ConcurrentSkipListMap.java 112 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.*;

/**
 * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
 * The map is sorted according to the {@linkplain Comparable natural
 * ordering} of its keys, or by a {@link Comparator} provided at map
 * creation time, depending on which constructor is used.
 *
 * <p>This class implements a concurrent variant of <a
 * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
 * expected average <i>log(n)</i> time cost for the
 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
 * <tt>remove</tt> operations and their variants.  Insertion, removal,
 * update, and access operations safely execute concurrently by
 * multiple threads.  Iterators are <i>weakly consistent</i>, returning
 * elements reflecting the state of the map at some point at or since
 * the creation of the iterator.  They do <em>not</em> throw {@link
 * ConcurrentModificationException}, and may proceed concurrently with
 * other operations. Ascending key ordered views and their iterators
 * are faster than descending ones.
 *
 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
 * and its views represent snapshots of mappings at the time they were
 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
 * method. (Note however that it is possible to change mappings in the
 * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
 * <tt>replace</tt>, depending on exactly which effect you need.)
 *
 * <p>Beware that, unlike in most collections, the <tt>size</tt>
 * method is <em>not</em> a constant-time operation. Because of the
 * asynchronous nature of these maps, determining the current number
 * of elements requires a traversal of the elements.  Additionally,
 * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
 * <tt>clear</tt> are <em>not</em> guaranteed to be performed
 * atomically. For example, an iterator operating concurrently with a
 * <tt>putAll</tt> operation might view only some of the added
 * elements.
 *
 * <p>This class and its views and iterators implement all of the
 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
 * interfaces. Like most other concurrent collections, this class does
 * <em>not</em> permit the use of <tt>null</tt> keys or values because some
 * null return values cannot be reliably distinguished from the absence of
 * elements.
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @author Doug Lea
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 * @since 1.6
 */
public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
    implements ConcurrentNavigableMap<K,V>,
               Cloneable,
               java.io.Serializable {
    /*
     * This class implements a tree-like two-dimensionally linked skip
     * list in which the index levels are represented in separate
     * nodes from the base nodes holding data.  There are two reasons
     * for taking this approach instead of the usual array-based
     * structure: 1) Array based implementations seem to encounter
     * more complexity and overhead 2) We can use cheaper algorithms
     * for the heavily-traversed index lists than can be used for the
     * base lists.  Here's a picture of some of the basics for a
     * possible list with 2 levels of index:
     *
     * Head nodes          Index nodes
     * +-+    right        +-+                      +-+
     * |2|---------------->| |--------------------->| |->null
     * +-+                 +-+                      +-+
     *  | down              |                        |
     *  v                   v                        v
     * +-+            +-+  +-+       +-+            +-+       +-+
     * |1|----------->| |->| |------>| |----------->| |------>| |->null
     * +-+            +-+  +-+       +-+            +-+       +-+
     *  v              |    |         |              |         |
     * Nodes  next     v    v         v              v         v
     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
     * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
     * +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+  +-+
     *
     * The base lists use a variant of the HM linked ordered set
     * algorithm. See Tim Harris, "A pragmatic implementation of
     * non-blocking linked lists"
     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
     * Michael "High Performance Dynamic Lock-Free Hash Tables and
     * List-Based Sets"
     * http://www.research.ibm.com/people/m/michael/pubs.htm.  The
     * basic idea in these lists is to mark the "next" pointers of
     * deleted nodes when deleting to avoid conflicts with concurrent
     * insertions, and when traversing to keep track of triples
     * (predecessor, node, successor) in order to detect when and how
     * to unlink these deleted nodes.
     *
     * Rather than using mark-bits to mark list deletions (which can
     * be slow and space-intensive using AtomicMarkedReference), nodes
     * use direct CAS'able next pointers.  On deletion, instead of
     * marking a pointer, they splice in another node that can be
     * thought of as standing for a marked pointer (indicating this by
     * using otherwise impossible field values).  Using plain nodes
     * acts roughly like "boxed" implementations of marked pointers,
     * but uses new nodes only when nodes are deleted, not for every
     * link.  This requires less space and supports faster
     * traversal. Even if marked references were better supported by
     * JVMs, traversal using this technique might still be faster
     * because any search need only read ahead one more node than
     * otherwise required (to check for trailing marker) rather than
     * unmasking mark bits or whatever on each read.
     *
     * This approach maintains the essential property needed in the HM
     * algorithm of changing the next-pointer of a deleted node so
     * that any other CAS of it will fail, but implements the idea by
     * changing the pointer to point to a different node, not by
     * marking it.  While it would be possible to further squeeze
     * space by defining marker nodes not to have key/value fields, it
     * isn't worth the extra type-testing overhead.  The deletion
     * markers are rarely encountered during traversal and are
     * normally quickly garbage collected. (Note that this technique
     * would not work well in systems without garbage collection.)
     *
     * In addition to using deletion markers, the lists also use
     * nullness of value fields to indicate deletion, in a style
     * similar to typical lazy-deletion schemes.  If a node's value is
     * null, then it is considered logically deleted and ignored even
     * though it is still reachable. This maintains proper control of
     * concurrent replace vs delete operations -- an attempted replace
     * must fail if a delete beat it by nulling field, and a delete
     * must return the last non-null value held in the field. (Note:
     * Null, rather than some special marker, is used for value fields
     * here because it just so happens to mesh with the Map API
     * requirement that method get returns null if there is no
     * mapping, which allows nodes to remain concurrently readable
     * even when deleted. Using any other marker value here would be
     * messy at best.)
     *
     * Here's the sequence of events for a deletion of node n with
     * predecessor b and successor f, initially:
     *
     *        +------+       +------+      +------+
     *   ...  |   b  |------>|   n  |----->|   f  | ...
     *        +------+       +------+      +------+
     *
     * 1. CAS n's value field from non-null to null.
     *    From this point on, no public operations encountering
     *    the node consider this mapping to exist. However, other
     *    ongoing insertions and deletions might still modify
     *    n's next pointer.
     *
     * 2. CAS n's next pointer to point to a new marker node.
     *    From this point on, no other nodes can be appended to n.
     *    which avoids deletion errors in CAS-based linked lists.
     *
     *        +------+       +------+      +------+       +------+
     *   ...  |   b  |------>|   n  |----->|marker|------>|   f  | ...
     *        +------+       +------+      +------+       +------+
     *
     * 3. CAS b's next pointer over both n and its marker.
     *    From this point on, no new traversals will encounter n,
     *    and it can eventually be GCed.
     *        +------+                                    +------+
     *   ...  |   b  |----------------------------------->|   f  | ...
     *        +------+                                    +------+
     *
     * A failure at step 1 leads to simple retry due to a lost race
     * with another operation. Steps 2-3 can fail because some other
     * thread noticed during a traversal a node with null value and
     * helped out by marking and/or unlinking.  This helping-out
     * ensures that no thread can become stuck waiting for progress of
     * the deleting thread.  The use of marker nodes slightly
     * complicates helping-out code because traversals must track
     * consistent reads of up to four nodes (b, n, marker, f), not
     * just (b, n, f), although the next field of a marker is
     * immutable, and once a next field is CAS'ed to point to a
     * marker, it never again changes, so this requires less care.
     *
     * Skip lists add indexing to this scheme, so that the base-level
     * traversals start close to the locations being found, inserted
     * or deleted -- usually base level traversals only traverse a few
     * nodes. This doesn't change the basic algorithm except for the
     * need to make sure base traversals start at predecessors (here,
     * b) that are not (structurally) deleted, otherwise retrying
     * after processing the deletion.
     *
     * Index levels are maintained as lists with volatile next fields,
     * using CAS to link and unlink.  Races are allowed in index-list
     * operations that can (rarely) fail to link in a new index node
     * or delete one. (We can't do this of course for data nodes.)
     * However, even when this happens, the index lists remain sorted,
     * so correctly serve as indices.  This can impact performance,
     * but since skip lists are probabilistic anyway, the net result
     * is that under contention, the effective "p" value may be lower
     * than its nominal value. And race windows are kept small enough
     * that in practice these failures are rare, even under a lot of
     * contention.
     *
     * The fact that retries (for both base and index lists) are
     * relatively cheap due to indexing allows some minor
     * simplifications of retry logic. Traversal restarts are
     * performed after most "helping-out" CASes. This isn't always
     * strictly necessary, but the implicit backoffs tend to help
     * reduce other downstream failed CAS's enough to outweigh restart
     * cost.  This worsens the worst case, but seems to improve even
     * highly contended cases.
     *
     * Unlike most skip-list implementations, index insertion and
     * deletion here require a separate traversal pass occuring after
     * the base-level action, to add or remove index nodes.  This adds
     * to single-threaded overhead, but improves contended
     * multithreaded performance by narrowing interference windows,
     * and allows deletion to ensure that all index nodes will be made
     * unreachable upon return from a public remove operation, thus
     * avoiding unwanted garbage retention. This is more important
     * here than in some other data structures because we cannot null
     * out node fields referencing user keys since they might still be
     * read by other ongoing traversals.
     *
     * Indexing uses skip list parameters that maintain good search
     * performance while using sparser-than-usual indices: The
     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
     * that about one-quarter of the nodes have indices. Of those that
     * do, half have one level, a quarter have two, and so on (see
     * Pugh's Skip List Cookbook, sec 3.4).  The expected total space
     * requirement for a map is slightly less than for the current
     * implementation of java.util.TreeMap.
     *
     * Changing the level of the index (i.e, the height of the
     * tree-like structure) also uses CAS. The head index has initial
     * level/height of one. Creation of an index with height greater
     * than the current level adds a level to the head index by
     * CAS'ing on a new top-most head. To maintain good performance
     * after a lot of removals, deletion methods heuristically try to
     * reduce the height if the topmost levels appear to be empty.
     * This may encounter races in which it possible (but rare) to
     * reduce and "lose" a level just as it is about to contain an
     * index (that will then never be encountered). This does no
     * structural harm, and in practice appears to be a better option
     * than allowing unrestrained growth of levels.
     *
     * The code for all this is more verbose than you'd like. Most
     * operations entail locating an element (or position to insert an
     * element). The code to do this can't be nicely factored out
     * because subsequent uses require a snapshot of predecessor
     * and/or successor and/or value fields which can't be returned
     * all at once, at least not without creating yet another object
     * to hold them -- creating such little objects is an especially
     * bad idea for basic internal search operations because it adds
     * to GC overhead.  (This is one of the few times I've wished Java
     * had macros.) Instead, some traversal code is interleaved within
     * insertion and removal operations.  The control logic to handle
     * all the retry conditions is sometimes twisty. Most search is
     * broken into 2 parts. findPredecessor() searches index nodes
     * only, returning a base-level predecessor of the key. findNode()
     * finishes out the base-level search. Even with this factoring,
     * there is a fair amount of near-duplication of code to handle
     * variants.
     *
     * For explanation of algorithms sharing at least a couple of
     * features with this one, see Mikhail Fomitchev's thesis
     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
     * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
     * thesis (http://www.cs.chalmers.se/~phs/).
     *
     * Given the use of tree-like index nodes, you might wonder why
     * this doesn't use some kind of search tree instead, which would
     * support somewhat faster search operations. The reason is that
     * there are no known efficient lock-free insertion and deletion
     * algorithms for search trees. The immutability of the "down"
     * links of index nodes (as opposed to mutable "left" fields in
     * true trees) makes this tractable using only CAS operations.
     *
     * Notation guide for local variables
     * Node:         b, n, f    for  predecessor, node, successor
     * Index:        q, r, d    for index node, right, down.
     *               t          for another index node
     * Head:         h
     * Levels:       j
     * Keys:         k, key
     * Values:       v, value
     * Comparisons:  c
     */

    private static final long serialVersionUID = -8627078645895051609L;

