = {};

  /* Before each iteration of the loop:

     - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
     - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B).  */
  unsigned int index_a = 0;
  unsigned int index_b = 0;
  tree ref_a = DR_REF (a);
  tree ref_b = DR_REF (b);

  /* Now walk the component references from the final DR_REFs back up to
     the enclosing base objects.  Each component reference corresponds
     to one access function in the DR, with access function 0 being for
     the final DR_REF and the highest-indexed access function being the
     one that is applied to the base of the DR.

     Look for a sequence of component references whose access functions
     are comparable (see access_fn_components_comparable_p).  If more
     than one such sequence exists, pick the one nearest the base
     (which is the leftmost sequence in C notation).  Store this sequence
     in FULL_SEQ.

     For example, if we have:

	struct foo { struct bar s; ... } (*a)[10], (*b)[10];

	A: a[0][i].s.c.d
	B: __real b[0][i].s.e[i].f

     (where d is the same type as the real component of f) then the access
     functions would be:

			 0   1   2   3
	A:              .d  .c  .s [i]

		 0   1   2   3   4   5
	B:  __real  .f [i]  .e  .s [i]

     The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
     and [i] is an ARRAY_REF.  However, the A1/B3 column contains two
     COMPONENT_REF accesses for struct bar, so is comparable.  Likewise
     the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
     so is comparable.  The A3/B5 column contains two ARRAY_REFs that
     index foo[10] arrays, so is again comparable.  The sequence is
     therefore:

        A: [1, 3]  (i.e. [i].s.c)
        B: [3, 5]  (i.e. [i].s.e)

     Also look for sequences of component references whose access
     functions are comparable and whose enclosing objects have the same
     RECORD_TYPE.  Store this sequence in STRUCT_SEQ.  In the above
     example, STRUCT_SEQ would be:

        A: [1, 2]  (i.e. s.c)
        B: [3, 4]  (i.e. s.e)  */
  while (index_a < num_dimensions_a && index_b < num_dimensions_b)
    {
      /* REF_A and REF_B must be one of the component access types
	 allowed by dr_analyze_indices.  */
      gcc_checking_assert (access_fn_component_p (ref_a));
      gcc_checking_assert (access_fn_component_p (ref_b));

      /* Get the immediately-enclosing objects for REF_A and REF_B,
	 i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
	 and DR_ACCESS_FN (B, INDEX_B).  */
      tree object_a = TREE_OPERAND (ref_a, 0);
      tree object_b = TREE_OPERAND (ref_b, 0);

      tree type_a = TREE_TYPE (object_a);
      tree type_b = TREE_TYPE (object_b);
      if (access_fn_components_comparable_p (ref_a, ref_b))
	{
	  /* This pair of component accesses is comparable for dependence
	     analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
	     DR_ACCESS_FN (B, INDEX_B) in the sequence.  */
	  if (full_seq.start_a + full_seq.length != index_a
	      || full_seq.start_b + full_seq.length != index_b)
	    {
	      /* The accesses don't extend the current sequence,
		 so start a new one here.  */
	      full_seq.start_a = index_a;
	      full_seq.start_b = index_b;
	      full_seq.length = 0;
	    }

	  /* Add this pair of references to the sequence.  */
	  full_seq.length += 1;
	  full_seq.object_a = object_a;
	  full_seq.object_b = object_b;

	  /* If the enclosing objects are structures (and thus have the
	     same RECORD_TYPE), record the new sequence in STRUCT_SEQ.  */
	  if (TREE_CODE (type_a) == RECORD_TYPE)
	    struct_seq = full_seq;

	  /* Move to the next containing reference for both A and B.  */
	  ref_a = object_a;
	  ref_b = object_b;
	  index_a += 1;
	  index_b += 1;
	  continue;
	}

      /* Try to approach equal type sizes.  */
      if (!COMPLETE_TYPE_P (type_a)
	  || !COMPLETE_TYPE_P (type_b)
	  || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
	  || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
	break;

      unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
      unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
      if (size_a <= size_b)
	{
	  index_a += 1;
	  ref_a = object_a;
	}
      if (size_b <= size_a)
	{
	  index_b += 1;
	  ref_b = object_b;
2525
	}
2526 2527
    }

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
  /* See whether FULL_SEQ ends at the base and whether the two bases
     are equal.  We do not care about TBAA or alignment info so we can
     use OEP_ADDRESS_OF to avoid false negatives.  */
  tree base_a = DR_BASE_OBJECT (a);
  tree base_b = DR_BASE_OBJECT (b);
  bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
		      && full_seq.start_b + full_seq.length == num_dimensions_b
		      && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
		      && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
		      && types_compatible_p (TREE_TYPE (base_a),
					     TREE_TYPE (base_b))
		      && (!loop_nest.exists ()
			  || (object_address_invariant_in_loop_p
			      (loop_nest[0], base_a))));

  /* If the bases are the same, we can include the base variation too.
     E.g. the b accesses in:

       for (int i = 0; i < n; ++i)
         b[i + 4][0] = b[i][0];

     have a definite dependence distance of 4, while for:

       for (int i = 0; i < n; ++i)
         a[i + 4][0] = b[i][0];

     the dependence distance depends on the gap between a and b.

     If the bases are different then we can only rely on the sequence
     rooted at a structure access, since arrays are allowed to overlap
     arbitrarily and change shape arbitrarily.  E.g. we treat this as
     valid code:

       int a[256];
       ...
       ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];

     where two lvalues with the same int[4][3] type overlap, and where
     both lvalues are distinct from the object's declared type.  */
  if (same_base_p)
2568
    {
2569 2570
      if (DR_UNCONSTRAINED_BASE (a))
	full_seq.length += 1;
2571
    }
2572 2573
  else
    full_seq = struct_seq;
2574

2575 2576
  /* Punt if we didn't find a suitable sequence.  */
  if (full_seq.length == 0)
2577
    {
H.J. Lu committed
2578
      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
2579 2580
      return res;
    }
2581

2582
  if (!same_base_p)
2583
    {
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
      /* Partial overlap is possible for different bases when strict aliasing
	 is not in effect.  It's also possible if either base involves a union
	 access; e.g. for:

	   struct s1 { int a[2]; };
	   struct s2 { struct s1 b; int c; };
	   struct s3 { int d; struct s1 e; };
	   union u { struct s2 f; struct s3 g; } *p, *q;

	 the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
	 "p->g.e" (base "p->g") and might partially overlap the s1 at
	 "q->g.e" (base "q->g").  */
      if (!flag_strict_aliasing
	  || ref_contains_union_access_p (full_seq.object_a)
	  || ref_contains_union_access_p (full_seq.object_b))
	{
	  DDR_ARE_DEPENDENT (res) = chrec_dont_know;
	  return res;
	}

      DDR_COULD_BE_INDEPENDENT_P (res) = true;
2605 2606 2607 2608 2609 2610 2611 2612 2613
      if (!loop_nest.exists ()
	  || (object_address_invariant_in_loop_p (loop_nest[0],
						  full_seq.object_a)
	      && object_address_invariant_in_loop_p (loop_nest[0],
						     full_seq.object_b)))
	{
	  DDR_OBJECT_A (res) = full_seq.object_a;
	  DDR_OBJECT_B (res) = full_seq.object_b;
	}
2614
    }
2615

2616 2617
  DDR_AFFINE_P (res) = true;
  DDR_ARE_DEPENDENT (res) = NULL_TREE;
2618
  DDR_SUBSCRIPTS (res).create (full_seq.length);
2619
  DDR_LOOP_NEST (res) = loop_nest;
2620
  DDR_INNER_LOOP (res) = 0;
2621
  DDR_SELF_REFERENCE (res) = false;
2622

2623
  for (i = 0; i < full_seq.length; ++i)
2624 2625
    {
      struct subscript *subscript;
H.J. Lu committed
2626

2627
      subscript = XNEW (struct subscript);
2628 2629
      SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
      SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
2630 2631
      SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
      SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
2632 2633
      SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
      SUB_DISTANCE (subscript) = chrec_dont_know;
2634
      DDR_SUBSCRIPTS (res).safe_push (subscript);
2635
    }
2636

2637 2638 2639
  return res;
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/* Frees memory used by the conflict function F.  */

static void
free_conflict_function (conflict_function *f)
{
  unsigned i;

  if (CF_NONTRIVIAL_P (f))
    {
      for (i = 0; i < f->n; i++)
	affine_fn_free (f->fns[i]);
    }
  free (f);
}

/* Frees memory used by SUBSCRIPTS.  */

static void
2658
free_subscripts (vec<subscript_p> subscripts)
2659 2660 2661 2662
{
  unsigned i;
  subscript_p s;

2663
  FOR_EACH_VEC_ELT (subscripts, i, s)
2664 2665 2666
    {
      free_conflict_function (s->conflicting_iterations_in_a);
      free_conflict_function (s->conflicting_iterations_in_b);
2667
      free (s);
2668
    }
2669
  subscripts.release ();
2670 2671
}

2672 2673 2674 2675
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
   description.  */

static inline void
H.J. Lu committed
2676
finalize_ddr_dependent (struct data_dependence_relation *ddr,
2677 2678
			tree chrec)
{
H.J. Lu committed
2679
  DDR_ARE_DEPENDENT (ddr) = chrec;
2680
  free_subscripts (DDR_SUBSCRIPTS (ddr));
2681
  DDR_SUBSCRIPTS (ddr).create (0);
2682 2683
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/* The dependence relation DDR cannot be represented by a distance
   vector.  */

static inline void
non_affine_dependence_relation (struct data_dependence_relation *ddr)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");

  DDR_AFFINE_P (ddr) = false;
}

2696 2697 2698 2699 2700 2701 2702 2703


/* This section contains the classic Banerjee tests.  */

/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
   variables, i.e., if the ZIV (Zero Index Variable) test is true.  */

static inline bool
2704
ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
2705 2706 2707 2708 2709 2710 2711 2712 2713
{
  return (evolution_function_is_constant_p (chrec_a)
	  && evolution_function_is_constant_p (chrec_b));
}

/* Returns true iff CHREC_A and CHREC_B are dependent on an index
   variable, i.e., if the SIV (Single Index Variable) test is true.  */

static bool
2714
siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
2715 2716 2717 2718 2719 2720
{
  if ((evolution_function_is_constant_p (chrec_a)
       && evolution_function_is_univariate_p (chrec_b))
      || (evolution_function_is_constant_p (chrec_b)
	  && evolution_function_is_univariate_p (chrec_a)))
    return true;
H.J. Lu committed
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
  if (evolution_function_is_univariate_p (chrec_a)
      && evolution_function_is_univariate_p (chrec_b))
    {
      switch (TREE_CODE (chrec_a))
	{
	case POLYNOMIAL_CHREC:
	  switch (TREE_CODE (chrec_b))
	    {
	    case POLYNOMIAL_CHREC:
	      if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
		return false;
2733
	      /* FALLTHRU */
H.J. Lu committed
2734

2735 2736 2737
	    default:
	      return true;
	    }
H.J. Lu committed
2738

2739 2740 2741 2742
	default:
	  return true;
	}
    }
H.J. Lu committed
2743

2744 2745 2746
  return false;
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
/* Creates a conflict function with N dimensions.  The affine functions
   in each dimension follow.  */

static conflict_function *
conflict_fn (unsigned n, ...)
{
  unsigned i;
  conflict_function *ret = XCNEW (conflict_function);
  va_list ap;

2757
  gcc_assert (n > 0 && n <= MAX_DIM);
2758
  va_start (ap, n);
H.J. Lu committed
2759

2760 2761 2762
  ret->n = n;
  for (i = 0; i < n; i++)
    ret->fns[i] = va_arg (ap, affine_fn);
2763
  va_end (ap);
2764 2765 2766 2767 2768 2769 2770 2771 2772

  return ret;
}

/* Returns constant affine function with value CST.  */

static affine_fn
affine_fn_cst (tree cst)
{
2773 2774 2775
  affine_fn fn;
  fn.create (1);
  fn.quick_push (cst);
2776 2777 2778 2779 2780 2781 2782 2783
  return fn;
}

/* Returns affine function with single variable, CST + COEF * x_DIM.  */

static affine_fn
affine_fn_univar (tree cst, unsigned dim, tree coef)
{
2784 2785
  affine_fn fn;
  fn.create (dim + 1);
2786 2787 2788
  unsigned i;

  gcc_assert (dim > 0);
2789
  fn.quick_push (cst);
2790
  for (i = 1; i < dim; i++)
2791 2792
    fn.quick_push (integer_zero_node);
  fn.quick_push (coef);
2793 2794 2795
  return fn;
}

2796 2797 2798 2799 2800 2801 2802
/* Analyze a ZIV (Zero Index Variable) subscript.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:

   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */

H.J. Lu committed
2803 2804 2805
static void
analyze_ziv_subscript (tree chrec_a,
		       tree chrec_b,
2806
		       conflict_function **overlaps_a,
H.J. Lu committed
2807
		       conflict_function **overlaps_b,
2808
		       tree *last_conflicts)
2809
{
2810
  tree type, difference;
2811
  dependence_stats.num_ziv++;
H.J. Lu committed
2812

2813 2814
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_ziv_subscript \n");
2815 2816

  type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2817 2818
  chrec_a = chrec_convert (type, chrec_a, NULL);
  chrec_b = chrec_convert (type, chrec_b, NULL);
2819
  difference = chrec_fold_minus (type, chrec_a, chrec_b);
H.J. Lu committed
2820

2821 2822 2823 2824 2825 2826 2827
  switch (TREE_CODE (difference))
    {
    case INTEGER_CST:
      if (integer_zerop (difference))
	{
	  /* The difference is equal to zero: the accessed index
	     overlaps for each iteration in the loop.  */
2828 2829
	  *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
	  *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2830
	  *last_conflicts = chrec_dont_know;
2831
	  dependence_stats.num_ziv_dependent++;
2832 2833 2834 2835
	}
      else
	{
	  /* The accesses do not overlap.  */
2836 2837
	  *overlaps_a = conflict_fn_no_dependence ();
	  *overlaps_b = conflict_fn_no_dependence ();
2838
	  *last_conflicts = integer_zero_node;
2839
	  dependence_stats.num_ziv_independent++;
2840 2841
	}
      break;
H.J. Lu committed
2842

2843
    default:
H.J. Lu committed
2844
      /* We're not sure whether the indexes overlap.  For the moment,
2845
	 conservatively answer "don't know".  */
2846 2847 2848
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "ziv test failed: difference is non-integer.\n");

2849 2850
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
2851
      *last_conflicts = chrec_dont_know;
2852
      dependence_stats.num_ziv_unimplemented++;
2853 2854
      break;
    }
H.J. Lu committed
2855

2856 2857 2858 2859
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
}

2860
/* Similar to max_stmt_executions_int, but returns the bound as a tree,
2861
   and only if it fits to the int type.  If this is not the case, or the
2862
   bound  on the number of iterations of LOOP could not be derived, returns
2863 2864 2865
   chrec_dont_know.  */

static tree
2866
max_stmt_executions_tree (struct loop *loop)
2867
{
Kenneth Zadeck committed
2868
  widest_int nit;
2869

2870
  if (!max_stmt_executions (loop, &nit))
2871 2872
    return chrec_dont_know;

Kenneth Zadeck committed
2873
  if (!wi::fits_to_tree_p (nit, unsigned_type_node))
2874 2875
    return chrec_dont_know;

Kenneth Zadeck committed
2876
  return wide_int_to_tree (unsigned_type_node, nit);
2877 2878
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
/* Determine whether the CHREC is always positive/negative.  If the expression
   cannot be statically analyzed, return false, otherwise set the answer into
   VALUE.  */

static bool
chrec_is_positive (tree chrec, bool *value)
{
  bool value0, value1, value2;
  tree end_value, nb_iter;

  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
	  || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
	return false;

      /* FIXME -- overflows.  */
      if (value0 == value1)
	{
	  *value = value0;
	  return true;
	}

      /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
	 and the proof consists in showing that the sign never
	 changes during the execution of the loop, from 0 to
	 loop->nb_iterations.  */
      if (!evolution_function_is_affine_p (chrec))
	return false;

      nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
      if (chrec_contains_undetermined (nb_iter))
	return false;

#if 0
      /* TODO -- If the test is after the exit, we may decrease the number of
	 iterations by one.  */
      if (after_exit)
	nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
#endif

      end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);

      if (!chrec_is_positive (end_value, &value2))
	return false;

      *value = value0;
      return value0 == value1;

    case INTEGER_CST:
      switch (tree_int_cst_sgn (chrec))
	{
	case -1:
	  *value = false;
	  break;
	case 1:
	  *value = true;
	  break;
	default:
	  return false;
	}
      return true;

    default:
      return false;
    }
}


2949 2950 2951 2952 2953 2954 2955 2956 2957
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
   constant, and CHREC_B is an affine function.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:

   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */

static void
H.J. Lu committed
2958
analyze_siv_subscript_cst_affine (tree chrec_a,
2959
				  tree chrec_b,
H.J. Lu committed
2960 2961
				  conflict_function **overlaps_a,
				  conflict_function **overlaps_b,
2962
				  tree *last_conflicts)
2963 2964
{
  bool value0, value1, value2;
2965
  tree type, difference, tmp;
2966

2967
  type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2968 2969
  chrec_a = chrec_convert (type, chrec_a, NULL);
  chrec_b = chrec_convert (type, chrec_b, NULL);
2970
  difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
H.J. Lu committed
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980
  /* Special case overlap in the first iteration.  */
  if (integer_zerop (difference))
    {
      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
      *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
      *last_conflicts = integer_one_node;
      return;
    }

2981 2982
  if (!chrec_is_positive (initial_condition (difference), &value0))
    {
2983
      if (dump_file && (dump_flags & TDF_DETAILS))
H.J. Lu committed
2984
	fprintf (dump_file, "siv test failed: chrec is not positive.\n");
2985 2986

      dependence_stats.num_siv_unimplemented++;
2987 2988
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
2989
      *last_conflicts = chrec_dont_know;
2990 2991 2992 2993 2994 2995
      return;
    }
  else
    {
      if (value0 == false)
	{
2996 2997
	  if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
	      || !chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
2998
	    {
2999 3000 3001
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "siv test failed: chrec not positive.\n");

3002
	      *overlaps_a = conflict_fn_not_known ();
H.J. Lu committed
3003
	      *overlaps_b = conflict_fn_not_known ();
3004
	      *last_conflicts = chrec_dont_know;
3005
	      dependence_stats.num_siv_unimplemented++;
3006 3007 3008 3009 3010 3011
	      return;
	    }
	  else
	    {
	      if (value1 == true)
		{
H.J. Lu committed
3012
		  /* Example:
3013 3014 3015
		     chrec_a = 12
		     chrec_b = {10, +, 1}
		  */
H.J. Lu committed
3016

3017
		  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
3018
		    {
3019 3020
		      HOST_WIDE_INT numiter;
		      struct loop *loop = get_chrec_loop (chrec_b);
3021

3022
		      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3023 3024
		      tmp = fold_build2 (EXACT_DIV_EXPR, type,
					 fold_build1 (ABS_EXPR, type, difference),
3025 3026
					 CHREC_RIGHT (chrec_b));
		      *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
3027
		      *last_conflicts = integer_one_node;
H.J. Lu committed
3028

3029 3030 3031

		      /* Perform weak-zero siv test to see if overlap is
			 outside the loop bounds.  */
3032
		      numiter = max_stmt_executions_int (loop);
3033

3034 3035
		      if (numiter >= 0
			  && compare_tree_int (tmp, numiter) > 0)
3036
			{
3037 3038 3039 3040
			  free_conflict_function (*overlaps_a);
			  free_conflict_function (*overlaps_b);
			  *overlaps_a = conflict_fn_no_dependence ();
			  *overlaps_b = conflict_fn_no_dependence ();
3041
			  *last_conflicts = integer_zero_node;
3042
			  dependence_stats.num_siv_independent++;
3043
			  return;
H.J. Lu committed
3044
			}
3045
		      dependence_stats.num_siv_dependent++;
3046 3047
		      return;
		    }
H.J. Lu committed
3048

3049
		  /* When the step does not divide the difference, there are
3050 3051 3052
		     no overlaps.  */
		  else
		    {
3053
		      *overlaps_a = conflict_fn_no_dependence ();
H.J. Lu committed
3054
		      *overlaps_b = conflict_fn_no_dependence ();
3055
		      *last_conflicts = integer_zero_node;
3056
		      dependence_stats.num_siv_independent++;
3057 3058 3059
		      return;
		    }
		}
H.J. Lu committed
3060

3061 3062
	      else
		{
H.J. Lu committed
3063
		  /* Example:
3064 3065
		     chrec_a = 12
		     chrec_b = {10, +, -1}
H.J. Lu committed
3066

3067
		     In this case, chrec_a will not overlap with chrec_b.  */
3068 3069
		  *overlaps_a = conflict_fn_no_dependence ();
		  *overlaps_b = conflict_fn_no_dependence ();
3070
		  *last_conflicts = integer_zero_node;
3071
		  dependence_stats.num_siv_independent++;
3072 3073 3074 3075
		  return;
		}
	    }
	}
H.J. Lu committed
3076
      else
3077
	{
3078 3079
	  if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
	      || !chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
3080
	    {
3081 3082 3083
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "siv test failed: chrec not positive.\n");

3084
	      *overlaps_a = conflict_fn_not_known ();
H.J. Lu committed
3085
	      *overlaps_b = conflict_fn_not_known ();
3086
	      *last_conflicts = chrec_dont_know;
3087
	      dependence_stats.num_siv_unimplemented++;
3088 3089 3090 3091 3092 3093
	      return;
	    }
	  else
	    {
	      if (value2 == false)
		{
H.J. Lu committed
3094
		  /* Example:
3095 3096 3097
		     chrec_a = 3
		     chrec_b = {10, +, -1}
		  */
3098
		  if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
3099
		    {
3100 3101
		      HOST_WIDE_INT numiter;
		      struct loop *loop = get_chrec_loop (chrec_b);
3102

3103
		      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3104
		      tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
3105 3106
					 CHREC_RIGHT (chrec_b));
		      *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
3107
		      *last_conflicts = integer_one_node;
3108 3109 3110

		      /* Perform weak-zero siv test to see if overlap is
			 outside the loop bounds.  */
3111
		      numiter = max_stmt_executions_int (loop);
3112

3113 3114
		      if (numiter >= 0
			  && compare_tree_int (tmp, numiter) > 0)
3115
			{
3116 3117 3118 3119
			  free_conflict_function (*overlaps_a);
			  free_conflict_function (*overlaps_b);
			  *overlaps_a = conflict_fn_no_dependence ();
			  *overlaps_b = conflict_fn_no_dependence ();
3120
			  *last_conflicts = integer_zero_node;
3121
			  dependence_stats.num_siv_independent++;
3122
			  return;
H.J. Lu committed
3123
			}
3124
		      dependence_stats.num_siv_dependent++;
3125 3126
		      return;
		    }
H.J. Lu committed
3127

3128
		  /* When the step does not divide the difference, there
3129 3130 3131
		     are no overlaps.  */
		  else
		    {
3132
		      *overlaps_a = conflict_fn_no_dependence ();
H.J. Lu committed
3133
		      *overlaps_b = conflict_fn_no_dependence ();
3134
		      *last_conflicts = integer_zero_node;
3135
		      dependence_stats.num_siv_independent++;
3136 3137 3138 3139 3140
		      return;
		    }
		}
	      else
		{
H.J. Lu committed
3141 3142
		  /* Example:
		     chrec_a = 3
3143
		     chrec_b = {4, +, 1}
H.J. Lu committed
3144

3145
		     In this case, chrec_a will not overlap with chrec_b.  */
3146 3147
		  *overlaps_a = conflict_fn_no_dependence ();
		  *overlaps_b = conflict_fn_no_dependence ();
3148
		  *last_conflicts = integer_zero_node;
3149
		  dependence_stats.num_siv_independent++;
3150 3151 3152 3153 3154 3155 3156
		  return;
		}
	    }
	}
    }
}

3157
/* Helper recursive function for initializing the matrix A.  Returns
3158
   the initial value of CHREC.  */
3159

3160
static tree
3161 3162 3163 3164
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
{
  gcc_assert (chrec);

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
  switch (TREE_CODE (chrec))
    {
    case POLYNOMIAL_CHREC:
      A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
      return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);

    case PLUS_EXPR:
    case MULT_EXPR:
    case MINUS_EXPR:
      {
	tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
	tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);

	return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
      }

3181
    CASE_CONVERT:
3182 3183
      {
	tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
3184
	return chrec_convert (chrec_type (chrec), op, NULL);
3185 3186
      }

3187 3188 3189 3190 3191 3192 3193 3194
    case BIT_NOT_EXPR:
      {
	/* Handle ~X as -1 - X.  */
	tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
	return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
			      build_int_cst (TREE_TYPE (chrec), -1), op);
      }

3195 3196
    case INTEGER_CST:
      return chrec;
3197

3198 3199 3200 3201
    default:
      gcc_unreachable ();
      return NULL_TREE;
    }
3202 3203 3204 3205
}

#define FLOOR_DIV(x,y) ((x) / (y))

H.J. Lu committed
3206
/* Solves the special case of the Diophantine equation:
3207 3208 3209 3210 3211
   | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)

   Computes the descriptions OVERLAPS_A and OVERLAPS_B.  NITER is the
   number of iterations that loops X and Y run.  The overlaps will be
   constructed as evolutions in dimension DIM.  */
3212 3213

static void
3214 3215 3216
compute_overlap_steps_for_affine_univar (HOST_WIDE_INT niter,
					 HOST_WIDE_INT step_a,
					 HOST_WIDE_INT step_b,
3217
					 affine_fn *overlaps_a,
H.J. Lu committed
3218
					 affine_fn *overlaps_b,
3219 3220 3221 3222 3223
					 tree *last_conflicts, int dim)
{
  if (((step_a > 0 && step_b > 0)
       || (step_a < 0 && step_b < 0)))
    {
3224 3225
      HOST_WIDE_INT step_overlaps_a, step_overlaps_b;
      HOST_WIDE_INT gcd_steps_a_b, last_conflict, tau2;
3226 3227 3228 3229 3230

      gcd_steps_a_b = gcd (step_a, step_b);
      step_overlaps_a = step_b / gcd_steps_a_b;
      step_overlaps_b = step_a / gcd_steps_a_b;