    /**
     * Generates the initial random seed for the cheaper per-instance
     * random number generators used in randomLevel.
     */
    private static final Random seedGenerator = new Random();

    /**
     * Special value used to identify base-level header
     */
    private static final Object BASE_HEADER = new Object();

    /**
     * The topmost head index of the skiplist.
     */
    private transient volatile HeadIndex<K,V> head;

    /**
     * The comparator used to maintain order in this map, or null
     * if using natural ordering.
     * @serial
     */
    private final Comparator<? super K> comparator;

    /**
     * Seed for simple random number generator.  Not volatile since it
     * doesn't matter too much if different threads don't see updates.
     */
    private transient int randomSeed;

    /** Lazily initialized key set */
    private transient KeySet keySet;
    /** Lazily initialized entry set */
    private transient EntrySet entrySet;
    /** Lazily initialized values collection */
    private transient Values values;
    /** Lazily initialized descending key set */
    private transient ConcurrentNavigableMap<K,V> descendingMap;

    /**
     * Initializes or resets state. Needed by constructors, clone,
     * clear, readObject. and ConcurrentSkipListSet.clone.
     * (Note that comparator must be separately initialized.)
     */
    final void initialize() {
        keySet = null;
        entrySet = null;
        values = null;
        descendingMap = null;
        randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
        head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
                                  null, null, 1);
    }

    /** Updater for casHead */
    private static final
        AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
        headUpdater = AtomicReferenceFieldUpdater.newUpdater
        (ConcurrentSkipListMap.class, HeadIndex.class, "head");

    /**
     * compareAndSet head node
     */
    private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
        return headUpdater.compareAndSet(this, cmp, val);
    }

    /* ---------------- Nodes -------------- */

    /**
     * Nodes hold keys and values, and are singly linked in sorted
     * order, possibly with some intervening marker nodes. The list is
     * headed by a dummy node accessible as head.node. The value field
     * is declared only as Object because it takes special non-V
     * values for marker and header nodes.
     */
    static final class Node<K,V> {
        final K key;
        volatile Object value;
        volatile Node<K,V> next;

        /**
         * Creates a new regular node.
         */
        Node(K key, Object value, Node<K,V> next) {
            this.key = key;
            this.value = value;
            this.next = next;
        }

        /**
         * Creates a new marker node. A marker is distinguished by
         * having its value field point to itself.  Marker nodes also
         * have null keys, a fact that is exploited in a few places,
         * but this doesn't distinguish markers from the base-level
         * header node (head.node), which also has a null key.
         */
        Node(Node<K,V> next) {
            this.key = null;
            this.value = this;
            this.next = next;
        }

        /** Updater for casNext */
        static final AtomicReferenceFieldUpdater<Node, Node>
            nextUpdater = AtomicReferenceFieldUpdater.newUpdater
            (Node.class, Node.class, "next");

        /** Updater for casValue */
        static final AtomicReferenceFieldUpdater<Node, Object>
            valueUpdater = AtomicReferenceFieldUpdater.newUpdater
            (Node.class, Object.class, "value");

        /**
         * compareAndSet value field
         */
        boolean casValue(Object cmp, Object val) {
            return valueUpdater.compareAndSet(this, cmp, val);
        }

        /**
         * compareAndSet next field
         */
        boolean casNext(Node<K,V> cmp, Node<K,V> val) {
            return nextUpdater.compareAndSet(this, cmp, val);
        }

        /**
         * Returns true if this node is a marker. This method isn't
         * actually called in any current code checking for markers
         * because callers will have already read value field and need
         * to use that read (not another done here) and so directly
         * test if value points to node.
         * @param n a possibly null reference to a node
         * @return true if this node is a marker node
         */
        boolean isMarker() {
            return value == this;
        }

        /**
         * Returns true if this node is the header of base-level list.
         * @return true if this node is header node
         */
        boolean isBaseHeader() {
            return value == BASE_HEADER;
        }

        /**
         * Tries to append a deletion marker to this node.
         * @param f the assumed current successor of this node
         * @return true if successful
         */
        boolean appendMarker(Node<K,V> f) {
            return casNext(f, new Node<K,V>(f));
        }

        /**
         * Helps out a deletion by appending marker or unlinking from
         * predecessor. This is called during traversals when value
         * field seen to be null.
         * @param b predecessor
         * @param f successor
         */
        void helpDelete(Node<K,V> b, Node<K,V> f) {
            /*
             * Rechecking links and then doing only one of the
             * help-out stages per call tends to minimize CAS
             * interference among helping threads.
             */
            if (f == next && this == b.next) {
                if (f == null || f.value != f) // not already marked
                    appendMarker(f);
                else
                    b.casNext(this, f.next);
            }
        }

        /**
         * Returns value if this node contains a valid key-value pair,
         * else null.
         * @return this node's value if it isn't a marker or header or
         * is deleted, else null.
         */
        V getValidValue() {
            Object v = value;
            if (v == this || v == BASE_HEADER)
                return null;
            return (V)v;
        }

        /**
         * Creates and returns a new SimpleImmutableEntry holding current
         * mapping if this node holds a valid value, else null.
         * @return new entry or null
         */
        AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
            V v = getValidValue();
            if (v == null)
                return null;
            return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
        }
    }

    /* ---------------- Indexing -------------- */

    /**
     * Index nodes represent the levels of the skip list.  Note that
     * even though both Nodes and Indexes have forward-pointing
     * fields, they have different types and are handled in different
     * ways, that can't nicely be captured by placing field in a
     * shared abstract class.
     */
    static class Index<K,V> {
        final Node<K,V> node;
        final Index<K,V> down;
        volatile Index<K,V> right;

        /**
         * Creates index node with given values.
         */
        Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
            this.node = node;
            this.down = down;
            this.right = right;
        }

        /** Updater for casRight */
        static final AtomicReferenceFieldUpdater<Index, Index>
            rightUpdater = AtomicReferenceFieldUpdater.newUpdater
            (Index.class, Index.class, "right");

        /**
         * compareAndSet right field
         */
        final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
            return rightUpdater.compareAndSet(this, cmp, val);
        }

        /**
         * Returns true if the node this indexes has been deleted.
         * @return true if indexed node is known to be deleted
         */
        final boolean indexesDeletedNode() {
            return node.value == null;
        }

        /**
         * Tries to CAS newSucc as successor.  To minimize races with
         * unlink that may lose this index node, if the node being
         * indexed is known to be deleted, it doesn't try to link in.
         * @param succ the expected current successor
         * @param newSucc the new successor
         * @return true if successful
         */
        final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
            Node<K,V> n = node;
            newSucc.right = succ;
            return n.value != null && casRight(succ, newSucc);
        }

        /**
         * Tries to CAS right field to skip over apparent successor
         * succ.  Fails (forcing a retraversal by caller) if this node
         * is known to be deleted.
         * @param succ the expected current successor
         * @return true if successful
         */
        final boolean unlink(Index<K,V> succ) {
            return !indexesDeletedNode() && casRight(succ, succ.right);
        }
    }

    /* ---------------- Head nodes -------------- */

    /**
     * Nodes heading each level keep track of their level.
     */
    static final class HeadIndex<K,V> extends Index<K,V> {
        final int level;
        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
            super(node, down, right);
            this.level = level;
        }
    }

    /* ---------------- Comparison utilities -------------- */

    /**
     * Represents a key with a comparator as a Comparable.
     *
     * Because most sorted collections seem to use natural ordering on
     * Comparables (Strings, Integers, etc), most internal methods are
     * geared to use them. This is generally faster than checking
     * per-comparison whether to use comparator or comparable because
     * it doesn't require a (Comparable) cast for each comparison.
     * (Optimizers can only sometimes remove such redundant checks
     * themselves.) When Comparators are used,
     * ComparableUsingComparators are created so that they act in the
     * same way as natural orderings. This penalizes use of
     * Comparators vs Comparables, which seems like the right
     * tradeoff.
     */
    static final class ComparableUsingComparator<K> implements Comparable<K> {
        final K actualKey;
        final Comparator<? super K> cmp;
        ComparableUsingComparator(K key, Comparator<? super K> cmp) {
            this.actualKey = key;
            this.cmp = cmp;
        }
        public int compareTo(K k2) {
            return cmp.compare(actualKey, k2);
        }
    }

    /**
     * If using comparator, return a ComparableUsingComparator, else
     * cast key as Comparable, which may cause ClassCastException,
     * which is propagated back to caller.
     */
    private Comparable<? super K> comparable(Object key) throws ClassCastException {
        if (key == null)
            throw new NullPointerException();
        if (comparator != null)
            return new ComparableUsingComparator<K>((K)key, comparator);
        else
            return (Comparable<? super K>)key;
    }

    /**
     * Compares using comparator or natural ordering. Used when the
     * ComparableUsingComparator approach doesn't apply.
     */
    int compare(K k1, K k2) throws ClassCastException {
        Comparator<? super K> cmp = comparator;
        if (cmp != null)
            return cmp.compare(k1, k2);
        else
            return ((Comparable<? super K>)k1).compareTo(k2);
    }