3231 3232 3233 3234 3235 3236 3237 3238 3239
      if (niter > 0)
	{
	  tau2 = FLOOR_DIV (niter, step_overlaps_a);
	  tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
	  last_conflict = tau2;
	  *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
	}
      else
	*last_conflicts = chrec_dont_know;
3240

H.J. Lu committed
3241
      *overlaps_a = affine_fn_univar (integer_zero_node, dim,
3242 3243
				      build_int_cst (NULL_TREE,
						     step_overlaps_a));
H.J. Lu committed
3244 3245
      *overlaps_b = affine_fn_univar (integer_zero_node, dim,
				      build_int_cst (NULL_TREE,
3246
						     step_overlaps_b));
3247 3248 3249 3250
    }

  else
    {
3251 3252
      *overlaps_a = affine_fn_cst (integer_zero_node);
      *overlaps_b = affine_fn_cst (integer_zero_node);
3253 3254 3255 3256 3257 3258
      *last_conflicts = integer_zero_node;
    }
}

/* Solves the special case of a Diophantine equation where CHREC_A is
   an affine bivariate function, and CHREC_B is an affine univariate
H.J. Lu committed
3259
   function.  For example,
3260 3261

   | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
H.J. Lu committed
3262 3263

   has the following overlapping functions:
3264 3265 3266 3267 3268

   | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
   | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
   | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v

3269
   FORNOW: This is a specialized implementation for a case occurring in
3270 3271 3272
   a common benchmark.  Implement the general algorithm.  */

static void
H.J. Lu committed
3273
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
3274
				      conflict_function **overlaps_a,
H.J. Lu committed
3275
				      conflict_function **overlaps_b,
3276
				      tree *last_conflicts)
3277
{
3278
  bool xz_p, yz_p, xyz_p;
3279
  HOST_WIDE_INT step_x, step_y, step_z;
3280
  HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
3281 3282 3283 3284 3285
  affine_fn overlaps_a_xz, overlaps_b_xz;
  affine_fn overlaps_a_yz, overlaps_b_yz;
  affine_fn overlaps_a_xyz, overlaps_b_xyz;
  affine_fn ova1, ova2, ovb;
  tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
3286

3287 3288 3289
  step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
  step_y = int_cst_value (CHREC_RIGHT (chrec_a));
  step_z = int_cst_value (CHREC_RIGHT (chrec_b));
3290

3291 3292 3293
  niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
  niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
  niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
H.J. Lu committed
3294

3295
  if (niter_x < 0 || niter_y < 0 || niter_z < 0)
3296
    {
3297 3298
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
H.J. Lu committed
3299

3300 3301
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
      *last_conflicts = chrec_dont_know;
      return;
    }

  niter = MIN (niter_x, niter_z);
  compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
					   &overlaps_a_xz,
					   &overlaps_b_xz,
					   &last_conflicts_xz, 1);
  niter = MIN (niter_y, niter_z);
  compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
					   &overlaps_a_yz,
					   &overlaps_b_yz,
					   &last_conflicts_yz, 2);
  niter = MIN (niter_x, niter_z);
  niter = MIN (niter_y, niter);
  compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
					   &overlaps_a_xyz,
					   &overlaps_b_xyz,
					   &last_conflicts_xyz, 3);

  xz_p = !integer_zerop (last_conflicts_xz);
  yz_p = !integer_zerop (last_conflicts_yz);
  xyz_p = !integer_zerop (last_conflicts_xyz);

  if (xz_p || yz_p || xyz_p)
    {
3329 3330 3331
      ova1 = affine_fn_cst (integer_zero_node);
      ova2 = affine_fn_cst (integer_zero_node);
      ovb = affine_fn_cst (integer_zero_node);
3332 3333
      if (xz_p)
	{
3334 3335 3336 3337 3338 3339 3340
	  affine_fn t0 = ova1;
	  affine_fn t2 = ovb;

	  ova1 = affine_fn_plus (ova1, overlaps_a_xz);
	  ovb = affine_fn_plus (ovb, overlaps_b_xz);
	  affine_fn_free (t0);
	  affine_fn_free (t2);
3341 3342 3343 3344
	  *last_conflicts = last_conflicts_xz;
	}
      if (yz_p)
	{
3345 3346 3347 3348 3349 3350 3351
	  affine_fn t0 = ova2;
	  affine_fn t2 = ovb;

	  ova2 = affine_fn_plus (ova2, overlaps_a_yz);
	  ovb = affine_fn_plus (ovb, overlaps_b_yz);
	  affine_fn_free (t0);
	  affine_fn_free (t2);
3352 3353 3354 3355
	  *last_conflicts = last_conflicts_yz;
	}
      if (xyz_p)
	{
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	  affine_fn t0 = ova1;
	  affine_fn t2 = ova2;
	  affine_fn t4 = ovb;

	  ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
	  ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
	  ovb = affine_fn_plus (ovb, overlaps_b_xyz);
	  affine_fn_free (t0);
	  affine_fn_free (t2);
	  affine_fn_free (t4);
3366 3367
	  *last_conflicts = last_conflicts_xyz;
	}
3368 3369
      *overlaps_a = conflict_fn (2, ova1, ova2);
      *overlaps_b = conflict_fn (1, ovb);
3370 3371 3372
    }
  else
    {
3373 3374
      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
      *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3375 3376
      *last_conflicts = integer_zero_node;
    }
3377 3378 3379 3380 3381 3382 3383

  affine_fn_free (overlaps_a_xz);
  affine_fn_free (overlaps_b_xz);
  affine_fn_free (overlaps_a_yz);
  affine_fn_free (overlaps_b_yz);
  affine_fn_free (overlaps_a_xyz);
  affine_fn_free (overlaps_b_xyz);
3384 3385
}

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */

static void
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
		    int size)
{
  memcpy (vec2, vec1, size * sizeof (*vec1));
}

/* Copy the elements of M x N matrix MAT1 to MAT2.  */

static void
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
		    int m, int n)
{
  int i;

  for (i = 0; i < m; i++)
    lambda_vector_copy (mat1[i], mat2[i], n);
}

/* Store the N x N identity matrix in MAT.  */

static void
lambda_matrix_id (lambda_matrix mat, int size)
{
  int i, j;

  for (i = 0; i < size; i++)
    for (j = 0; j < size; j++)
      mat[i][j] = (i == j) ? 1 : 0;
}

/* Return the first nonzero element of vector VEC1 between START and N.
   We must have START <= N.   Returns N if VEC1 is the zero vector.  */

static int
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
{
  int j = start;
  while (j < n && vec1[j] == 0)
    j++;
  return j;
}

/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
   R2 = R2 + CONST1 * R1.  */

static void
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
{
  int i;

  if (const1 == 0)
    return;

  for (i = 0; i < n; i++)
    mat[r2][i] += const1 * mat[r1][i];
}

/* Multiply vector VEC1 of length SIZE by a constant CONST1,
   and store the result in VEC2.  */

static void
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
			  int size, int const1)
{
  int i;

  if (const1 == 0)
    lambda_vector_clear (vec2, size);
  else
    for (i = 0; i < size; i++)
      vec2[i] = const1 * vec1[i];
}

/* Negate vector VEC1 with length SIZE and store it in VEC2.  */

static void
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
		      int size)
{
  lambda_vector_mult_const (vec1, vec2, size, -1);
}

/* Negate row R1 of matrix MAT which has N columns.  */

static void
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
{
  lambda_vector_negate (mat[r1], mat[r1], n);
}

/* Return true if two vectors are equal.  */

static bool
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
{
  int i;
  for (i = 0; i < size; i++)
    if (vec1[i] != vec2[i])
      return false;
  return true;
}

/* Given an M x N integer matrix A, this function determines an M x
   M unimodular matrix U, and an M x N echelon matrix S such that
   "U.A = S".  This decomposition is also known as "right Hermite".

   Ref: Algorithm 2.1 page 33 in "Loop Transformations for
   Restructuring Compilers" Utpal Banerjee.  */

static void
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
			     lambda_matrix S, lambda_matrix U)
{
  int i, j, i0 = 0;

  lambda_matrix_copy (A, S, m, n);
  lambda_matrix_id (U, m);

  for (j = 0; j < n; j++)
    {
      if (lambda_vector_first_nz (S[j], m, i0) < m)
	{
	  ++i0;
	  for (i = m - 1; i >= i0; i--)
	    {
	      while (S[i][j] != 0)
		{
		  int sigma, factor, a, b;

		  a = S[i-1][j];
		  b = S[i][j];
		  sigma = (a * b < 0) ? -1: 1;
		  a = abs (a);
		  b = abs (b);
		  factor = sigma * (a / b);

		  lambda_matrix_row_add (S, n, i, i-1, -factor);
3526
		  std::swap (S[i], S[i-1]);
3527 3528

		  lambda_matrix_row_add (U, m, i, i-1, -factor);
3529
		  std::swap (U[i], U[i-1]);
3530 3531 3532 3533 3534 3535
		}
	    }
	}
    }
}

3536
/* Determines the overlapping elements due to accesses CHREC_A and
3537 3538 3539
   CHREC_B, that are affine functions.  This function cannot handle
   symbolic evolution functions, ie. when initial conditions are
   parameters, because it uses lambda matrices of integers.  */
3540 3541

static void
H.J. Lu committed
3542
analyze_subscript_affine_affine (tree chrec_a,
3543
				 tree chrec_b,
H.J. Lu committed
3544 3545
				 conflict_function **overlaps_a,
				 conflict_function **overlaps_b,
3546
				 tree *last_conflicts)
3547
{
3548
  unsigned nb_vars_a, nb_vars_b, dim;
3549
  HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
3550
  lambda_matrix A, U, S;
3551
  struct obstack scratch_obstack;
3552

3553
  if (eq_evolutions_p (chrec_a, chrec_b))
3554
    {
3555 3556
      /* The accessed index overlaps for each iteration in the
	 loop.  */
3557 3558
      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
      *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3559 3560 3561
      *last_conflicts = chrec_dont_know;
      return;
    }
3562 3563
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_subscript_affine_affine \n");
H.J. Lu committed
3564

3565 3566
  /* For determining the initial intersection, we have to solve a
     Diophantine equation.  This is the most time consuming part.
H.J. Lu committed
3567

3568 3569 3570
     For answering to the question: "Is there a dependence?" we have
     to prove that there exists a solution to the Diophantine
     equation, and that the solution is in the iteration domain,
3571
     i.e. the solution is positive or zero, and that the solution
3572 3573 3574 3575
     happens before the upper bound loop.nb_iterations.  Otherwise
     there is no dependence.  This function outputs a description of
     the iterations that hold the intersections.  */

3576 3577 3578
  nb_vars_a = nb_vars_in_chrec (chrec_a);
  nb_vars_b = nb_vars_in_chrec (chrec_b);

3579 3580
  gcc_obstack_init (&scratch_obstack);

3581
  dim = nb_vars_a + nb_vars_b;
3582 3583 3584
  U = lambda_matrix_new (dim, dim, &scratch_obstack);
  A = lambda_matrix_new (dim, 1, &scratch_obstack);
  S = lambda_matrix_new (dim, 1, &scratch_obstack);
3585

3586 3587
  init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
  init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
3588 3589 3590
  gamma = init_b - init_a;

  /* Don't do all the hard work of solving the Diophantine equation
H.J. Lu committed
3591
     when we already know the solution: for example,
3592 3593 3594
     | {3, +, 1}_1
     | {3, +, 4}_2
     | gamma = 3 - 3 = 0.
H.J. Lu committed
3595
     Then the first overlap occurs during the first iterations:
3596 3597 3598
     | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
  */
  if (gamma == 0)
3599
    {
3600
      if (nb_vars_a == 1 && nb_vars_b == 1)
3601
	{
3602
	  HOST_WIDE_INT step_a, step_b;
3603
	  HOST_WIDE_INT niter, niter_a, niter_b;
3604
	  affine_fn ova, ovb;
3605

3606 3607
	  niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
	  niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
3608
	  niter = MIN (niter_a, niter_b);
3609 3610
	  step_a = int_cst_value (CHREC_RIGHT (chrec_a));
	  step_b = int_cst_value (CHREC_RIGHT (chrec_b));
3611

H.J. Lu committed
3612 3613
	  compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
						   &ova, &ovb,
3614
						   last_conflicts, 1);
3615 3616
	  *overlaps_a = conflict_fn (1, ova);
	  *overlaps_b = conflict_fn (1, ovb);
3617
	}
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

      else if (nb_vars_a == 2 && nb_vars_b == 1)
	compute_overlap_steps_for_affine_1_2
	  (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);

      else if (nb_vars_a == 1 && nb_vars_b == 2)
	compute_overlap_steps_for_affine_1_2
	  (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);

      else
3628
	{
3629 3630
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "affine-affine test failed: too many variables.\n");
3631 3632
	  *overlaps_a = conflict_fn_not_known ();
	  *overlaps_b = conflict_fn_not_known ();
3633
	  *last_conflicts = chrec_dont_know;
3634
	}
3635
      goto end_analyze_subs_aa;
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
    }

  /* U.A = S */
  lambda_matrix_right_hermite (A, dim, 1, S, U);

  if (S[0][0] < 0)
    {
      S[0][0] *= -1;
      lambda_matrix_row_negate (U, dim, 0);
    }
  gcd_alpha_beta = S[0][0];

3648 3649 3650 3651 3652
  /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
     but that is a quite strange case.  Instead of ICEing, answer
     don't know.  */
  if (gcd_alpha_beta == 0)
    {
3653 3654
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
3655 3656 3657 3658
      *last_conflicts = chrec_dont_know;
      goto end_analyze_subs_aa;
    }

3659 3660 3661 3662 3663
  /* The classic "gcd-test".  */
  if (!int_divides_p (gcd_alpha_beta, gamma))
    {
      /* The "gcd-test" has determined that there is no integer
	 solution, i.e. there is no dependence.  */
3664 3665
      *overlaps_a = conflict_fn_no_dependence ();
      *overlaps_b = conflict_fn_no_dependence ();
3666 3667 3668 3669 3670 3671 3672 3673 3674
      *last_conflicts = integer_zero_node;
    }

  /* Both access functions are univariate.  This includes SIV and MIV cases.  */
  else if (nb_vars_a == 1 && nb_vars_b == 1)
    {
      /* Both functions should have the same evolution sign.  */
      if (((A[0][0] > 0 && -A[1][0] > 0)
	   || (A[0][0] < 0 && -A[1][0] < 0)))
3675 3676
	{
	  /* The solutions are given by:
H.J. Lu committed
3677
	     |
3678 3679
	     | [GAMMA/GCD_ALPHA_BETA  t].[u11 u12]  = [x0]
	     |                           [u21 u22]    [y0]
H.J. Lu committed
3680

3681
	     For a given integer t.  Using the following variables,
H.J. Lu committed
3682

3683 3684 3685 3686
	     | i0 = u11 * gamma / gcd_alpha_beta
	     | j0 = u12 * gamma / gcd_alpha_beta
	     | i1 = u21
	     | j1 = u22
H.J. Lu committed
3687

3688
	     the solutions are:
H.J. Lu committed
3689 3690

	     | x0 = i0 + i1 * t,
3691
	     | y0 = j0 + j1 * t.  */
3692
      	  HOST_WIDE_INT i0, j0, i1, j1;
3693 3694 3695 3696 3697 3698 3699 3700

	  i0 = U[0][0] * gamma / gcd_alpha_beta;
	  j0 = U[0][1] * gamma / gcd_alpha_beta;
	  i1 = U[1][0];
	  j1 = U[1][1];

	  if ((i1 == 0 && i0 < 0)
	      || (j1 == 0 && j0 < 0))
3701
	    {
H.J. Lu committed
3702 3703 3704
	      /* There is no solution.
		 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
		 falls in here, but for the moment we don't look at the
3705
		 upper bound of the iteration domain.  */
3706 3707
	      *overlaps_a = conflict_fn_no_dependence ();
	      *overlaps_b = conflict_fn_no_dependence ();
3708
	      *last_conflicts = integer_zero_node;
3709
	      goto end_analyze_subs_aa;
3710 3711
	    }

3712
	  if (i1 > 0 && j1 > 0)
3713
	    {
3714 3715 3716 3717
	      HOST_WIDE_INT niter_a
		= max_stmt_executions_int (get_chrec_loop (chrec_a));
	      HOST_WIDE_INT niter_b
		= max_stmt_executions_int (get_chrec_loop (chrec_b));
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	      HOST_WIDE_INT niter = MIN (niter_a, niter_b);

	      /* (X0, Y0) is a solution of the Diophantine equation:
		 "chrec_a (X0) = chrec_b (Y0)".  */
	      HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
					CEIL (-j0, j1));
	      HOST_WIDE_INT x0 = i1 * tau1 + i0;
	      HOST_WIDE_INT y0 = j1 * tau1 + j0;

	      /* (X1, Y1) is the smallest positive solution of the eq
		 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
		 first conflict occurs.  */
	      HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
	      HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
	      HOST_WIDE_INT y1 = y0 - j1 * min_multiple;

	      if (niter > 0)
3735
		{
3736 3737
		  HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter_a - i0, i1),
					    FLOOR_DIV (niter_b - j0, j1));
3738
		  HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
3739

3740 3741
		  /* If the overlap occurs outside of the bounds of the
		     loop, there is no dependence.  */
3742
		  if (x1 >= niter_a || y1 >= niter_b)
3743
		    {
3744 3745 3746 3747
		      *overlaps_a = conflict_fn_no_dependence ();
		      *overlaps_b = conflict_fn_no_dependence ();
		      *last_conflicts = integer_zero_node;
		      goto end_analyze_subs_aa;
3748 3749
		    }
		  else
3750
		    *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
3751 3752
		}
	      else
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
		*last_conflicts = chrec_dont_know;

	      *overlaps_a
		= conflict_fn (1,
			       affine_fn_univar (build_int_cst (NULL_TREE, x1),
						 1,
						 build_int_cst (NULL_TREE, i1)));
	      *overlaps_b
		= conflict_fn (1,
			       affine_fn_univar (build_int_cst (NULL_TREE, y1),
						 1,
						 build_int_cst (NULL_TREE, j1)));
	    }
	  else
	    {
	      /* FIXME: For the moment, the upper bound of the
		 iteration domain for i and j is not checked.  */
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
	      *overlaps_a = conflict_fn_not_known ();
	      *overlaps_b = conflict_fn_not_known ();
	      *last_conflicts = chrec_dont_know;
3775 3776
	    }
	}
3777 3778
      else
	{
3779 3780
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
3781 3782
	  *overlaps_a = conflict_fn_not_known ();
	  *overlaps_b = conflict_fn_not_known ();
3783 3784
	  *last_conflicts = chrec_dont_know;
	}
3785 3786 3787
    }
  else
    {
3788 3789
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
3790 3791
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
3792
      *last_conflicts = chrec_dont_know;
3793
    }
3794

H.J. Lu committed
3795
end_analyze_subs_aa:
3796
  obstack_free (&scratch_obstack, NULL);
3797 3798 3799
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  (overlaps_a = ");
3800
      dump_conflict_function (dump_file, *overlaps_a);
3801
      fprintf (dump_file, ")\n  (overlaps_b = ");
3802
      dump_conflict_function (dump_file, *overlaps_b);
3803
      fprintf (dump_file, "))\n");
3804
    }
3805 3806 3807 3808 3809 3810
}

/* Returns true when analyze_subscript_affine_affine can be used for
   determining the dependence relation between chrec_a and chrec_b,
   that contain symbols.  This function modifies chrec_a and chrec_b
   such that the analysis result is the same, and such that they don't
H.J. Lu committed
3811
   contain symbols, and then can safely be passed to the analyzer.
3812 3813 3814 3815

   Example: The analysis of the following tuples of evolutions produce
   the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
   vs. {0, +, 1}_1
H.J. Lu committed
3816

3817 3818 3819 3820 3821 3822 3823
   {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
   {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
*/

static bool
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
{
3824
  tree diff, type, left_a, left_b, right_b;
3825 3826 3827 3828 3829 3830

  if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
      || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
    /* FIXME: For the moment not handled.  Might be refined later.  */
    return false;

3831 3832
  type = chrec_type (*chrec_a);
  left_a = CHREC_LEFT (*chrec_a);
3833
  left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
3834 3835
  diff = chrec_fold_minus (type, left_a, left_b);

3836 3837 3838
  if (!evolution_function_is_constant_p (diff))
    return false;

3839
  if (dump_file && (dump_flags & TDF_DETAILS))
3840 3841
    fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");

H.J. Lu committed
3842
  *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
3843
				     diff, CHREC_RIGHT (*chrec_a));
3844
  right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
3845
  *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
3846
				     build_int_cst (type, 0),
3847
				     right_b);
3848
  return true;
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
}

/* Analyze a SIV (Single Index Variable) subscript.  *OVERLAPS_A and
   *OVERLAPS_B are initialized to the functions that describe the
   relation between the elements accessed twice by CHREC_A and
   CHREC_B.  For k >= 0, the following property is verified:

   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */

static void
H.J. Lu committed
3859
analyze_siv_subscript (tree chrec_a,
3860
		       tree chrec_b,
H.J. Lu committed
3861 3862
		       conflict_function **overlaps_a,
		       conflict_function **overlaps_b,
3863 3864
		       tree *last_conflicts,
		       int loop_nest_num)
3865
{
3866
  dependence_stats.num_siv++;
H.J. Lu committed
3867

3868 3869
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_siv_subscript \n");
H.J. Lu committed
3870

3871
  if (evolution_function_is_constant_p (chrec_a)
3872
      && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
H.J. Lu committed
3873
    analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
3874
				      overlaps_a, overlaps_b, last_conflicts);
H.J. Lu committed
3875

3876
  else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
3877
	   && evolution_function_is_constant_p (chrec_b))
H.J. Lu committed
3878
    analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
3879
				      overlaps_b, overlaps_a, last_conflicts);
H.J. Lu committed
3880

3881 3882
  else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
	   && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
3883 3884 3885 3886
    {
      if (!chrec_contains_symbols (chrec_a)
	  && !chrec_contains_symbols (chrec_b))
	{
H.J. Lu committed
3887 3888
	  analyze_subscript_affine_affine (chrec_a, chrec_b,
					   overlaps_a, overlaps_b,
3889 3890
					   last_conflicts);

3891 3892
	  if (CF_NOT_KNOWN_P (*overlaps_a)
	      || CF_NOT_KNOWN_P (*overlaps_b))
3893
	    dependence_stats.num_siv_unimplemented++;
3894 3895
	  else if (CF_NO_DEPENDENCE_P (*overlaps_a)
		   || CF_NO_DEPENDENCE_P (*overlaps_b))
3896 3897 3898 3899
	    dependence_stats.num_siv_independent++;
	  else
	    dependence_stats.num_siv_dependent++;
	}
H.J. Lu committed
3900
      else if (can_use_analyze_subscript_affine_affine (&chrec_a,
3901 3902
							&chrec_b))
	{
H.J. Lu committed
3903 3904
	  analyze_subscript_affine_affine (chrec_a, chrec_b,
					   overlaps_a, overlaps_b,
3905 3906
					   last_conflicts);

3907 3908
	  if (CF_NOT_KNOWN_P (*overlaps_a)
	      || CF_NOT_KNOWN_P (*overlaps_b))
3909
	    dependence_stats.num_siv_unimplemented++;
3910 3911
	  else if (CF_NO_DEPENDENCE_P (*overlaps_a)
		   || CF_NO_DEPENDENCE_P (*overlaps_b))
3912 3913 3914 3915 3916 3917 3918 3919
	    dependence_stats.num_siv_independent++;
	  else
	    dependence_stats.num_siv_dependent++;
	}
      else
	goto siv_subscript_dontknow;
    }

3920 3921
  else
    {
3922 3923
    siv_subscript_dontknow:;
      if (dump_file && (dump_flags & TDF_DETAILS))
3924
	fprintf (dump_file, "  siv test failed: unimplemented");
3925 3926
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
3927
      *last_conflicts = chrec_dont_know;
3928
      dependence_stats.num_siv_unimplemented++;
3929
    }
H.J. Lu committed
3930

3931 3932 3933 3934
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
}

3935 3936
/* Returns false if we can prove that the greatest common divisor of the steps
   of CHREC does not divide CST, false otherwise.  */
3937 3938

static bool
3939
gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
3940
{
3941 3942
  HOST_WIDE_INT cd = 0, val;
  tree step;
3943

3944
  if (!tree_fits_shwi_p (cst))
3945
    return true;
3946
  val = tree_to_shwi (cst);
3947 3948 3949 3950

  while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
    {
      step = CHREC_RIGHT (chrec);
3951
      if (!tree_fits_shwi_p (step))
3952
	return true;
3953
      cd = gcd (cd, tree_to_shwi (step));
3954
      chrec = CHREC_LEFT (chrec);
3955
    }
3956 3957

  return val % cd == 0;
3958 3959
}

3960 3961 3962 3963 3964
/* Analyze a MIV (Multiple Index Variable) subscript with respect to
   LOOP_NEST.  *OVERLAPS_A and *OVERLAPS_B are initialized to the
   functions that describe the relation between the elements accessed
   twice by CHREC_A and CHREC_B.  For k >= 0, the following property
   is verified:
3965 3966 3967 3968

   CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)).  */

static void
H.J. Lu committed
3969 3970 3971 3972
analyze_miv_subscript (tree chrec_a,
		       tree chrec_b,
		       conflict_function **overlaps_a,
		       conflict_function **overlaps_b,
3973 3974
		       tree *last_conflicts,
		       struct loop *loop_nest)
3975
{
3976 3977
  tree type, difference;

3978
  dependence_stats.num_miv++;
3979 3980
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "(analyze_miv_subscript \n");
3981

3982
  type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
3983 3984
  chrec_a = chrec_convert (type, chrec_a, NULL);
  chrec_b = chrec_convert (type, chrec_b, NULL);
3985
  difference = chrec_fold_minus (type, chrec_a, chrec_b);
H.J. Lu committed
3986

3987
  if (eq_evolutions_p (chrec_a, chrec_b))
3988 3989 3990
    {
      /* Access functions are the same: all the elements are accessed
	 in the same order.  */
3991 3992
      *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
      *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3993
      *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
3994
      dependence_stats.num_miv_dependent++;
3995
    }
H.J. Lu committed
3996

3997
  else if (evolution_function_is_constant_p (difference)
3998 3999
	   && evolution_function_is_affine_multivariate_p (chrec_a,
							   loop_nest->num)
4000
	   && !gcd_of_steps_may_divide_p (chrec_a, difference))
4001 4002
    {
      /* testsuite/.../ssa-chrec-33.c
H.J. Lu committed
4003 4004
	 {{21, +, 2}_1, +, -2}_2  vs.  {{20, +, 2}_1, +, -2}_2

4005 4006
	 The difference is 1, and all the evolution steps are multiples
	 of 2, consequently there are no overlapping elements.  */
4007 4008
      *overlaps_a = conflict_fn_no_dependence ();
      *overlaps_b = conflict_fn_no_dependence ();
4009
      *last_conflicts = integer_zero_node;
4010
      dependence_stats.num_miv_independent++;
4011
    }
H.J. Lu committed
4012

4013
  else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
4014
	   && !chrec_contains_symbols (chrec_a)
4015
	   && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
4016
	   && !chrec_contains_symbols (chrec_b))
4017 4018 4019 4020
    {
      /* testsuite/.../ssa-chrec-35.c
	 {0, +, 1}_2  vs.  {0, +, 1}_3
	 the overlapping elements are respectively located at iterations:
H.J. Lu committed
4021 4022
	 {0, +, 1}_x and {0, +, 1}_x,
	 in other words, we have the equality:
4023
	 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
H.J. Lu committed
4024 4025 4026

	 Other examples:
	 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
4027 4028
	 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)

H.J. Lu committed
4029
	 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
4030
	 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
4031
      */
H.J. Lu committed
4032
      analyze_subscript_affine_affine (chrec_a, chrec_b,
4033
				       overlaps_a, overlaps_b, last_conflicts);
4034

4035 4036
      if (CF_NOT_KNOWN_P (*overlaps_a)
 	  || CF_NOT_KNOWN_P (*overlaps_b))
4037
	dependence_stats.num_miv_unimplemented++;
4038 4039
      else if (CF_NO_DEPENDENCE_P (*overlaps_a)
	       || CF_NO_DEPENDENCE_P (*overlaps_b))
4040 4041 4042
	dependence_stats.num_miv_independent++;
      else
	dependence_stats.num_miv_dependent++;
4043
    }
H.J. Lu committed
4044

4045 4046 4047
  else
    {
      /* When the analysis is too difficult, answer "don't know".  */
4048 4049 4050
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");

4051 4052
      *overlaps_a = conflict_fn_not_known ();
      *overlaps_b = conflict_fn_not_known ();
4053
      *last_conflicts = chrec_dont_know;
4054
      dependence_stats.num_miv_unimplemented++;
4055
    }
H.J. Lu committed
4056

4057 4058 4059 4060
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, ")\n");
}

4061 4062 4063 4064
/* Determines the iterations for which CHREC_A is equal to CHREC_B in
   with respect to LOOP_NEST.  OVERLAP_ITERATIONS_A and
   OVERLAP_ITERATIONS_B are initialized with two functions that
   describe the iterations that contain conflicting elements.
H.J. Lu committed
4065

4066
   Remark: For an integer k >= 0, the following equality is true:
H.J. Lu committed
4067

4068 4069 4070
   CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
*/

H.J. Lu committed
4071 4072 4073 4074 4075
static void
analyze_overlapping_iterations (tree chrec_a,
				tree chrec_b,
				conflict_function **overlap_iterations_a,
				conflict_function **overlap_iterations_b,
4076
				tree *last_conflicts, struct loop *loop_nest)
4077
{
4078 4079
  unsigned int lnn = loop_nest->num;

4080
  dependence_stats.num_subscript_tests++;
H.J. Lu committed
4081

4082 4083 4084 4085
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "(analyze_overlapping_iterations \n");
      fprintf (dump_file, "  (chrec_a = ");
4086
      print_generic_expr (dump_file, chrec_a);
4087
      fprintf (dump_file, ")\n  (chrec_b = ");
4088
      print_generic_expr (dump_file, chrec_b);
4089 4090
      fprintf (dump_file, ")\n");
    }
4091

4092 4093 4094
  if (chrec_a == NULL_TREE
      || chrec_b == NULL_TREE
      || chrec_contains_undetermined (chrec_a)
4095
      || chrec_contains_undetermined (chrec_b))
4096
    {
4097
      dependence_stats.num_subscript_undetermined++;
H.J. Lu committed
4098

4099 4100
      *overlap_iterations_a = conflict_fn_not_known ();
      *overlap_iterations_b = conflict_fn_not_known ();
4101
    }
4102

H.J. Lu committed
4103
  /* If they are the same chrec, and are affine, they overlap
4104 4105
     on every iteration.  */
  else if (eq_evolutions_p (chrec_a, chrec_b)
4106 4107
	   && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
	       || operand_equal_p (chrec_a, chrec_b, 0)))
4108 4109
    {
      dependence_stats.num_same_subscript_function++;
4110 4111
      *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
      *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
4112 4113 4114 4115
      *last_conflicts = chrec_dont_know;
    }

  /* If they aren't the same, and aren't affine, we can't do anything
4116
     yet.  */
H.J. Lu committed
4117
  else if ((chrec_contains_symbols (chrec_a)
4118
	    || chrec_contains_symbols (chrec_b))
4119 4120
	   && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
	       || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
4121 4122
    {
      dependence_stats.num_subscript_undetermined++;
4123 4124
      *overlap_iterations_a = conflict_fn_not_known ();
      *overlap_iterations_b = conflict_fn_not_known ();
4125 4126
    }

4127
  else if (ziv_subscript_p (chrec_a, chrec_b))
H.J. Lu committed
4128
    analyze_ziv_subscript (chrec_a, chrec_b,
4129 4130
			   overlap_iterations_a, overlap_iterations_b,
			   last_conflicts);
H.J. Lu committed
4131

4132
  else if (siv_subscript_p (chrec_a, chrec_b))
H.J. Lu committed
4133 4134
    analyze_siv_subscript (chrec_a, chrec_b,
			   overlap_iterations_a, overlap_iterations_b,
4135
			   last_conflicts, lnn);
H.J. Lu committed
4136

4137
  else
H.J. Lu committed
4138
    analyze_miv_subscript (chrec_a, chrec_b,
4139
			   overlap_iterations_a, overlap_iterations_b,
4140
			   last_conflicts, loop_nest);
H.J. Lu committed
4141

4142 4143 4144
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  (overlap_iterations_a = ");
4145
      dump_conflict_function (dump_file, *overlap_iterations_a);
4146
      fprintf (dump_file, ")\n  (overlap_iterations_b = ");
4147
      dump_conflict_function (dump_file, *overlap_iterations_b);
4148
      fprintf (dump_file, "))\n");
4149 4150 4151
    }
}

4152
/* Helper function for uniquely inserting distance vectors.  */
4153

4154 4155 4156 4157 4158
static void
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
{
  unsigned i;
  lambda_vector v;
4159

4160
  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
4161 4162
    if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
      return;
4163

4164
  DDR_DIST_VECTS (ddr).safe_push (dist_v);
4165
}
4166

4167 4168 4169 4170
/* Helper function for uniquely inserting direction vectors.  */

static void
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
4171 4172
{
  unsigned i;
4173
  lambda_vector v;
4174

4175
  FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
4176 4177 4178
    if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
      return;

4179
  DDR_DIR_VECTS (ddr).safe_push (dir_v);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
}

/* Add a distance of 1 on all the loops outer than INDEX.  If we
   haven't yet determined a distance for this outer loop, push a new
   distance vector composed of the previous distance, and a distance
   of 1 for this outer loop.  Example:

   | loop_1
   |   loop_2
   |     A[10]
   |   endloop_2
   | endloop_1

   Saved vectors are of the form (dist_in_1, dist_in_2).  First, we
   save (0, 1), then we have to save (1, 0).  */

static void
add_outer_distances (struct data_dependence_relation *ddr,
		     lambda_vector dist_v, int index)
{
  /* For each outer loop where init_v is not set, the accesses are
     in dependence of distance 1 in the loop.  */
  while (--index >= 0)
    {
      lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
      save_v[index] = 1;
      save_dist_v (ddr, save_v);
    }
}

/* Return false when fail to represent the data dependence as a
4212 4213 4214
   distance vector.  A_INDEX is the index of the first reference
   (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
   second reference.  INIT_B is set to true when a component has been
4215 4216 4217 4218 4219
   added to the distance vector DIST_V.  INDEX_CARRY is then set to
   the index in DIST_V that carries the dependence.  */

static bool
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
4220
			     unsigned int a_index, unsigned int b_index,
4221 4222 4223 4224 4225
			     lambda_vector dist_v, bool *init_b,
			     int *index_carry)
{
  unsigned i;
  lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4226

Daniel Berlin committed
4227
  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
4228
    {
4229
      tree access_fn_a, access_fn_b;
Daniel Berlin committed
4230
      struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
4231 4232

      if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
4233 4234
	{
	  non_affine_dependence_relation (ddr);
4235
	  return false;
4236 4237
	}

4238 4239
      access_fn_a = SUB_ACCESS_FN (subscript, a_index);
      access_fn_b = SUB_ACCESS_FN (subscript, b_index);
4240

H.J. Lu committed
4241
      if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
4242
	  && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
4243
	{
4244 4245
	  HOST_WIDE_INT dist;
	  int index;
4246 4247
	  int var_a = CHREC_VARIABLE (access_fn_a);
	  int var_b = CHREC_VARIABLE (access_fn_b);
4248

4249 4250
	  if (var_a != var_b
	      || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
4251 4252
	    {
	      non_affine_dependence_relation (ddr);
4253
	      return false;
4254
	    }
H.J. Lu committed
4255

4256
	  dist = int_cst_value (SUB_DISTANCE (subscript));
4257 4258
	  index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
	  *index_carry = MIN (index, *index_carry);
4259

4260 4261 4262 4263 4264
	  /* This is the subscript coupling test.  If we have already
	     recorded a distance for this loop (a distance coming from
	     another subscript), it should be the same.  For example,
	     in the following code, there is no dependence:

4265 4266 4267 4268
	     | loop i = 0, N, 1
	     |   T[i+1][i] = ...
	     |   ... = T[i][i]
	     | endloop
4269 4270
	  */
	  if (init_v[index] != 0 && dist_v[index] != dist)
4271
	    {
Daniel Berlin committed
4272
	      finalize_ddr_dependent (ddr, chrec_known);
4273
	      return false;
4274 4275
	    }

4276 4277 4278 4279
	  dist_v[index] = dist;
	  init_v[index] = 1;
	  *init_b = true;
	}
4280
      else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
4281 4282 4283 4284 4285 4286
	{
	  /* This can be for example an affine vs. constant dependence
	     (T[i] vs. T[3]) that is not an affine dependence and is
	     not representable as a distance vector.  */
	  non_affine_dependence_relation (ddr);
	  return false;
4287 4288
	}
    }
4289

4290 4291
  return true;
}
4292

4293 4294 4295
/* Return true when the DDR contains only constant access functions.  */

static bool
4296
constant_access_functions (const struct data_dependence_relation *ddr)
4297 4298
{
  unsigned i;
4299
  subscript *sub;
4300

4301 4302 4303
  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
    if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
	|| !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
4304 4305 4306 4307 4308
      return false;

  return true;
}

4309
/* Helper function for the case where DDR_A and DDR_B are the same
4310 4311
   multivariate access function with a constant step.  For an example
   see pr34635-1.c.  */
4312

4313 4314 4315 4316 4317 4318 4319
static void
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
{
  int x_1, x_2;
  tree c_1 = CHREC_LEFT (c_2);
  tree c_0 = CHREC_LEFT (c_1);
  lambda_vector dist_v;
4320
  HOST_WIDE_INT v1, v2, cd;
4321

4322 4323 4324 4325 4326 4327 4328 4329
  /* Polynomials with more than 2 variables are not handled yet.  When
     the evolution steps are parameters, it is not possible to
     represent the dependence using classical distance vectors.  */
  if (TREE_CODE (c_0) != INTEGER_CST
      || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
      || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
    {
      DDR_AFFINE_P (ddr) = false;
4330 4331
      return;
    }
4332