    /**
     * Returns true if given key greater than or equal to least and
     * strictly less than fence, bypassing either test if least or
     * fence are null. Needed mainly in submap operations.
     */
    boolean inHalfOpenRange(K key, K least, K fence) {
        if (key == null)
            throw new NullPointerException();
        return ((least == null || compare(key, least) >= 0) &&
                (fence == null || compare(key, fence) <  0));
    }

    /**
     * Returns true if given key greater than or equal to least and less
     * or equal to fence. Needed mainly in submap operations.
     */
    boolean inOpenRange(K key, K least, K fence) {
        if (key == null)
            throw new NullPointerException();
        return ((least == null || compare(key, least) >= 0) &&
                (fence == null || compare(key, fence) <= 0));
    }

    /* ---------------- Traversal -------------- */

    /**
     * Returns a base-level node with key strictly less than given key,
     * or the base-level header if there is no such node.  Also
     * unlinks indexes to deleted nodes found along the way.  Callers
     * rely on this side-effect of clearing indices to deleted nodes.
     * @param key the key
     * @return a predecessor of key
     */
    private Node<K,V> findPredecessor(Comparable<? super K> key) {
        if (key == null)
            throw new NullPointerException(); // don't postpone errors
        for (;;) {
            Index<K,V> q = head;
            Index<K,V> r = q.right;
            for (;;) {
                if (r != null) {
                    Node<K,V> n = r.node;
                    K k = n.key;
                    if (n.value == null) {
                        if (!q.unlink(r))
                            break;           // restart
                        r = q.right;         // reread r
                        continue;
                    }
                    if (key.compareTo(k) > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }
                Index<K,V> d = q.down;
                if (d != null) {
                    q = d;
                    r = d.right;
                } else
                    return q.node;
            }
        }
    }

    /**
     * Returns node holding key or null if no such, clearing out any
     * deleted nodes seen along the way.  Repeatedly traverses at
     * base-level looking for key starting at predecessor returned
     * from findPredecessor, processing base-level deletions as
     * encountered. Some callers rely on this side-effect of clearing
     * deleted nodes.
     *
     * Restarts occur, at traversal step centered on node n, if:
     *
     *   (1) After reading n's next field, n is no longer assumed
     *       predecessor b's current successor, which means that
     *       we don't have a consistent 3-node snapshot and so cannot
     *       unlink any subsequent deleted nodes encountered.
     *
     *   (2) n's value field is null, indicating n is deleted, in
     *       which case we help out an ongoing structural deletion
     *       before retrying.  Even though there are cases where such
     *       unlinking doesn't require restart, they aren't sorted out
     *       here because doing so would not usually outweigh cost of
     *       restarting.
     *
     *   (3) n is a marker or n's predecessor's value field is null,
     *       indicating (among other possibilities) that
     *       findPredecessor returned a deleted node. We can't unlink
     *       the node because we don't know its predecessor, so rely
     *       on another call to findPredecessor to notice and return
     *       some earlier predecessor, which it will do. This check is
     *       only strictly needed at beginning of loop, (and the
     *       b.value check isn't strictly needed at all) but is done
     *       each iteration to help avoid contention with other
     *       threads by callers that will fail to be able to change
     *       links, and so will retry anyway.
     *
     * The traversal loops in doPut, doRemove, and findNear all
     * include the same three kinds of checks. And specialized
     * versions appear in findFirst, and findLast and their
     * variants. They can't easily share code because each uses the
     * reads of fields held in locals occurring in the orders they
     * were performed.
     *
     * @param key the key
     * @return node holding key, or null if no such
     */
    private Node<K,V> findNode(Comparable<? super K> key) {
        for (;;) {
            Node<K,V> b = findPredecessor(key);
            Node<K,V> n = b.next;
            for (;;) {
                if (n == null)
                    return null;
                Node<K,V> f = n.next;
                if (n != b.next)                // inconsistent read
                    break;
                Object v = n.value;
                if (v == null) {                // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (v == n || b.value == null)  // b is deleted
                    break;
                int c = key.compareTo(n.key);
                if (c == 0)
                    return n;
                if (c < 0)
                    return null;
                b = n;
                n = f;
            }
        }
    }

    /**
     * Specialized variant of findNode to perform Map.get. Does a weak
     * traversal, not bothering to fix any deleted index nodes,
     * returning early if it happens to see key in index, and passing
     * over any deleted base nodes, falling back to getUsingFindNode
     * only if it would otherwise return value from an ongoing
     * deletion. Also uses "bound" to eliminate need for some
     * comparisons (see Pugh Cookbook). Also folds uses of null checks
     * and node-skipping because markers have null keys.
     * @param okey the key
     * @return the value, or null if absent
     */
    private V doGet(Object okey) {
        Comparable<? super K> key = comparable(okey);
        Node<K,V> bound = null;
        Index<K,V> q = head;
        Index<K,V> r = q.right;
        Node<K,V> n;
        K k;
        int c;
        for (;;) {
            Index<K,V> d;
            // Traverse rights
            if (r != null && (n = r.node) != bound && (k = n.key) != null) {
                if ((c = key.compareTo(k)) > 0) {
                    q = r;
                    r = r.right;
                    continue;
                } else if (c == 0) {
                    Object v = n.value;
                    return (v != null)? (V)v : getUsingFindNode(key);
                } else
                    bound = n;
            }

            // Traverse down
            if ((d = q.down) != null) {
                q = d;
                r = d.right;
            } else
                break;
        }

        // Traverse nexts
        for (n = q.node.next;  n != null; n = n.next) {
            if ((k = n.key) != null) {
                if ((c = key.compareTo(k)) == 0) {
                    Object v = n.value;
                    return (v != null)? (V)v : getUsingFindNode(key);
                } else if (c < 0)
                    break;
            }
        }
        return null;
    }

    /**
     * Performs map.get via findNode.  Used as a backup if doGet
     * encounters an in-progress deletion.
     * @param key the key
     * @return the value, or null if absent
     */
    private V getUsingFindNode(Comparable<? super K> key) {
        /*
         * Loop needed here and elsewhere in case value field goes
         * null just as it is about to be returned, in which case we
         * lost a race with a deletion, so must retry.
         */
        for (;;) {
            Node<K,V> n = findNode(key);
            if (n == null)
                return null;
            Object v = n.value;
            if (v != null)
                return (V)v;
        }
    }

    /* ---------------- Insertion -------------- */

    /**
     * Main insertion method.  Adds element if not present, or
     * replaces value if present and onlyIfAbsent is false.
     * @param kkey the key
     * @param value  the value that must be associated with key
     * @param onlyIfAbsent if should not insert if already present
     * @return the old value, or null if newly inserted
     */
    private V doPut(K kkey, V value, boolean onlyIfAbsent) {
        Comparable<? super K> key = comparable(kkey);
        for (;;) {
            Node<K,V> b = findPredecessor(key);
            Node<K,V> n = b.next;
            for (;;) {
                if (n != null) {
                    Node<K,V> f = n.next;
                    if (n != b.next)               // inconsistent read
869
                        break;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
                    Object v = n.value;
                    if (v == null) {               // n is deleted
                        n.helpDelete(b, f);
                        break;
                    }
                    if (v == n || b.value == null) // b is deleted
                        break;
                    int c = key.compareTo(n.key);
                    if (c > 0) {
                        b = n;
                        n = f;
                        continue;
                    }
                    if (c == 0) {
                        if (onlyIfAbsent || n.casValue(v, value))
                            return (V)v;
                        else
                            break; // restart if lost race to replace value
                    }
                    // else c < 0; fall through
                }

                Node<K,V> z = new Node<K,V>(kkey, value, n);
                if (!b.casNext(n, z))
                    break;         // restart if lost race to append to b
                int level = randomLevel();
                if (level > 0)
                    insertIndex(z, level);
                return null;
            }
        }
    }

    /**
     * Returns a random level for inserting a new node.
     * Hardwired to k=1, p=0.5, max 31 (see above and
     * Pugh's "Skip List Cookbook", sec 3.4).
     *
     * This uses the simplest of the generators described in George
     * Marsaglia's "Xorshift RNGs" paper.  This is not a high-quality
     * generator but is acceptable here.
     */
    private int randomLevel() {
        int x = randomSeed;
        x ^= x << 13;
        x ^= x >>> 17;
        randomSeed = x ^= x << 5;
        if ((x & 0x8001) != 0) // test highest and lowest bits
            return 0;
        int level = 1;
        while (((x >>>= 1) & 1) != 0) ++level;
        return level;
    }

    /**
     * Creates and adds index nodes for the given node.
     * @param z the node
     * @param level the level of the index
     */
    private void insertIndex(Node<K,V> z, int level) {
        HeadIndex<K,V> h = head;
        int max = h.level;

        if (level <= max) {
            Index<K,V> idx = null;
            for (int i = 1; i <= level; ++i)
                idx = new Index<K,V>(z, idx, null);
            addIndex(idx, h, level);

        } else { // Add a new level
            /*
             * To reduce interference by other threads checking for
             * empty levels in tryReduceLevel, new levels are added
             * with initialized right pointers. Which in turn requires
             * keeping levels in an array to access them while
             * creating new head index nodes from the opposite
             * direction.
             */
            level = max + 1;
            Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
            Index<K,V> idx = null;
            for (int i = 1; i <= level; ++i)
                idxs[i] = idx = new Index<K,V>(z, idx, null);

            HeadIndex<K,V> oldh;
            int k;
            for (;;) {
                oldh = head;
                int oldLevel = oldh.level;
                if (level <= oldLevel) { // lost race to add level
                    k = level;
                    break;
                }
                HeadIndex<K,V> newh = oldh;
                Node<K,V> oldbase = oldh.node;
                for (int j = oldLevel+1; j <= level; ++j)
                    newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
                if (casHead(oldh, newh)) {
                    k = oldLevel;
                    break;
                }
            }
            addIndex(idxs[k], oldh, k);
        }
    }

    /**
     * Adds given index nodes from given level down to 1.
     * @param idx the topmost index node being inserted
     * @param h the value of head to use to insert. This must be
     * snapshotted by callers to provide correct insertion level
     * @param indexLevel the level of the index
     */
    private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
        // Track next level to insert in case of retries
        int insertionLevel = indexLevel;
        Comparable<? super K> key = comparable(idx.node.key);
        if (key == null) throw new NullPointerException();