4333 4334
  x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
  x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
4335

4336 4337
  /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2).  */
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4338 4339
  v1 = int_cst_value (CHREC_RIGHT (c_1));
  v2 = int_cst_value (CHREC_RIGHT (c_2));
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
  cd = gcd (v1, v2);
  v1 /= cd;
  v2 /= cd;

  if (v2 < 0)
    {
      v2 = -v2;
      v1 = -v1;
    }

  dist_v[x_1] = v2;
  dist_v[x_2] = -v1;
4352
  save_dist_v (ddr, dist_v);
4353

4354 4355
  add_outer_distances (ddr, dist_v, x_1);
}
4356

4357 4358
/* Helper function for the case where DDR_A and DDR_B are the same
   access functions.  */
4359

4360 4361 4362 4363 4364 4365
static void
add_other_self_distances (struct data_dependence_relation *ddr)
{
  lambda_vector dist_v;
  unsigned i;
  int index_carry = DDR_NB_LOOPS (ddr);
4366
  subscript *sub;
4367

4368
  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
4369
    {
4370
      tree access_fun = SUB_ACCESS_FN (sub, 0);
4371

4372
      if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
4373
	{
4374 4375 4376 4377 4378 4379 4380 4381
	  if (!evolution_function_is_univariate_p (access_fun))
	    {
	      if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
		{
		  DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
		  return;
		}

4382
	      access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

	      if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
		add_multivariate_self_dist (ddr, access_fun);
	      else
		/* The evolution step is not constant: it varies in
		   the outer loop, so this cannot be represented by a
		   distance vector.  For example in pr34635.c the
		   evolution is {0, +, {0, +, 4}_1}_2.  */
		DDR_AFFINE_P (ddr) = false;

4393 4394 4395 4396 4397 4398
	      return;
	    }

	  index_carry = MIN (index_carry,
			     index_in_loop_nest (CHREC_VARIABLE (access_fun),
						 DDR_LOOP_NEST (ddr)));
4399
	}
4400 4401
    }

4402 4403
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
  add_outer_distances (ddr, dist_v, index_carry);
4404 4405
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static void
insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
{
  lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));

  dist_v[DDR_INNER_LOOP (ddr)] = 1;
  save_dist_v (ddr, dist_v);
}

/* Adds a unit distance vector to DDR when there is a 0 overlap.  This
   is the case for example when access functions are the same and
   equal to a constant, as in:

   | loop_1
   |   A[3] = ...
   |   ... = A[3]
   | endloop_1

   in which case the distance vectors are (0) and (1).  */

static void
add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
{
  unsigned i, j;

  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
    {
      subscript_p sub = DDR_SUBSCRIPT (ddr, i);
      conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
      conflict_function *cb = SUB_CONFLICTS_IN_B (sub);

      for (j = 0; j < ca->n; j++)
	if (affine_function_zero_p (ca->fns[j]))
	  {
	    insert_innermost_unit_dist_vector (ddr);
	    return;
	  }

      for (j = 0; j < cb->n; j++)
	if (affine_function_zero_p (cb->fns[j]))
	  {
	    insert_innermost_unit_dist_vector (ddr);
	    return;
	  }
    }
}

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
/* Return true when the DDR contains two data references that have the
   same access functions.  */

static inline bool
same_access_functions (const struct data_dependence_relation *ddr)
{
  unsigned i;
  subscript *sub;

  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
    if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
			  SUB_ACCESS_FN (sub, 1)))
      return false;

  return true;
}

4470 4471 4472
/* Compute the classic per loop distance vector.  DDR is the data
   dependence relation to build a vector from.  Return false when fail
   to represent the data dependence as a distance vector.  */
4473

4474
static bool
4475 4476
build_classic_dist_vector (struct data_dependence_relation *ddr,
			   struct loop *loop_nest)
4477
{
4478
  bool init_b = false;
4479 4480
  int index_carry = DDR_NB_LOOPS (ddr);
  lambda_vector dist_v;
4481

Daniel Berlin committed
4482
  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
4483
    return false;
4484 4485

  if (same_access_functions (ddr))
4486
    {
4487 4488 4489
      /* Save the 0 vector.  */
      dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
      save_dist_v (ddr, dist_v);
4490

4491 4492 4493
      if (constant_access_functions (ddr))
	add_distance_for_zero_overlaps (ddr);

4494 4495
      if (DDR_NB_LOOPS (ddr) > 1)
	add_other_self_distances (ddr);
4496

4497 4498
      return true;
    }
4499

4500
  dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4501
  if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
4502
    return false;
4503

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
  /* Save the distance vector if we initialized one.  */
  if (init_b)
    {
      /* Verify a basic constraint: classic distance vectors should
	 always be lexicographically positive.

	 Data references are collected in the order of execution of
	 the program, thus for the following loop

	 | for (i = 1; i < 100; i++)
	 |   for (j = 1; j < 100; j++)
	 |     {
	 |       t = T[j+1][i-1];  // A
	 |       T[j][i] = t + 2;  // B
	 |     }

	 references are collected following the direction of the wind:
	 A then B.  The data dependence tests are performed also
	 following this order, such that we're looking at the distance
	 separating the elements accessed by A from the elements later
	 accessed by B.  But in this example, the distance returned by
	 test_dep (A, B) is lexicographically negative (-1, 1), that
	 means that the access A occurs later than B with respect to
	 the outer loop, ie. we're actually looking upwind.  In this
	 case we solve test_dep (B, A) looking downwind to the
	 lexicographically positive solution, that returns the
	 distance vector (1, -1).  */
      if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
	{
	  lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4534
	  if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
4535
	    return false;
4536
	  compute_subscript_distance (ddr);
4537 4538
	  if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
					    &index_carry))
4539
	    return false;
4540
	  save_dist_v (ddr, save_v);
4541
	  DDR_REVERSED_P (ddr) = true;
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553

	  /* In this case there is a dependence forward for all the
	     outer loops:

	     | for (k = 1; k < 100; k++)
	     |  for (i = 1; i < 100; i++)
	     |   for (j = 1; j < 100; j++)
	     |     {
	     |       t = T[j+1][i-1];  // A
	     |       T[j][i] = t + 2;  // B
	     |     }

H.J. Lu committed
4554
	     the vectors are:
4555 4556 4557 4558 4559 4560 4561 4562
	     (0,  1, -1)
	     (1,  1, -1)
	     (1, -1,  1)
	  */
	  if (DDR_NB_LOOPS (ddr) > 1)
	    {
 	      add_outer_distances (ddr, save_v, index_carry);
	      add_outer_distances (ddr, dist_v, index_carry);
4563
	    }
4564 4565 4566 4567 4568
	}
      else
	{
	  lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
	  lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
4569

4570
	  if (DDR_NB_LOOPS (ddr) > 1)
4571
	    {
4572
	      lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4573

4574
	      if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
4575
		return false;
4576
	      compute_subscript_distance (ddr);
4577
	      if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
4578 4579
						&index_carry))
		return false;
4580

4581
	      save_dist_v (ddr, save_v);
4582 4583
	      add_outer_distances (ddr, dist_v, index_carry);
	      add_outer_distances (ddr, opposite_v, index_carry);
4584
	    }
4585 4586
	  else
	    save_dist_v (ddr, save_v);
4587 4588
	}
    }
4589 4590 4591 4592
  else
    {
      /* There is a distance of 1 on all the outer loops: Example:
	 there is a dependence of distance 1 on loop_1 for the array A.
4593

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	 | loop_1
	 |   A[5] = ...
	 | endloop
      */
      add_outer_distances (ddr, dist_v,
			   lambda_vector_first_nz (dist_v,
						   DDR_NB_LOOPS (ddr), 0));
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
4604
    {
4605
      unsigned i;
4606

4607 4608 4609 4610 4611 4612 4613 4614 4615
      fprintf (dump_file, "(build_classic_dist_vector\n");
      for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
	{
	  fprintf (dump_file, "  dist_vector = (");
	  print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
			       DDR_NB_LOOPS (ddr));
	  fprintf (dump_file, "  )\n");
	}
      fprintf (dump_file, ")\n");
4616 4617
    }

4618 4619
  return true;
}
4620

4621 4622 4623
/* Return the direction for a given distance.
   FIXME: Computing dir this way is suboptimal, since dir can catch
   cases that dist is unable to represent.  */
4624

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
static inline enum data_dependence_direction
dir_from_dist (int dist)
{
  if (dist > 0)
    return dir_positive;
  else if (dist < 0)
    return dir_negative;
  else
    return dir_equal;
}
4635

4636 4637
/* Compute the classic per loop direction vector.  DDR is the data
   dependence relation to build a vector from.  */
4638

4639 4640 4641 4642 4643
static void
build_classic_dir_vector (struct data_dependence_relation *ddr)
{
  unsigned i, j;
  lambda_vector dist_v;
4644

4645
  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
4646 4647
    {
      lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4648

4649 4650
      for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
	dir_v[j] = dir_from_dist (dist_v[j]);
4651

4652 4653
      save_dir_v (ddr, dir_v);
    }
4654 4655
}

4656 4657 4658
/* Helper function.  Returns true when there is a dependence between the
   data references.  A_INDEX is the index of the first reference (0 for
   DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference.  */
4659

4660 4661
static bool
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
4662
			       unsigned int a_index, unsigned int b_index,
4663
			       struct loop *loop_nest)
4664 4665 4666
{
  unsigned int i;
  tree last_conflicts;
4667
  struct subscript *subscript;
4668
  tree res = NULL_TREE;
4669

4670
  for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
4671
    {
4672
      conflict_function *overlaps_a, *overlaps_b;
4673

4674 4675
      analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
				      SUB_ACCESS_FN (subscript, b_index),
H.J. Lu committed
4676
				      &overlaps_a, &overlaps_b,
4677
				      &last_conflicts, loop_nest);
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
      if (SUB_CONFLICTS_IN_A (subscript))
	free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
      if (SUB_CONFLICTS_IN_B (subscript))
	free_conflict_function (SUB_CONFLICTS_IN_B (subscript));

      SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
      SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
      SUB_LAST_CONFLICT (subscript) = last_conflicts;

      /* If there is any undetermined conflict function we have to
         give a conservative answer in case we cannot prove that
	 no dependence exists when analyzing another subscript.  */
4691 4692
      if (CF_NOT_KNOWN_P (overlaps_a)
 	  || CF_NOT_KNOWN_P (overlaps_b))
4693
 	{
4694 4695
	  res = chrec_dont_know;
	  continue;
4696
 	}
4697

4698
      /* When there is a subscript with no dependence we can stop.  */
4699 4700
      else if (CF_NO_DEPENDENCE_P (overlaps_a)
 	       || CF_NO_DEPENDENCE_P (overlaps_b))
4701
 	{
4702 4703
	  res = chrec_known;
	  break;
4704 4705 4706
 	}
    }

4707 4708 4709 4710 4711 4712 4713 4714 4715
  if (res == NULL_TREE)
    return true;

  if (res == chrec_known)
    dependence_stats.num_dependence_independent++;
  else
    dependence_stats.num_dependence_undetermined++;
  finalize_ddr_dependent (ddr, res);
  return false;
4716 4717
}

4718
/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR.  */
4719 4720

static void
4721 4722
subscript_dependence_tester (struct data_dependence_relation *ddr,
			     struct loop *loop_nest)
4723
{
4724
  if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
4725
    dependence_stats.num_dependence_dependent++;
4726 4727

  compute_subscript_distance (ddr);
4728
  if (build_classic_dist_vector (ddr, loop_nest))
4729
    build_classic_dir_vector (ddr);
4730 4731
}

4732
/* Returns true when all the access functions of A are affine or
4733
   constant with respect to LOOP_NEST.  */
4734

H.J. Lu committed
4735
static bool
4736 4737
access_functions_are_affine_or_constant_p (const struct data_reference *a,
					   const struct loop *loop_nest)
4738 4739
{
  unsigned int i;
4740
  vec<tree> fns = DR_ACCESS_FNS (a);
4741
  tree t;
4742

4743
  FOR_EACH_VEC_ELT (fns, i, t)
4744 4745
    if (!evolution_function_is_invariant_p (t, loop_nest->num)
	&& !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
4746
      return false;
H.J. Lu committed
4747

4748 4749 4750
  return true;
}

4751 4752 4753 4754
/* This computes the affine dependence relation between A and B with
   respect to LOOP_NEST.  CHREC_KNOWN is used for representing the
   independence between two accesses, while CHREC_DONT_KNOW is used
   for representing the unknown relation.
H.J. Lu committed
4755

4756 4757 4758 4759
   Note that it is possible to stop the computation of the dependence
   relation the first time we detect a CHREC_KNOWN element for a given
   subscript.  */

4760
void
4761 4762
compute_affine_dependence (struct data_dependence_relation *ddr,
			   struct loop *loop_nest)
4763 4764 4765
{
  struct data_reference *dra = DDR_A (ddr);
  struct data_reference *drb = DDR_B (ddr);
H.J. Lu committed
4766