        // Similar to findPredecessor, but adding index nodes along
        // path to key.
        for (;;) {
            int j = h.level;
            Index<K,V> q = h;
            Index<K,V> r = q.right;
            Index<K,V> t = idx;
            for (;;) {
                if (r != null) {
                    Node<K,V> n = r.node;
                    // compare before deletion check avoids needing recheck
                    int c = key.compareTo(n.key);
                    if (n.value == null) {
                        if (!q.unlink(r))
                            break;
                        r = q.right;
                        continue;
                    }
                    if (c > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }

                if (j == insertionLevel) {
                    // Don't insert index if node already deleted
                    if (t.indexesDeletedNode()) {
                        findNode(key); // cleans up
                        return;
                    }
                    if (!q.link(r, t))
                        break; // restart
                    if (--insertionLevel == 0) {
                        // need final deletion check before return
                        if (t.indexesDeletedNode())
                            findNode(key);
                        return;
                    }
                }

                if (--j >= insertionLevel && j < indexLevel)
                    t = t.down;
                q = q.down;
                r = q.right;
            }
        }
    }

    /* ---------------- Deletion -------------- */

    /**
     * Main deletion method. Locates node, nulls value, appends a
     * deletion marker, unlinks predecessor, removes associated index
     * nodes, and possibly reduces head index level.
     *
     * Index nodes are cleared out simply by calling findPredecessor.
     * which unlinks indexes to deleted nodes found along path to key,
     * which will include the indexes to this node.  This is done
     * unconditionally. We can't check beforehand whether there are
     * index nodes because it might be the case that some or all
     * indexes hadn't been inserted yet for this node during initial
     * search for it, and we'd like to ensure lack of garbage
     * retention, so must call to be sure.
     *
     * @param okey the key
     * @param value if non-null, the value that must be
     * associated with key
     * @return the node, or null if not found
     */
    final V doRemove(Object okey, Object value) {
        Comparable<? super K> key = comparable(okey);
        for (;;) {
            Node<K,V> b = findPredecessor(key);
            Node<K,V> n = b.next;
            for (;;) {
                if (n == null)
                    return null;
                Node<K,V> f = n.next;
                if (n != b.next)                    // inconsistent read
                    break;
                Object v = n.value;
                if (v == null) {                    // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (v == n || b.value == null)      // b is deleted
                    break;
                int c = key.compareTo(n.key);
                if (c < 0)
                    return null;
                if (c > 0) {
                    b = n;
                    n = f;
                    continue;
                }
                if (value != null && !value.equals(v))
                    return null;
                if (!n.casValue(v, null))
                    break;
                if (!n.appendMarker(f) || !b.casNext(n, f))
                    findNode(key);                  // Retry via findNode
                else {
                    findPredecessor(key);           // Clean index
                    if (head.right == null)
                        tryReduceLevel();
                }
                return (V)v;
            }
        }
    }

    /**
     * Possibly reduce head level if it has no nodes.  This method can
     * (rarely) make mistakes, in which case levels can disappear even
     * though they are about to contain index nodes. This impacts
     * performance, not correctness.  To minimize mistakes as well as
     * to reduce hysteresis, the level is reduced by one only if the
     * topmost three levels look empty. Also, if the removed level
     * looks non-empty after CAS, we try to change it back quick
     * before anyone notices our mistake! (This trick works pretty
     * well because this method will practically never make mistakes
     * unless current thread stalls immediately before first CAS, in
     * which case it is very unlikely to stall again immediately
     * afterwards, so will recover.)
     *
     * We put up with all this rather than just let levels grow
     * because otherwise, even a small map that has undergone a large
     * number of insertions and removals will have a lot of levels,
     * slowing down access more than would an occasional unwanted
     * reduction.
     */
    private void tryReduceLevel() {
        HeadIndex<K,V> h = head;
        HeadIndex<K,V> d;
        HeadIndex<K,V> e;
        if (h.level > 3 &&
            (d = (HeadIndex<K,V>)h.down) != null &&
            (e = (HeadIndex<K,V>)d.down) != null &&
            e.right == null &&
            d.right == null &&
            h.right == null &&
            casHead(h, d) && // try to set
            h.right != null) // recheck
            casHead(d, h);   // try to backout
    }

    /* ---------------- Finding and removing first element -------------- */

    /**
     * Specialized variant of findNode to get first valid node.
     * @return first node or null if empty
     */
    Node<K,V> findFirst() {
        for (;;) {
            Node<K,V> b = head.node;
            Node<K,V> n = b.next;
            if (n == null)
                return null;
            if (n.value != null)
                return n;
            n.helpDelete(b, n.next);
        }
    }

    /**
     * Removes first entry; returns its snapshot.
     * @return null if empty, else snapshot of first entry
     */
    Map.Entry<K,V> doRemoveFirstEntry() {
        for (;;) {
            Node<K,V> b = head.node;
            Node<K,V> n = b.next;
            if (n == null)
                return null;
            Node<K,V> f = n.next;
            if (n != b.next)
                continue;
            Object v = n.value;
            if (v == null) {
                n.helpDelete(b, f);
                continue;
            }
            if (!n.casValue(v, null))
                continue;
            if (!n.appendMarker(f) || !b.casNext(n, f))
                findFirst(); // retry
            clearIndexToFirst();
            return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1178
        }
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    }

    /**
     * Clears out index nodes associated with deleted first entry.
     */
    private void clearIndexToFirst() {
        for (;;) {
            Index<K,V> q = head;
            for (;;) {
                Index<K,V> r = q.right;
                if (r != null && r.indexesDeletedNode() && !q.unlink(r))
                    break;
                if ((q = q.down) == null) {
                    if (head.right == null)
                        tryReduceLevel();
                    return;
                }
            }
        }
    }


    /* ---------------- Finding and removing last element -------------- */

    /**
     * Specialized version of find to get last valid node.
     * @return last node or null if empty
     */
    Node<K,V> findLast() {
        /*
         * findPredecessor can't be used to traverse index level
         * because this doesn't use comparisons.  So traversals of
         * both levels are folded together.
         */
        Index<K,V> q = head;
        for (;;) {
            Index<K,V> d, r;
            if ((r = q.right) != null) {
                if (r.indexesDeletedNode()) {
                    q.unlink(r);
                    q = head; // restart
                }
                else
                    q = r;
            } else if ((d = q.down) != null) {
                q = d;
            } else {
                Node<K,V> b = q.node;
                Node<K,V> n = b.next;
                for (;;) {
                    if (n == null)
                        return (b.isBaseHeader())? null : b;
                    Node<K,V> f = n.next;            // inconsistent read
                    if (n != b.next)
                        break;
                    Object v = n.value;
                    if (v == null) {                 // n is deleted
                        n.helpDelete(b, f);
                        break;
                    }
                    if (v == n || b.value == null)   // b is deleted
                        break;
                    b = n;
                    n = f;
                }
                q = head; // restart
            }
        }
    }

    /**
     * Specialized variant of findPredecessor to get predecessor of last
     * valid node.  Needed when removing the last entry.  It is possible
     * that all successors of returned node will have been deleted upon
     * return, in which case this method can be retried.
     * @return likely predecessor of last node
     */
    private Node<K,V> findPredecessorOfLast() {
        for (;;) {
            Index<K,V> q = head;
            for (;;) {
                Index<K,V> d, r;
                if ((r = q.right) != null) {
                    if (r.indexesDeletedNode()) {
                        q.unlink(r);
                        break;    // must restart
                    }
                    // proceed as far across as possible without overshooting
                    if (r.node.next != null) {
                        q = r;
                        continue;
                    }
                }
                if ((d = q.down) != null)
                    q = d;
                else
                    return q.node;
            }
        }
    }

    /**
     * Removes last entry; returns its snapshot.
     * Specialized variant of doRemove.
     * @return null if empty, else snapshot of last entry
     */
    Map.Entry<K,V> doRemoveLastEntry() {
        for (;;) {
            Node<K,V> b = findPredecessorOfLast();
            Node<K,V> n = b.next;
            if (n == null) {
                if (b.isBaseHeader())               // empty
                    return null;
                else
                    continue; // all b's successors are deleted; retry
            }
            for (;;) {
                Node<K,V> f = n.next;
                if (n != b.next)                    // inconsistent read
                    break;
                Object v = n.value;
                if (v == null) {                    // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (v == n || b.value == null)      // b is deleted
                    break;
                if (f != null) {
                    b = n;
                    n = f;
                    continue;
                }
                if (!n.casValue(v, null))
                    break;
                K key = n.key;
                Comparable<? super K> ck = comparable(key);
                if (!n.appendMarker(f) || !b.casNext(n, f))
                    findNode(ck);                  // Retry via findNode
                else {
                    findPredecessor(ck);           // Clean index
                    if (head.right == null)
                        tryReduceLevel();
                }
                return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
            }
        }
    }

    /* ---------------- Relational operations -------------- */

    // Control values OR'ed as arguments to findNear

    private static final int EQ = 1;
    private static final int LT = 2;
    private static final int GT = 0; // Actually checked as !LT

    /**
     * Utility for ceiling, floor, lower, higher methods.
     * @param kkey the key
     * @param rel the relation -- OR'ed combination of EQ, LT, GT
     * @return nearest node fitting relation, or null if no such
     */
    Node<K,V> findNear(K kkey, int rel) {
        Comparable<? super K> key = comparable(kkey);
        for (;;) {
            Node<K,V> b = findPredecessor(key);
            Node<K,V> n = b.next;
            for (;;) {
                if (n == null)
                    return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
                Node<K,V> f = n.next;
                if (n != b.next)                  // inconsistent read
                    break;
                Object v = n.value;
                if (v == null) {                  // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (v == n || b.value == null)    // b is deleted
                    break;
                int c = key.compareTo(n.key);
                if ((c == 0 && (rel & EQ) != 0) ||
                    (c <  0 && (rel & LT) == 0))
                    return n;
                if ( c <= 0 && (rel & LT) != 0)
                    return (b.isBaseHeader())? null : b;
                b = n;
                n = f;
            }
        }
    }

    /**
     * Returns SimpleImmutableEntry for results of findNear.
     * @param key the key
     * @param rel the relation -- OR'ed combination of EQ, LT, GT
     * @return Entry fitting relation, or null if no such
     */
    AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
        for (;;) {
            Node<K,V> n = findNear(key, rel);
            if (n == null)
                return null;
            AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
            if (e != null)
                return e;
        }
    }


    /* ---------------- Constructors -------------- */

    /**
     * Constructs a new, empty map, sorted according to the
     * {@linkplain Comparable natural ordering} of the keys.
     */
    public ConcurrentSkipListMap() {
        this.comparator = null;
        initialize();
    }