4767 4768
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
Daniel Berlin committed
4769
      fprintf (dump_file, "(compute_affine_dependence\n");
4770 4771 4772 4773
      fprintf (dump_file, "  stmt_a: ");
      print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
      fprintf (dump_file, "  stmt_b: ");
      print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
4774
    }
4775

4776
  /* Analyze only when the dependence relation is not yet known.  */
4777
  if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4778
    {
4779 4780
      dependence_stats.num_dependence_tests++;

4781 4782
      if (access_functions_are_affine_or_constant_p (dra, loop_nest)
	  && access_functions_are_affine_or_constant_p (drb, loop_nest))
4783
	subscript_dependence_tester (ddr, loop_nest);
H.J. Lu committed
4784

4785 4786 4787 4788
      /* As a last case, if the dependence cannot be determined, or if
	 the dependence is considered too difficult to determine, answer
	 "don't know".  */
      else
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
	{
	  dependence_stats.num_dependence_undetermined++;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Data ref a:\n");
	      dump_data_reference (dump_file, dra);
	      fprintf (dump_file, "Data ref b:\n");
	      dump_data_reference (dump_file, drb);
	      fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
	    }
	  finalize_ddr_dependent (ddr, chrec_dont_know);
	}
4802
    }
H.J. Lu committed
4803

4804
  if (dump_file && (dump_flags & TDF_DETAILS))
4805 4806 4807 4808 4809 4810 4811 4812
    {
      if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
	fprintf (dump_file, ") -> no dependence\n");
      else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
	fprintf (dump_file, ") -> dependence analysis failed\n");
      else
	fprintf (dump_file, ")\n");
    }
4813 4814
}

4815 4816
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
   the data references in DATAREFS, in the LOOP_NEST.  When
4817
   COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4818 4819
   relations.  Return true when successful, i.e. data references number
   is small enough to be handled.  */
4820

4821
bool
4822 4823 4824
compute_all_dependences (vec<data_reference_p> datarefs,
			 vec<ddr_p> *dependence_relations,
			 vec<loop_p> loop_nest,
4825
			 bool compute_self_and_rr)
4826
{
4827 4828 4829
  struct data_dependence_relation *ddr;
  struct data_reference *a, *b;
  unsigned int i, j;
4830

4831
  if ((int) datarefs.length ()
4832 4833 4834 4835 4836 4837 4838
      > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
    {
      struct data_dependence_relation *ddr;

      /* Insert a single relation into dependence_relations:
	 chrec_dont_know.  */
      ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
4839
      dependence_relations->safe_push (ddr);
4840 4841 4842
      return false;
    }

4843 4844
  FOR_EACH_VEC_ELT (datarefs, i, a)
    for (j = i + 1; datarefs.iterate (j, &b); j++)
4845
      if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
4846 4847
	{
	  ddr = initialize_data_dependence_relation (a, b, loop_nest);
4848 4849 4850
	  dependence_relations->safe_push (ddr);
          if (loop_nest.exists ())
   	    compute_affine_dependence (ddr, loop_nest[0]);
4851
	}
4852

4853
  if (compute_self_and_rr)
4854
    FOR_EACH_VEC_ELT (datarefs, i, a)
4855
      {
4856
	ddr = initialize_data_dependence_relation (a, a, loop_nest);
4857 4858 4859
	dependence_relations->safe_push (ddr);
        if (loop_nest.exists ())
   	  compute_affine_dependence (ddr, loop_nest[0]);
4860
      }
4861 4862

  return true;
4863 4864
}

4865 4866
/* Describes a location of a memory reference.  */

4867
struct data_ref_loc
4868
{
4869 4870
  /* The memory reference.  */
  tree ref;
4871

4872 4873
  /* True if the memory reference is read.  */
  bool is_read;
4874 4875 4876 4877 4878

  /* True if the data reference is conditional within the containing
     statement, i.e. if it might not occur even when the statement
     is executed and runs to completion.  */
  bool is_conditional_in_stmt;
4879
};
4880 4881


4882 4883 4884
/* Stores the locations of memory references in STMT to REFERENCES.  Returns
   true if STMT clobbers memory, false otherwise.  */

4885
static bool
4886
get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
4887 4888
{
  bool clobbers_memory = false;
4889
  data_ref_loc ref;
4890
  tree op0, op1;
4891
  enum gimple_code stmt_code = gimple_code (stmt);
4892 4893

  /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4894 4895
     As we cannot model data-references to not spelled out
     accesses give up if they may occur.  */
4896 4897 4898 4899
  if (stmt_code == GIMPLE_CALL
      && !(gimple_call_flags (stmt) & ECF_CONST))
    {
      /* Allow IFN_GOMP_SIMD_LANE in their own loops.  */
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
      if (gimple_call_internal_p (stmt))
	switch (gimple_call_internal_fn (stmt))
	  {
	  case IFN_GOMP_SIMD_LANE:
	    {
	      struct loop *loop = gimple_bb (stmt)->loop_father;
	      tree uid = gimple_call_arg (stmt, 0);
	      gcc_assert (TREE_CODE (uid) == SSA_NAME);
	      if (loop == NULL
		  || loop->simduid != SSA_NAME_VAR (uid))
		clobbers_memory = true;
	      break;
	    }
	  case IFN_MASK_LOAD:
	  case IFN_MASK_STORE:
	    break;
	  default:
4917
	    clobbers_memory = true;
4918 4919
	    break;
	  }
4920 4921 4922 4923
      else
	clobbers_memory = true;
    }
  else if (stmt_code == GIMPLE_ASM
4924 4925
	   && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
	       || gimple_vuse (stmt)))
4926 4927
    clobbers_memory = true;

4928
  if (!gimple_vuse (stmt))
4929 4930
    return clobbers_memory;

4931
  if (stmt_code == GIMPLE_ASSIGN)
4932
    {
4933
      tree base;
4934 4935
      op0 = gimple_assign_lhs (stmt);
      op1 = gimple_assign_rhs1 (stmt);
H.J. Lu committed
4936

4937 4938 4939
      if (DECL_P (op1)
	  || (REFERENCE_CLASS_P (op1)
	      && (base = get_base_address (op1))
4940 4941
	      && TREE_CODE (base) != SSA_NAME
	      && !is_gimple_min_invariant (base)))
4942
	{
4943
	  ref.ref = op1;
4944
	  ref.is_read = true;
4945
	  ref.is_conditional_in_stmt = false;
4946
	  references->safe_push (ref);
4947 4948
	}
    }
4949
  else if (stmt_code == GIMPLE_CALL)
4950
    {
4951
      unsigned i, n;
4952 4953
      tree ptr, type;
      unsigned int align;
4954

4955 4956 4957 4958 4959
      ref.is_read = false;
      if (gimple_call_internal_p (stmt))
	switch (gimple_call_internal_fn (stmt))
	  {
	  case IFN_MASK_LOAD:
4960 4961
	    if (gimple_call_lhs (stmt) == NULL_TREE)
	      break;
4962
	    ref.is_read = true;
4963
	    /* FALLTHRU */
4964
	  case IFN_MASK_STORE:
4965 4966 4967 4968 4969 4970 4971 4972
	    ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
	    align = tree_to_shwi (gimple_call_arg (stmt, 1));
	    if (ref.is_read)
	      type = TREE_TYPE (gimple_call_lhs (stmt));
	    else
	      type = TREE_TYPE (gimple_call_arg (stmt, 3));
	    if (TYPE_ALIGN (type) != align)
	      type = build_aligned_type (type, align);
4973
	    ref.is_conditional_in_stmt = true;
4974 4975
	    ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
				   ptr);
4976 4977 4978 4979 4980 4981
	    references->safe_push (ref);
	    return false;
	  default:
	    break;
	  }

4982
      op0 = gimple_call_lhs (stmt);
4983
      n = gimple_call_num_args (stmt);
4984
      for (i = 0; i < n; i++)
4985
	{
4986
	  op1 = gimple_call_arg (stmt, i);
4987

4988 4989
	  if (DECL_P (op1)
	      || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
4990
	    {
4991
	      ref.ref = op1;
4992
	      ref.is_read = true;
4993
	      ref.is_conditional_in_stmt = false;
4994
	      references->safe_push (ref);
4995 4996 4997
	    }
	}
    }
4998 4999
  else
    return clobbers_memory;
5000

5001 5002 5003
  if (op0
      && (DECL_P (op0)
	  || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
5004
    {
5005
      ref.ref = op0;
5006
      ref.is_read = false;
5007
      ref.is_conditional_in_stmt = false;
5008
      references->safe_push (ref);
5009
    }
5010 5011 5012
  return clobbers_memory;
}

Aditya Kumar committed
5013 5014 5015 5016 5017 5018 5019

/* Returns true if the loop-nest has any data reference.  */

bool
loop_nest_has_data_refs (loop_p loop)
{
  basic_block *bbs = get_loop_body (loop);
5020
  auto_vec<data_ref_loc, 3> references;
Aditya Kumar committed
5021 5022 5023 5024 5025 5026 5027 5028

  for (unsigned i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];
      gimple_stmt_iterator bsi;

      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
5029
	  gimple *stmt = gsi_stmt (bsi);
Aditya Kumar committed
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	  get_references_in_stmt (stmt, &references);
	  if (references.length ())
	    {
	      free (bbs);
	      return true;
	    }
	}
    }
  free (bbs);
  return false;
}

5042
/* Stores the data references in STMT to DATAREFS.  If there is an unanalyzable
5043
   reference, returns false, otherwise returns true.  NEST is the outermost
5044
   loop of the loop nest in which the references should be analyzed.  */
5045

5046
bool
5047
find_data_references_in_stmt (struct loop *nest, gimple *stmt,
5048
			      vec<data_reference_p> *datarefs)
5049 5050
{
  unsigned i;
5051
  auto_vec<data_ref_loc, 2> references;
5052 5053 5054 5055 5056
  data_ref_loc *ref;
  bool ret = true;
  data_reference_p dr;

  if (get_references_in_stmt (stmt, &references))
5057
    return false;
5058

5059
  FOR_EACH_VEC_ELT (references, i, ref)
5060
    {
5061 5062
      dr = create_data_ref (nest ? loop_preheader_edge (nest) : NULL,
			    loop_containing_stmt (stmt), ref->ref,
5063
			    stmt, ref->is_read, ref->is_conditional_in_stmt);
5064
      gcc_assert (dr != NULL);
5065
      datarefs->safe_push (dr);
5066
    }
5067

5068 5069 5070
  return ret;
}

5071 5072 5073 5074 5075
/* Stores the data references in STMT to DATAREFS.  If there is an
   unanalyzable reference, returns false, otherwise returns true.
   NEST is the outermost loop of the loop nest in which the references
   should be instantiated, LOOP is the loop in which the references
   should be analyzed.  */
5076 5077

bool
5078
graphite_find_data_references_in_stmt (edge nest, loop_p loop, gimple *stmt,
5079
				       vec<data_reference_p> *datarefs)
5080 5081
{
  unsigned i;
5082
  auto_vec<data_ref_loc, 2> references;
5083 5084 5085 5086 5087
  data_ref_loc *ref;
  bool ret = true;
  data_reference_p dr;

  if (get_references_in_stmt (stmt, &references))
5088
    return false;
5089

5090
  FOR_EACH_VEC_ELT (references, i, ref)
5091
    {
5092 5093
      dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read,
			    ref->is_conditional_in_stmt);
5094
      gcc_assert (dr != NULL);
5095
      datarefs->safe_push (dr);
5096 5097 5098 5099 5100
    }

  return ret;
}

5101 5102
/* Search the data references in LOOP, and record the information into
   DATAREFS.  Returns chrec_dont_know when failing to analyze a
5103 5104
   difficult case, returns NULL_TREE otherwise.  */

5105
tree
5106
find_data_references_in_bb (struct loop *loop, basic_block bb,
5107
                            vec<data_reference_p> *datarefs)
5108 5109 5110 5111 5112
{
  gimple_stmt_iterator bsi;

  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
    {
5113
      gimple *stmt = gsi_stmt (bsi);
5114 5115 5116 5117 5118

      if (!find_data_references_in_stmt (loop, stmt, datarefs))
        {
          struct data_reference *res;
          res = XCNEW (struct data_reference);
5119
          datarefs->safe_push (res);
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

          return chrec_dont_know;
        }
    }

  return NULL_TREE;
}

/* Search the data references in LOOP, and record the information into
   DATAREFS.  Returns chrec_dont_know when failing to analyze a
5130
   difficult case, returns NULL_TREE otherwise.
5131

5132 5133
   TODO: This function should be made smarter so that it can handle address
   arithmetic as if they were array accesses, etc.  */
5134

5135
tree
5136
find_data_references_in_loop (struct loop *loop,
5137
			      vec<data_reference_p> *datarefs)
5138
{
5139 5140
  basic_block bb, *bbs;
  unsigned int i;
5141

5142
  bbs = get_loop_body_in_dom_order (loop);
5143 5144

  for (i = 0; i < loop->num_nodes; i++)
5145
    {
5146 5147
      bb = bbs[i];