    /**
     * Constructs a new, empty map, sorted according to the specified
     * comparator.
     *
     * @param comparator the comparator that will be used to order this map.
     *        If <tt>null</tt>, the {@linkplain Comparable natural
     *        ordering} of the keys will be used.
     */
    public ConcurrentSkipListMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
        initialize();
    }

    /**
     * Constructs a new map containing the same mappings as the given map,
     * sorted according to the {@linkplain Comparable natural ordering} of
     * the keys.
     *
     * @param  m the map whose mappings are to be placed in this map
     * @throws ClassCastException if the keys in <tt>m</tt> are not
     *         {@link Comparable}, or are not mutually comparable
     * @throws NullPointerException if the specified map or any of its keys
     *         or values are null
     */
    public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
        this.comparator = null;
        initialize();
        putAll(m);
    }

    /**
     * Constructs a new map containing the same mappings and using the
     * same ordering as the specified sorted map.
     *
     * @param m the sorted map whose mappings are to be placed in this
     *        map, and whose comparator is to be used to sort this map
     * @throws NullPointerException if the specified sorted map or any of
     *         its keys or values are null
     */
    public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
        this.comparator = m.comparator();
        initialize();
        buildFromSorted(m);
    }

    /**
     * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt>
     * instance. (The keys and values themselves are not cloned.)
     *
     * @return a shallow copy of this map
     */
    public ConcurrentSkipListMap<K,V> clone() {
        ConcurrentSkipListMap<K,V> clone = null;
        try {
            clone = (ConcurrentSkipListMap<K,V>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError();
        }

        clone.initialize();
        clone.buildFromSorted(this);
        return clone;
    }

    /**
     * Streamlined bulk insertion to initialize from elements of
     * given sorted map.  Call only from constructor or clone
     * method.
     */
    private void buildFromSorted(SortedMap<K, ? extends V> map) {
        if (map == null)
            throw new NullPointerException();

        HeadIndex<K,V> h = head;
        Node<K,V> basepred = h.node;

        // Track the current rightmost node at each level. Uses an
        // ArrayList to avoid committing to initial or maximum level.
        ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();

        // initialize
        for (int i = 0; i <= h.level; ++i)
            preds.add(null);
        Index<K,V> q = h;
        for (int i = h.level; i > 0; --i) {
            preds.set(i, q);
            q = q.down;
        }

        Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
            map.entrySet().iterator();
        while (it.hasNext()) {
            Map.Entry<? extends K, ? extends V> e = it.next();
            int j = randomLevel();
            if (j > h.level) j = h.level + 1;
            K k = e.getKey();
            V v = e.getValue();
            if (k == null || v == null)
                throw new NullPointerException();
            Node<K,V> z = new Node<K,V>(k, v, null);
            basepred.next = z;
            basepred = z;
            if (j > 0) {
                Index<K,V> idx = null;
                for (int i = 1; i <= j; ++i) {
                    idx = new Index<K,V>(z, idx, null);
                    if (i > h.level)
                        h = new HeadIndex<K,V>(h.node, h, idx, i);

                    if (i < preds.size()) {
                        preds.get(i).right = idx;
                        preds.set(i, idx);
                    } else
                        preds.add(idx);
                }
            }
        }
        head = h;
    }

    /* ---------------- Serialization -------------- */

    /**
     * Save the state of this map to a stream.
     *
     * @serialData The key (Object) and value (Object) for each
     * key-value mapping represented by the map, followed by
     * <tt>null</tt>. The key-value mappings are emitted in key-order
     * (as determined by the Comparator, or by the keys' natural
     * ordering if no Comparator).
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out the Comparator and any hidden stuff
        s.defaultWriteObject();

        // Write out keys and values (alternating)
        for (Node<K,V> n = findFirst(); n != null; n = n.next) {
            V v = n.getValidValue();
            if (v != null) {
                s.writeObject(n.key);
                s.writeObject(v);
            }
        }
        s.writeObject(null);
    }

    /**
     * Reconstitute the map from a stream.
     */
    private void readObject(final java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in the Comparator and any hidden stuff
        s.defaultReadObject();
        // Reset transients
        initialize();

        /*
         * This is nearly identical to buildFromSorted, but is
         * distinct because readObject calls can't be nicely adapted
         * as the kind of iterator needed by buildFromSorted. (They
         * can be, but doing so requires type cheats and/or creation
         * of adaptor classes.) It is simpler to just adapt the code.
         */

        HeadIndex<K,V> h = head;
        Node<K,V> basepred = h.node;
        ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
        for (int i = 0; i <= h.level; ++i)
            preds.add(null);
        Index<K,V> q = h;
        for (int i = h.level; i > 0; --i) {
            preds.set(i, q);
            q = q.down;
        }

        for (;;) {
            Object k = s.readObject();
            if (k == null)
                break;
            Object v = s.readObject();
            if (v == null)
                throw new NullPointerException();
            K key = (K) k;
            V val = (V) v;
            int j = randomLevel();
            if (j > h.level) j = h.level + 1;
            Node<K,V> z = new Node<K,V>(key, val, null);
            basepred.next = z;
            basepred = z;
            if (j > 0) {
                Index<K,V> idx = null;
                for (int i = 1; i <= j; ++i) {
                    idx = new Index<K,V>(z, idx, null);
                    if (i > h.level)
                        h = new HeadIndex<K,V>(h.node, h, idx, i);

                    if (i < preds.size()) {
                        preds.get(i).right = idx;
                        preds.set(i, idx);
                    } else
                        preds.add(idx);
                }
            }
        }
        head = h;
    }

    /* ------ Map API methods ------ */

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the specified
     * key.
     *
     * @param key key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the specified key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     */
    public boolean containsKey(Object key) {
        return doGet(key) != null;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code key} compares
     * equal to {@code k} according to the map's ordering, then this
     * method returns {@code v}; otherwise it returns {@code null}.
     * (There can be at most one such mapping.)
     *
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     */
    public V get(Object key) {
        return doGet(key);
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with the specified key, or
     *         <tt>null</tt> if there was no mapping for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key or value is null
     */
    public V put(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        return doPut(key, value, false);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * @param  key key for which mapping should be removed
     * @return the previous value associated with the specified key, or
     *         <tt>null</tt> if there was no mapping for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     */
    public V remove(Object key) {
        return doRemove(key, null);
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.  This operation requires time linear in the
     * map size.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
     *         <tt>false</tt> otherwise
     * @throws NullPointerException if the specified value is null
     */
    public boolean containsValue(Object value) {
        if (value == null)
            throw new NullPointerException();
        for (Node<K,V> n = findFirst(); n != null; n = n.next) {
            V v = n.getValidValue();
            if (v != null && value.equals(v))
                return true;
        }
        return false;
    }

    /**
     * Returns the number of key-value mappings in this map.  If this map
     * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
     * returns <tt>Integer.MAX_VALUE</tt>.
     *
     * <p>Beware that, unlike in most collections, this method is
     * <em>NOT</em> a constant-time operation. Because of the
     * asynchronous nature of these maps, determining the current
     * number of elements requires traversing them all to count them.
     * Additionally, it is possible for the size to change during
     * execution of this method, in which case the returned result
     * will be inaccurate. Thus, this method is typically not very
     * useful in concurrent applications.
     *
     * @return the number of elements in this map
     */
    public int size() {
        long count = 0;
        for (Node<K,V> n = findFirst(); n != null; n = n.next) {
            if (n.getValidValue() != null)
                ++count;
        }
        return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return findFirst() == null;
    }

    /**
     * Removes all of the mappings from this map.
     */
    public void clear() {
        initialize();
    }

    /* ---------------- View methods -------------- */

    /*
     * Note: Lazy initialization works for views because view classes
     * are stateless/immutable so it doesn't matter wrt correctness if
     * more than one is created (which will only rarely happen).  Even
     * so, the following idiom conservatively ensures that the method
     * returns the one it created if it does so, not one created by
     * another racing thread.
     */

    /**
     * Returns a {@link NavigableSet} view of the keys contained in this map.
     * The set's iterator returns the keys in ascending order.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  The set supports element
     * removal, which removes the corresponding mapping from the map,
     * via the {@code Iterator.remove}, {@code Set.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear}
     * operations.  It does not support the {@code add} or {@code addAll}
     * operations.
     *
     * <p>The view's {@code iterator} is a "weakly consistent" iterator
     * that will never throw {@link ConcurrentModificationException},
     * and guarantees to traverse elements as they existed upon
     * construction of the iterator, and may (but is not guaranteed to)
     * reflect any modifications subsequent to construction.
     *
     * <p>This method is equivalent to method {@code navigableKeySet}.
     *
     * @return a navigable set view of the keys in this map
     */
     public NavigableSet<K> keySet() {
        KeySet ks = keySet;
        return (ks != null) ? ks : (keySet = new KeySet(this));
    }

    public NavigableSet<K> navigableKeySet() {
        KeySet ks = keySet;
        return (ks != null) ? ks : (keySet = new KeySet(this));
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection's iterator returns the values in ascending order
     * of the corresponding keys.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
     * that will never throw {@link ConcurrentModificationException},
     * and guarantees to traverse elements as they existed upon
     * construction of the iterator, and may (but is not guaranteed to)
     * reflect any modifications subsequent to construction.
     */
    public Collection<V> values() {
        Values vs = values;
        return (vs != null) ? vs : (values = new Values(this));
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set's iterator returns the entries in ascending key order.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  The set supports element
     * removal, which removes the corresponding mapping from the map,
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or
     * <tt>addAll</tt> operations.
     *
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
     * that will never throw {@link ConcurrentModificationException},
     * and guarantees to traverse elements as they existed upon
     * construction of the iterator, and may (but is not guaranteed to)
     * reflect any modifications subsequent to construction.
     *
     * <p>The <tt>Map.Entry</tt> elements returned by
     * <tt>iterator.next()</tt> do <em>not</em> support the
     * <tt>setValue</tt> operation.
     *
     * @return a set view of the mappings contained in this map,
     *         sorted in ascending key order
     */
    public Set<Map.Entry<K,V>> entrySet() {
        EntrySet es = entrySet;
        return (es != null) ? es : (entrySet = new EntrySet(this));
    }

    public ConcurrentNavigableMap<K,V> descendingMap() {
        ConcurrentNavigableMap<K,V> dm = descendingMap;
        return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
                                    (this, null, false, null, false, true));
    }

    public NavigableSet<K> descendingKeySet() {
        return descendingMap().navigableKeySet();
    }

    /* ---------------- AbstractMap Overrides -------------- */

    /**
     * Compares the specified object with this map for equality.
     * Returns <tt>true</tt> if the given object is also a map and the
     * two maps represent the same mappings.  More formally, two maps
     * <tt>m1</tt> and <tt>m2</tt> represent the same mappings if
     * <tt>m1.entrySet().equals(m2.entrySet())</tt>.  This
     * operation may return misleading results if either map is
     * concurrently modified during execution of this method.
     *
     * @param o object to be compared for equality with this map
     * @return <tt>true</tt> if the specified object is equal to this map
     */
    public boolean equals(Object o) {
1855 1856 1857 1858 1859
        if (o == this)
            return true;
        if (!(o instanceof Map))
            return false;
        Map<?,?> m = (Map<?,?>) o;
1860
        try {
1861 1862
            for (Map.Entry<K,V> e : this.entrySet())
                if (! e.getValue().equals(m.get(e.getKey())))
1863
                    return false;
1864
            for (Map.Entry<?,?> e : m.entrySet()) {
1865 1866
                Object k = e.getKey();
                Object v = e.getValue();
1867
                if (k == null || v == null || !v.equals(get(k)))
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
                    return false;
            }
            return true;
        } catch (ClassCastException unused) {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }
    }

    /* ------ ConcurrentMap API methods ------ */

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key,
     *         or <tt>null</tt> if there was no mapping for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key or value is null
     */
    public V putIfAbsent(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        return doPut(key, value, true);
    }

    /**
     * {@inheritDoc}
     *
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     */
    public boolean remove(Object key, Object value) {
        if (key == null)
            throw new NullPointerException();
        if (value == null)
            return false;
        return doRemove(key, value) != null;
    }

    /**
     * {@inheritDoc}
     *
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if any of the arguments are null
     */
    public boolean replace(K key, V oldValue, V newValue) {
        if (oldValue == null || newValue == null)
            throw new NullPointerException();
        Comparable<? super K> k = comparable(key);
        for (;;) {
            Node<K,V> n = findNode(k);
            if (n == null)
                return false;
            Object v = n.value;
            if (v != null) {
                if (!oldValue.equals(v))
                    return false;
                if (n.casValue(v, newValue))
                    return true;
            }
        }
    }

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key,
     *         or <tt>null</tt> if there was no mapping for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key or value is null
     */
    public V replace(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        Comparable<? super K> k = comparable(key);
        for (;;) {
            Node<K,V> n = findNode(k);
            if (n == null)
                return null;
            Object v = n.value;
            if (v != null && n.casValue(v, value))
                return (V)v;
        }
    }

    /* ------ SortedMap API methods ------ */

    public Comparator<? super K> comparator() {
        return comparator;
    }

    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    public K firstKey() {
        Node<K,V> n = findFirst();
        if (n == null)
            throw new NoSuchElementException();
        return n.key;
    }

    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    public K lastKey() {
        Node<K,V> n = findLast();
        if (n == null)
            throw new NoSuchElementException();
        return n.key;
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public ConcurrentNavigableMap<K,V> subMap(K fromKey,
                                              boolean fromInclusive,
                                              K toKey,
                                              boolean toInclusive) {
        if (fromKey == null || toKey == null)
            throw new NullPointerException();
        return new SubMap<K,V>
            (this, fromKey, fromInclusive, toKey, toInclusive, false);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if {@code toKey} is null
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public ConcurrentNavigableMap<K,V> headMap(K toKey,
                                               boolean inclusive) {
        if (toKey == null)
            throw new NullPointerException();
        return new SubMap<K,V>
            (this, null, false, toKey, inclusive, false);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if {@code fromKey} is null
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
                                               boolean inclusive) {
        if (fromKey == null)
            throw new NullPointerException();
        return new SubMap<K,V>
            (this, fromKey, inclusive, null, false, false);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
        return subMap(fromKey, true, toKey, false);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if {@code toKey} is null
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public ConcurrentNavigableMap<K,V> headMap(K toKey) {
        return headMap(toKey, false);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if {@code fromKey} is null
     * @throws IllegalArgumentException {@inheritDoc}
     */
    public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
        return tailMap(fromKey, true);
    }

    /* ---------------- Relational operations -------------- */

    /**
     * Returns a key-value mapping associated with the greatest key
     * strictly less than the given key, or <tt>null</tt> if there is
     * no such key. The returned entry does <em>not</em> support the
     * <tt>Entry.setValue</tt> method.
     *
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public Map.Entry<K,V> lowerEntry(K key) {
        return getNear(key, LT);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public K lowerKey(K key) {
        Node<K,V> n = findNear(key, LT);
        return (n == null)? null : n.key;
    }

    /**
     * Returns a key-value mapping associated with the greatest key
     * less than or equal to the given key, or <tt>null</tt> if there
     * is no such key. The returned entry does <em>not</em> support
     * the <tt>Entry.setValue</tt> method.
     *
     * @param key the key
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public Map.Entry<K,V> floorEntry(K key) {
        return getNear(key, LT|EQ);
    }

    /**
     * @param key the key
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public K floorKey(K key) {
        Node<K,V> n = findNear(key, LT|EQ);
        return (n == null)? null : n.key;
    }

    /**
     * Returns a key-value mapping associated with the least key
     * greater than or equal to the given key, or <tt>null</tt> if
     * there is no such entry. The returned entry does <em>not</em>
     * support the <tt>Entry.setValue</tt> method.
     *
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public Map.Entry<K,V> ceilingEntry(K key) {
        return getNear(key, GT|EQ);
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public K ceilingKey(K key) {
        Node<K,V> n = findNear(key, GT|EQ);
        return (n == null)? null : n.key;
    }

    /**
     * Returns a key-value mapping associated with the least key
     * strictly greater than the given key, or <tt>null</tt> if there
     * is no such key. The returned entry does <em>not</em> support
     * the <tt>Entry.setValue</tt> method.
     *
     * @param key the key
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public Map.Entry<K,V> higherEntry(K key) {
        return getNear(key, GT);
    }

    /**
     * @param key the key
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     */
    public K higherKey(K key) {
        Node<K,V> n = findNear(key, GT);
        return (n == null)? null : n.key;
    }

    /**
     * Returns a key-value mapping associated with the least
     * key in this map, or <tt>null</tt> if the map is empty.
     * The returned entry does <em>not</em> support
     * the <tt>Entry.setValue</tt> method.
     */
    public Map.Entry<K,V> firstEntry() {
        for (;;) {
            Node<K,V> n = findFirst();
            if (n == null)
                return null;
            AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
            if (e != null)
                return e;
        }
    }

    /**
     * Returns a key-value mapping associated with the greatest
     * key in this map, or <tt>null</tt> if the map is empty.
     * The returned entry does <em>not</em> support
     * the <tt>Entry.setValue</tt> method.
     */
    public Map.Entry<K,V> lastEntry() {
        for (;;) {
            Node<K,V> n = findLast();
            if (n == null)
                return null;
            AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
            if (e != null)
                return e;
        }
    }

    /**
     * Removes and returns a key-value mapping associated with
     * the least key in this map, or <tt>null</tt> if the map is empty.
     * The returned entry does <em>not</em> support
     * the <tt>Entry.setValue</tt> method.
     */
    public Map.Entry<K,V> pollFirstEntry() {
        return doRemoveFirstEntry();
    }

    /**
     * Removes and returns a key-value mapping associated with
     * the greatest key in this map, or <tt>null</tt> if the map is empty.
     * The returned entry does <em>not</em> support
     * the <tt>Entry.setValue</tt> method.
     */
    public Map.Entry<K,V> pollLastEntry() {
        return doRemoveLastEntry();
    }


    /* ---------------- Iterators -------------- */

    /**
     * Base of iterator classes:
     */
    abstract class Iter<T> implements Iterator<T> {
        /** the last node returned by next() */
        Node<K,V> lastReturned;
        /** the next node to return from next(); */
        Node<K,V> next;
2211 2212
        /** Cache of next value field to maintain weak consistency */
        V nextValue;
2213 2214 2215 2216

        /** Initializes ascending iterator for entire range. */
        Iter() {
            for (;;) {
2217
                next = findFirst();
2218 2219 2220 2221
                if (next == null)
                    break;
                Object x = next.value;
                if (x != null && x != next) {
2222
                    nextValue = (V) x;
2223
                    break;
2224
                }
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        /** Advances next to higher entry. */
        final void advance() {
            if ((lastReturned = next) == null)
                throw new NoSuchElementException();
            for (;;) {
2237
                next = next.next;
2238 2239 2240 2241
                if (next == null)
                    break;
                Object x = next.value;
                if (x != null && x != next) {
2242
                    nextValue = (V) x;
2243
                    break;
2244
                }
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
            }
        }

        public void remove() {
            Node<K,V> l = lastReturned;
            if (l == null)
                throw new IllegalStateException();
            // It would not be worth all of the overhead to directly
            // unlink from here. Using remove is fast enough.
            ConcurrentSkipListMap.this.remove(l.key);
2255
            lastReturned = null;
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
        }

    }

    final class ValueIterator extends Iter<V> {
        public V next() {
            V v = nextValue;
            advance();
            return v;
        }
    }

    final class KeyIterator extends Iter<K> {
        public K next() {
            Node<K,V> n = next;
            advance();
            return n.key;
        }
    }

    final class EntryIterator extends Iter<Map.Entry<K,V>> {
        public Map.Entry<K,V> next() {
            Node<K,V> n = next;
            V v = nextValue;
            advance();
            return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
        }
    }

    // Factory methods for iterators needed by ConcurrentSkipListSet etc

    Iterator<K> keyIterator() {
        return new KeyIterator();
    }

    Iterator<V> valueIterator() {
        return new ValueIterator();
    }

    Iterator<Map.Entry<K,V>> entryIterator() {
        return new EntryIterator();
    }

    /* ---------------- View Classes -------------- */

    /*
     * View classes are static, delegating to a ConcurrentNavigableMap
     * to allow use by SubMaps, which outweighs the ugliness of
     * needing type-tests for Iterator methods.
     */

    static final <E> List<E> toList(Collection<E> c) {
2308 2309 2310 2311 2312
        // Using size() here would be a pessimization.
        List<E> list = new ArrayList<E>();
        for (E e : c)
            list.add(e);
        return list;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
    }