5148 5149 5150 5151 5152
      if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
        {
          free (bbs);
          return chrec_dont_know;
        }
5153
    }
5154 5155
  free (bbs);

5156
  return NULL_TREE;
5157 5158
}

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
/* Return the alignment in bytes that DRB is guaranteed to have at all
   times.  */

unsigned int
dr_alignment (innermost_loop_behavior *drb)
{
  /* Get the alignment of BASE_ADDRESS + INIT.  */
  unsigned int alignment = drb->base_alignment;
  unsigned int misalignment = (drb->base_misalignment
			       + TREE_INT_CST_LOW (drb->init));
  if (misalignment != 0)
    alignment = MIN (alignment, misalignment & -misalignment);

  /* Cap it to the alignment of OFFSET.  */
  if (!integer_zerop (drb->offset))
    alignment = MIN (alignment, drb->offset_alignment);

  /* Cap it to the alignment of STEP.  */
  if (!integer_zerop (drb->step))
    alignment = MIN (alignment, drb->step_alignment);

  return alignment;
}

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
/* If BASE is a pointer-typed SSA name, try to find the object that it
   is based on.  Return this object X on success and store the alignment
   in bytes of BASE - &X in *ALIGNMENT_OUT.  */

static tree
get_base_for_alignment_1 (tree base, unsigned int *alignment_out)
{
  if (TREE_CODE (base) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (base)))
    return NULL_TREE;

  gimple *def = SSA_NAME_DEF_STMT (base);
  base = analyze_scalar_evolution (loop_containing_stmt (def), base);

  /* Peel chrecs and record the minimum alignment preserved by
     all steps.  */
  unsigned int alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
  while (TREE_CODE (base) == POLYNOMIAL_CHREC)
    {
      unsigned int step_alignment = highest_pow2_factor (CHREC_RIGHT (base));
      alignment = MIN (alignment, step_alignment);
      base = CHREC_LEFT (base);
    }

  /* Punt if the expression is too complicated to handle.  */
  if (tree_contains_chrecs (base, NULL) || !POINTER_TYPE_P (TREE_TYPE (base)))
    return NULL_TREE;

  /* The only useful cases are those for which a dereference folds to something
     other than an INDIRECT_REF.  */
  tree ref_type = TREE_TYPE (TREE_TYPE (base));
  tree ref = fold_indirect_ref_1 (UNKNOWN_LOCATION, ref_type, base);
  if (!ref)
    return NULL_TREE;

  /* Analyze the base to which the steps we peeled were applied.  */
  poly_int64 bitsize, bitpos, bytepos;
  machine_mode mode;
  int unsignedp, reversep, volatilep;
  tree offset;
  base = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
			      &unsignedp, &reversep, &volatilep);
  if (!base || !multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
    return NULL_TREE;

  /* Restrict the alignment to that guaranteed by the offsets.  */
  unsigned int bytepos_alignment = known_alignment (bytepos);
  if (bytepos_alignment != 0)
    alignment = MIN (alignment, bytepos_alignment);
  if (offset)
    {
      unsigned int offset_alignment = highest_pow2_factor (offset);
      alignment = MIN (alignment, offset_alignment);
    }

  *alignment_out = alignment;
  return base;
}

/* Return the object whose alignment would need to be changed in order
   to increase the alignment of ADDR.  Store the maximum achievable
   alignment in *MAX_ALIGNMENT.  */

tree
get_base_for_alignment (tree addr, unsigned int *max_alignment)
{
  tree base = get_base_for_alignment_1 (addr, max_alignment);
  if (base)
    return base;

  if (TREE_CODE (addr) == ADDR_EXPR)
    addr = TREE_OPERAND (addr, 0);
  *max_alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
  return addr;
}

5258 5259 5260
/* Recursive helper function.  */

static bool
5261
find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
{
  /* Inner loops of the nest should not contain siblings.  Example:
     when there are two consecutive loops,

     | loop_0
     |   loop_1
     |     A[{0, +, 1}_1]
     |   endloop_1
     |   loop_2
     |     A[{0, +, 1}_2]
     |   endloop_2
     | endloop_0

     the dependence relation cannot be captured by the distance
     abstraction.  */
  if (loop->next)
    return false;
5279

5280
  loop_nest->safe_push (loop);
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
  if (loop->inner)
    return find_loop_nest_1 (loop->inner, loop_nest);
  return true;
}

/* Return false when the LOOP is not well nested.  Otherwise return
   true and insert in LOOP_NEST the loops of the nest.  LOOP_NEST will
   contain the loops from the outermost to the innermost, as they will
   appear in the classic distance vector.  */

5291
bool
5292
find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
5293
{
5294
  loop_nest->safe_push (loop);
5295 5296 5297 5298
  if (loop->inner)
    return find_loop_nest_1 (loop->inner, loop_nest);
  return true;
}
5299

5300 5301
/* Returns true when the data dependences have been computed, false otherwise.
   Given a loop nest LOOP, the following vectors are returned:
H.J. Lu committed
5302 5303 5304
   DATAREFS is initialized to all the array elements contained in this loop,
   DEPENDENCE_RELATIONS contains the relations between the data references.
   Compute read-read and self relations if
5305
   COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE.  */
5306

5307
bool
H.J. Lu committed
5308
compute_data_dependences_for_loop (struct loop *loop,
5309
				   bool compute_self_and_read_read_dependences,
5310 5311 5312
				   vec<loop_p> *loop_nest,
				   vec<data_reference_p> *datarefs,
				   vec<ddr_p> *dependence_relations)
5313
{
5314
  bool res = true;
5315

5316
  memset (&dependence_stats, 0, sizeof (dependence_stats));
5317

H.J. Lu committed
5318
  /* If the loop nest is not well formed, or one of the data references
5319 5320
     is not computable, give up without spending time to compute other
     dependences.  */
5321
  if (!loop
5322
      || !find_loop_nest (loop, loop_nest)
5323 5324 5325 5326
      || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
      || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
				   compute_self_and_read_read_dependences))
    res = false;
5327 5328

  if (dump_file && (dump_flags & TDF_STATS))
5329
    {
5330 5331
      fprintf (dump_file, "Dependence tester statistics:\n");

H.J. Lu committed
5332
      fprintf (dump_file, "Number of dependence tests: %d\n",
5333
	       dependence_stats.num_dependence_tests);
H.J. Lu committed
5334
      fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
5335
	       dependence_stats.num_dependence_dependent);
H.J. Lu committed
5336
      fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
5337
	       dependence_stats.num_dependence_independent);
H.J. Lu committed
5338
      fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
5339 5340
	       dependence_stats.num_dependence_undetermined);

H.J. Lu committed
5341
      fprintf (dump_file, "Number of subscript tests: %d\n",
5342
	       dependence_stats.num_subscript_tests);
H.J. Lu committed
5343
      fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
5344
	       dependence_stats.num_subscript_undetermined);
H.J. Lu committed
5345
      fprintf (dump_file, "Number of same subscript function: %d\n",
5346 5347 5348 5349 5350 5351 5352 5353 5354
	       dependence_stats.num_same_subscript_function);

      fprintf (dump_file, "Number of ziv tests: %d\n",
	       dependence_stats.num_ziv);
      fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
	       dependence_stats.num_ziv_dependent);
      fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
	       dependence_stats.num_ziv_independent);
      fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
H.J. Lu committed
5355
	       dependence_stats.num_ziv_unimplemented);
5356

H.J. Lu committed
5357
      fprintf (dump_file, "Number of siv tests: %d\n",
5358 5359 5360 5361 5362 5363 5364 5365
	       dependence_stats.num_siv);
      fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
	       dependence_stats.num_siv_dependent);
      fprintf (dump_file, "Number of siv tests returning independent: %d\n",
	       dependence_stats.num_siv_independent);
      fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
	       dependence_stats.num_siv_unimplemented);

H.J. Lu committed
5366
      fprintf (dump_file, "Number of miv tests: %d\n",
5367 5368 5369 5370 5371 5372 5373
	       dependence_stats.num_miv);
      fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
	       dependence_stats.num_miv_dependent);
      fprintf (dump_file, "Number of miv tests returning independent: %d\n",
	       dependence_stats.num_miv_independent);
      fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
	       dependence_stats.num_miv_unimplemented);
5374 5375 5376
    }

  return res;
5377 5378
}

Daniel Berlin committed
5379 5380 5381 5382 5383 5384 5385 5386
/* Free the memory used by a data dependence relation DDR.  */

void
free_dependence_relation (struct data_dependence_relation *ddr)
{
  if (ddr == NULL)
    return;

5387
  if (DDR_SUBSCRIPTS (ddr).exists ())
5388
    free_subscripts (DDR_SUBSCRIPTS (ddr));
5389 5390
  DDR_DIST_VECTS (ddr).release ();
  DDR_DIR_VECTS (ddr).release ();
5391

Daniel Berlin committed
5392 5393 5394 5395 5396 5397
  free (ddr);
}

/* Free the memory used by the data dependence relations from
   DEPENDENCE_RELATIONS.  */

H.J. Lu committed
5398
void
5399
free_dependence_relations (vec<ddr_p> dependence_relations)
Daniel Berlin committed
5400 5401
{
  unsigned int i;
5402
  struct data_dependence_relation *ddr;
Daniel Berlin committed
5403

5404
  FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
5405
    if (ddr)
5406
      free_dependence_relation (ddr);
5407

5408
  dependence_relations.release ();
5409 5410
}

Daniel Berlin committed
5411 5412 5413
/* Free the memory used by the data references from DATAREFS.  */

void
5414
free_data_refs (vec<data_reference_p> datarefs)
Daniel Berlin committed
5415 5416
{
  unsigned int i;
5417
  struct data_reference *dr;
5418

5419
  FOR_EACH_VEC_ELT (datarefs, i, dr)
5420
    free_data_ref (dr);
5421
  datarefs.release ();
Daniel Berlin committed
5422
}
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432

/* Common routine implementing both dr_direction_indicator and
   dr_zero_step_indicator.  Return USEFUL_MIN if the indicator is known
   to be >= USEFUL_MIN and -1 if the indicator is known to be negative.
   Return the step as the indicator otherwise.  */

static tree
dr_step_indicator (struct data_reference *dr, int useful_min)
{
  tree step = DR_STEP (dr);
5433 5434
  if (!step)
    return NULL_TREE;
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
  STRIP_NOPS (step);
  /* Look for cases where the step is scaled by a positive constant
     integer, which will often be the access size.  If the multiplication
     doesn't change the sign (due to overflow effects) then we can
     test the unscaled value instead.  */
  if (TREE_CODE (step) == MULT_EXPR
      && TREE_CODE (TREE_OPERAND (step, 1)) == INTEGER_CST
      && tree_int_cst_sgn (TREE_OPERAND (step, 1)) > 0)
    {
      tree factor = TREE_OPERAND (step, 1);
      step = TREE_OPERAND (step, 0);

      /* Strip widening and truncating conversions as well as nops.  */
      if (CONVERT_EXPR_P (step)
	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (step, 0))))
	step = TREE_OPERAND (step, 0);
      tree type = TREE_TYPE (step);

      /* Get the range of step values that would not cause overflow.  */
      widest_int minv = (wi::to_widest (TYPE_MIN_VALUE (ssizetype))
			 / wi::to_widest (factor));
      widest_int maxv = (wi::to_widest (TYPE_MAX_VALUE (ssizetype))
			 / wi::to_widest (factor));

      /* Get the range of values that the unconverted step actually has.  */
      wide_int step_min, step_max;
      if (TREE_CODE (step) != SSA_NAME
	  || get_range_info (step, &step_min, &step_max) != VR_RANGE)
	{
	  step_min = wi::to_wide (TYPE_MIN_VALUE (type));
	  step_max = wi::to_wide (TYPE_MAX_VALUE (type));
	}

      /* Check whether the unconverted step has an acceptable range.  */
      signop sgn = TYPE_SIGN (type);
      if (wi::les_p (minv, widest_int::from (step_min, sgn))
	  && wi::ges_p (maxv, widest_int::from (step_max, sgn)))
	{
	  if (wi::ge_p (step_min, useful_min, sgn))
	    return ssize_int (useful_min);
	  else if (wi::lt_p (step_max, 0, sgn))
	    return ssize_int (-1);
	  else
	    return fold_convert (ssizetype, step);
	}
    }
  return DR_STEP (dr);
}

/* Return a value that is negative iff DR has a negative step.  */

tree
dr_direction_indicator (struct data_reference *dr)
{
  return dr_step_indicator (dr, 0);
}

/* Return a value that is zero iff DR has a zero step.  */

tree
dr_zero_step_indicator (struct data_reference *dr)
{
  return dr_step_indicator (dr, 1);
}

/* Return true if DR is known to have a nonnegative (but possibly zero)
   step.  */

bool
dr_known_forward_stride_p (struct data_reference *dr)
{
  tree indicator = dr_direction_indicator (dr);
  tree neg_step_val = fold_binary (LT_EXPR, boolean_type_node,
				   fold_convert (ssizetype, indicator),
				   ssize_int (0));
  return neg_step_val && integer_zerop (neg_step_val);
}