    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
        private final ConcurrentNavigableMap<E,Object> m;
        KeySet(ConcurrentNavigableMap<E,Object> map) { m = map; }
        public int size() { return m.size(); }
        public boolean isEmpty() { return m.isEmpty(); }
        public boolean contains(Object o) { return m.containsKey(o); }
        public boolean remove(Object o) { return m.remove(o) != null; }
        public void clear() { m.clear(); }
        public E lower(E e) { return m.lowerKey(e); }
        public E floor(E e) { return m.floorKey(e); }
        public E ceiling(E e) { return m.ceilingKey(e); }
        public E higher(E e) { return m.higherKey(e); }
        public Comparator<? super E> comparator() { return m.comparator(); }
        public E first() { return m.firstKey(); }
        public E last() { return m.lastKey(); }
        public E pollFirst() {
            Map.Entry<E,Object> e = m.pollFirstEntry();
            return e == null? null : e.getKey();
        }
        public E pollLast() {
            Map.Entry<E,Object> e = m.pollLastEntry();
            return e == null? null : e.getKey();
        }
        public Iterator<E> iterator() {
            if (m instanceof ConcurrentSkipListMap)
                return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
            else
                return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
        }
        public boolean equals(Object o) {
            if (o == this)
                return true;
            if (!(o instanceof Set))
                return false;
            Collection<?> c = (Collection<?>) o;
            try {
                return containsAll(c) && c.containsAll(this);
            } catch (ClassCastException unused)   {
                return false;
            } catch (NullPointerException unused) {
                return false;
            }
        }
2358 2359
        public Object[] toArray()     { return toList(this).toArray();  }
        public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        public Iterator<E> descendingIterator() {
            return descendingSet().iterator();
        }
        public NavigableSet<E> subSet(E fromElement,
                                      boolean fromInclusive,
                                      E toElement,
                                      boolean toInclusive) {
            return new ConcurrentSkipListSet<E>
                (m.subMap(fromElement, fromInclusive,
                          toElement,   toInclusive));
        }
        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
            return new ConcurrentSkipListSet<E>(m.headMap(toElement, inclusive));
        }
        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
            return new ConcurrentSkipListSet<E>(m.tailMap(fromElement, inclusive));
        }
        public NavigableSet<E> subSet(E fromElement, E toElement) {
            return subSet(fromElement, true, toElement, false);
        }
        public NavigableSet<E> headSet(E toElement) {
            return headSet(toElement, false);
        }
        public NavigableSet<E> tailSet(E fromElement) {
            return tailSet(fromElement, true);
        }
        public NavigableSet<E> descendingSet() {
            return new ConcurrentSkipListSet(m.descendingMap());
        }
    }

    static final class Values<E> extends AbstractCollection<E> {
        private final ConcurrentNavigableMap<Object, E> m;
        Values(ConcurrentNavigableMap<Object, E> map) {
            m = map;
        }
        public Iterator<E> iterator() {
            if (m instanceof ConcurrentSkipListMap)
                return ((ConcurrentSkipListMap<Object,E>)m).valueIterator();
            else
                return ((SubMap<Object,E>)m).valueIterator();
        }
        public boolean isEmpty() {
            return m.isEmpty();
        }
        public int size() {
            return m.size();
        }
        public boolean contains(Object o) {
            return m.containsValue(o);
        }
        public void clear() {
            m.clear();
        }
2414 2415
        public Object[] toArray()     { return toList(this).toArray();  }
        public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
    }

    static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
        private final ConcurrentNavigableMap<K1, V1> m;
        EntrySet(ConcurrentNavigableMap<K1, V1> map) {
            m = map;
        }

        public Iterator<Map.Entry<K1,V1>> iterator() {
            if (m instanceof ConcurrentSkipListMap)
                return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
            else
                return ((SubMap<K1,V1>)m).entryIterator();
        }

        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K1,V1> e = (Map.Entry<K1,V1>)o;
            V1 v = m.get(e.getKey());
            return v != null && v.equals(e.getValue());
        }
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K1,V1> e = (Map.Entry<K1,V1>)o;
            return m.remove(e.getKey(),
                            e.getValue());
        }
        public boolean isEmpty() {
            return m.isEmpty();
        }
        public int size() {
            return m.size();
        }
        public void clear() {
            m.clear();
        }
        public boolean equals(Object o) {
            if (o == this)
                return true;
            if (!(o instanceof Set))
                return false;
            Collection<?> c = (Collection<?>) o;
            try {
                return containsAll(c) && c.containsAll(this);
            } catch (ClassCastException unused)   {
                return false;
            } catch (NullPointerException unused) {
                return false;
            }
        }
2468 2469
        public Object[] toArray()     { return toList(this).toArray();  }
        public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
    }

    /**
     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
     * represent a subrange of mappings of their underlying
     * maps. Instances of this class support all methods of their
     * underlying maps, differing in that mappings outside their range are
     * ignored, and attempts to add mappings outside their ranges result
     * in {@link IllegalArgumentException}.  Instances of this class are
     * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
     * <tt>tailMap</tt> methods of their underlying maps.
     *
     * @serial include
     */
    static final class SubMap<K,V> extends AbstractMap<K,V>
        implements ConcurrentNavigableMap<K,V>, Cloneable,
                   java.io.Serializable {
        private static final long serialVersionUID = -7647078645895051609L;

        /** Underlying map */
        private final ConcurrentSkipListMap<K,V> m;
        /** lower bound key, or null if from start */
        private final K lo;
        /** upper bound key, or null if to end */
        private final K hi;
        /** inclusion flag for lo */
        private final boolean loInclusive;
        /** inclusion flag for hi */
        private final boolean hiInclusive;
        /** direction */
        private final boolean isDescending;

        // Lazily initialized view holders
        private transient KeySet<K> keySetView;
        private transient Set<Map.Entry<K,V>> entrySetView;
        private transient Collection<V> valuesView;

        /**
         * Creates a new submap, initializing all fields
         */
        SubMap(ConcurrentSkipListMap<K,V> map,
               K fromKey, boolean fromInclusive,
               K toKey, boolean toInclusive,
               boolean isDescending) {
            if (fromKey != null && toKey != null &&
                map.compare(fromKey, toKey) > 0)
                throw new IllegalArgumentException("inconsistent range");
            this.m = map;
            this.lo = fromKey;
            this.hi = toKey;
            this.loInclusive = fromInclusive;
            this.hiInclusive = toInclusive;
            this.isDescending = isDescending;
        }

        /* ----------------  Utilities -------------- */

        private boolean tooLow(K key) {
            if (lo != null) {
                int c = m.compare(key, lo);
                if (c < 0 || (c == 0 && !loInclusive))
                    return true;
            }
            return false;
        }

        private boolean tooHigh(K key) {
            if (hi != null) {
                int c = m.compare(key, hi);
                if (c > 0 || (c == 0 && !hiInclusive))
                    return true;
            }
            return false;
        }

        private boolean inBounds(K key) {
            return !tooLow(key) && !tooHigh(key);
        }

        private void checkKeyBounds(K key) throws IllegalArgumentException {
            if (key == null)
                throw new NullPointerException();
            if (!inBounds(key))
                throw new IllegalArgumentException("key out of range");
        }

        /**
         * Returns true if node key is less than upper bound of range
         */
        private boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
            if (n == null)
                return false;
            if (hi == null)
                return true;
            K k = n.key;
            if (k == null) // pass by markers and headers
                return true;
            int c = m.compare(k, hi);
            if (c > 0 || (c == 0 && !hiInclusive))
                return false;
            return true;
        }

        /**
         * Returns lowest node. This node might not be in range, so
         * most usages need to check bounds
         */
        private ConcurrentSkipListMap.Node<K,V> loNode() {
            if (lo == null)
                return m.findFirst();
            else if (loInclusive)
                return m.findNear(lo, m.GT|m.EQ);
            else
                return m.findNear(lo, m.GT);
        }

        /**
         * Returns highest node. This node might not be in range, so
         * most usages need to check bounds
         */
        private ConcurrentSkipListMap.Node<K,V> hiNode() {
            if (hi == null)
                return m.findLast();
            else if (hiInclusive)
                return m.findNear(hi, m.LT|m.EQ);
            else
                return m.findNear(hi, m.LT);
        }

        /**
         * Returns lowest absolute key (ignoring directonality)
         */
        private K lowestKey() {
            ConcurrentSkipListMap.Node<K,V> n = loNode();
            if (isBeforeEnd(n))
                return n.key;
            else
                throw new NoSuchElementException();
        }

        /**
         * Returns highest absolute key (ignoring directonality)
         */
        private K highestKey() {
            ConcurrentSkipListMap.Node<K,V> n = hiNode();
            if (n != null) {
                K last = n.key;
                if (inBounds(last))
                    return last;
            }
            throw new NoSuchElementException();
        }

        private Map.Entry<K,V> lowestEntry() {
            for (;;) {
                ConcurrentSkipListMap.Node<K,V> n = loNode();
                if (!isBeforeEnd(n))
                    return null;
                Map.Entry<K,V> e = n.createSnapshot();
                if (e != null)
                    return e;
            }
        }

        private Map.Entry<K,V> highestEntry() {
            for (;;) {
                ConcurrentSkipListMap.Node<K,V> n = hiNode();
                if (n == null || !inBounds(n.key))
                    return null;
                Map.Entry<K,V> e = n.createSnapshot();
                if (e != null)
                    return e;
            }
        }

        private Map.Entry<K,V> removeLowest() {
            for (;;) {
                Node<K,V> n = loNode();
                if (n == null)
                    return null;
                K k = n.key;
                if (!inBounds(k))
                    return null;
                V v = m.doRemove(k, null);
                if (v != null)
                    return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
            }
        }

        private Map.Entry<K,V> removeHighest() {
            for (;;) {
                Node<K,V> n = hiNode();
                if (n == null)
                    return null;
                K k = n.key;
                if (!inBounds(k))
                    return null;
                V v = m.doRemove(k, null);
                if (v != null)
                    return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
            }
        }

        /**
         * Submap version of ConcurrentSkipListMap.getNearEntry
         */
        private Map.Entry<K,V> getNearEntry(K key, int rel) {
            if (isDescending) { // adjust relation for direction
                if ((rel & m.LT) == 0)
                    rel |= m.LT;
                else
                    rel &= ~m.LT;
            }
            if (tooLow(key))
                return ((rel & m.LT) != 0)? null : lowestEntry();
            if (tooHigh(key))
                return ((rel & m.LT) != 0)? highestEntry() : null;
            for (;;) {
                Node<K,V> n = m.findNear(key, rel);
                if (n == null || !inBounds(n.key))
                    return null;
                K k = n.key;
                V v = n.getValidValue();
                if (v != null)
                    return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
            }
        }

        // Almost the same as getNearEntry, except for keys
        private K getNearKey(K key, int rel) {
            if (isDescending) { // adjust relation for direction
                if ((rel & m.LT) == 0)
                    rel |= m.LT;
                else
                    rel &= ~m.LT;
            }
            if (tooLow(key)) {
                if ((rel & m.LT) == 0) {
                    ConcurrentSkipListMap.Node<K,V> n = loNode();
                    if (isBeforeEnd(n))
                        return n.key;
                }
                return null;
            }
            if (tooHigh(key)) {
                if ((rel & m.LT) != 0) {
                    ConcurrentSkipListMap.Node<K,V> n = hiNode();
                    if (n != null) {
                        K last = n.key;
                        if (inBounds(last))
                            return last;
                    }
                }
                return null;
            }
            for (;;) {
                Node<K,V> n = m.findNear(key, rel);
                if (n == null || !inBounds(n.key))
                    return null;
                K k = n.key;
                V v = n.getValidValue();
                if (v != null)
                    return k;
            }
        }

        /* ----------------  Map API methods -------------- */

        public boolean containsKey(Object key) {
            if (key == null) throw new NullPointerException();
            K k = (K)key;
            return inBounds(k) && m.containsKey(k);
        }

        public V get(Object key) {
            if (key == null) throw new NullPointerException();
            K k = (K)key;
            return ((!inBounds(k)) ? null : m.get(k));
        }

        public V put(K key, V value) {
            checkKeyBounds(key);
            return m.put(key, value);
        }

        public V remove(Object key) {
            K k = (K)key;
            return (!inBounds(k))? null : m.remove(k);
        }

        public int size() {
            long count = 0;
            for (ConcurrentSkipListMap.Node<K,V> n = loNode();
                 isBeforeEnd(n);
                 n = n.next) {
                if (n.getValidValue() != null)
                    ++count;
            }
            return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
        }

        public boolean isEmpty() {
            return !isBeforeEnd(loNode());
        }

        public boolean containsValue(Object value) {
            if (value == null)
                throw new NullPointerException();
            for (ConcurrentSkipListMap.Node<K,V> n = loNode();
                 isBeforeEnd(n);
                 n = n.next) {
                V v = n.getValidValue();
                if (v != null && value.equals(v))
                    return true;
            }
            return false;
        }

        public void clear() {
            for (ConcurrentSkipListMap.Node<K,V> n = loNode();
                 isBeforeEnd(n);
                 n = n.next) {
                if (n.getValidValue() != null)
                    m.remove(n.key);
            }
        }

        /* ----------------  ConcurrentMap API methods -------------- */

        public V putIfAbsent(K key, V value) {
            checkKeyBounds(key);
            return m.putIfAbsent(key, value);
        }

        public boolean remove(Object key, Object value) {
            K k = (K)key;
            return inBounds(k) && m.remove(k, value);
        }

        public boolean replace(K key, V oldValue, V newValue) {
            checkKeyBounds(key);
            return m.replace(key, oldValue, newValue);
        }

        public V replace(K key, V value) {
            checkKeyBounds(key);
            return m.replace(key, value);
        }

        /* ----------------  SortedMap API methods -------------- */

        public Comparator<? super K> comparator() {
            Comparator<? super K> cmp = m.comparator();
2823 2824 2825 2826
            if (isDescending)
                return Collections.reverseOrder(cmp);
            else
                return cmp;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
        }

        /**
         * Utility to create submaps, where given bounds override
         * unbounded(null) ones and/or are checked against bounded ones.
         */
        private SubMap<K,V> newSubMap(K fromKey,
                                      boolean fromInclusive,
                                      K toKey,
                                      boolean toInclusive) {
            if (isDescending) { // flip senses
                K tk = fromKey;
                fromKey = toKey;
                toKey = tk;
                boolean ti = fromInclusive;
                fromInclusive = toInclusive;
                toInclusive = ti;
            }
            if (lo != null) {
                if (fromKey == null) {
                    fromKey = lo;
                    fromInclusive = loInclusive;
                }
                else {
                    int c = m.compare(fromKey, lo);
                    if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
                        throw new IllegalArgumentException("key out of range");
                }
            }
            if (hi != null) {
                if (toKey == null) {
                    toKey = hi;
                    toInclusive = hiInclusive;
                }
                else {
                    int c = m.compare(toKey, hi);
                    if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
                        throw new IllegalArgumentException("key out of range");
                }
            }
            return new SubMap<K,V>(m, fromKey, fromInclusive,
                                   toKey, toInclusive, isDescending);
        }

        public SubMap<K,V> subMap(K fromKey,
                                  boolean fromInclusive,
                                  K toKey,
                                  boolean toInclusive) {
            if (fromKey == null || toKey == null)
                throw new NullPointerException();
            return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
        }

        public SubMap<K,V> headMap(K toKey,
                                   boolean inclusive) {
            if (toKey == null)
                throw new NullPointerException();
            return newSubMap(null, false, toKey, inclusive);
        }

        public SubMap<K,V> tailMap(K fromKey,
                                   boolean inclusive) {
            if (fromKey == null)
                throw new NullPointerException();
            return newSubMap(fromKey, inclusive, null, false);
        }

        public SubMap<K,V> subMap(K fromKey, K toKey) {
            return subMap(fromKey, true, toKey, false);
        }

        public SubMap<K,V> headMap(K toKey) {
            return headMap(toKey, false);
        }

        public SubMap<K,V> tailMap(K fromKey) {
            return tailMap(fromKey, true);
        }

        public SubMap<K,V> descendingMap() {
            return new SubMap<K,V>(m, lo, loInclusive,
                                   hi, hiInclusive, !isDescending);
        }

        /* ----------------  Relational methods -------------- */

        public Map.Entry<K,V> ceilingEntry(K key) {
            return getNearEntry(key, (m.GT|m.EQ));
        }

        public K ceilingKey(K key) {
            return getNearKey(key, (m.GT|m.EQ));
        }

        public Map.Entry<K,V> lowerEntry(K key) {
            return getNearEntry(key, (m.LT));
        }

        public K lowerKey(K key) {
            return getNearKey(key, (m.LT));
        }

        public Map.Entry<K,V> floorEntry(K key) {
            return getNearEntry(key, (m.LT|m.EQ));
        }

        public K floorKey(K key) {
            return getNearKey(key, (m.LT|m.EQ));
        }

        public Map.Entry<K,V> higherEntry(K key) {
            return getNearEntry(key, (m.GT));
        }

        public K higherKey(K key) {
            return getNearKey(key, (m.GT));
        }

        public K firstKey() {
            return isDescending? highestKey() : lowestKey();
        }

        public K lastKey() {
            return isDescending? lowestKey() : highestKey();
        }

        public Map.Entry<K,V> firstEntry() {
            return isDescending? highestEntry() : lowestEntry();
        }

        public Map.Entry<K,V> lastEntry() {
            return isDescending? lowestEntry() : highestEntry();
        }

        public Map.Entry<K,V> pollFirstEntry() {
            return isDescending? removeHighest() : removeLowest();
        }

        public Map.Entry<K,V> pollLastEntry() {
            return isDescending? removeLowest() : removeHighest();
        }

        /* ---------------- Submap Views -------------- */

        public NavigableSet<K> keySet() {
            KeySet<K> ks = keySetView;
            return (ks != null) ? ks : (keySetView = new KeySet(this));
        }

        public NavigableSet<K> navigableKeySet() {
            KeySet<K> ks = keySetView;
            return (ks != null) ? ks : (keySetView = new KeySet(this));
        }

        public Collection<V> values() {
            Collection<V> vs = valuesView;
            return (vs != null) ? vs : (valuesView = new Values(this));
        }

        public Set<Map.Entry<K,V>> entrySet() {
            Set<Map.Entry<K,V>> es = entrySetView;
            return (es != null) ? es : (entrySetView = new EntrySet(this));
        }

        public NavigableSet<K> descendingKeySet() {
            return descendingMap().navigableKeySet();
        }

        Iterator<K> keyIterator() {
            return new SubMapKeyIterator();
        }

        Iterator<V> valueIterator() {
            return new SubMapValueIterator();
        }

        Iterator<Map.Entry<K,V>> entryIterator() {
            return new SubMapEntryIterator();
        }

        /**
         * Variant of main Iter class to traverse through submaps.
         */
        abstract class SubMapIter<T> implements Iterator<T> {
            /** the last node returned by next() */
            Node<K,V> lastReturned;
            /** the next node to return from next(); */
            Node<K,V> next;
            /** Cache of next value field to maintain weak consistency */
            V nextValue;

            SubMapIter() {
                for (;;) {
                    next = isDescending ? hiNode() : loNode();
                    if (next == null)
                        break;
3023
                    Object x = next.value;
3024
                    if (x != null && x != next) {
3025
                        if (! inBounds(next.key))
3026
                            next = null;
3027 3028
                        else
                            nextValue = (V) x;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
                        break;
                    }
                }
            }

            public final boolean hasNext() {
                return next != null;
            }

            final void advance() {
                if ((lastReturned = next) == null)
                    throw new NoSuchElementException();
                if (isDescending)
                    descend();
                else
                    ascend();
            }

            private void ascend() {
                for (;;) {
                    next = next.next;
                    if (next == null)
                        break;
3052
                    Object x = next.value;
3053 3054 3055 3056
                    if (x != null && x != next) {
                        if (tooHigh(next.key))
                            next = null;
                        else
3057
                            nextValue = (V) x;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
                        break;
                    }
                }
            }

            private void descend() {
                for (;;) {
                    next = m.findNear(lastReturned.key, LT);
                    if (next == null)
                        break;
3068
                    Object x = next.value;
3069 3070 3071
                    if (x != null && x != next) {
                        if (tooLow(next.key))
                            next = null;
3072
                        else
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
                            nextValue = (V) x;
                        break;
                    }
                }
            }

            public void remove() {
                Node<K,V> l = lastReturned;
                if (l == null)
                    throw new IllegalStateException();
                m.remove(l.key);
3084
                lastReturned = null;
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
            }

        }

        final class SubMapValueIterator extends SubMapIter<V> {
            public V next() {
                V v = nextValue;
                advance();
                return v;
            }
        }

        final class SubMapKeyIterator extends SubMapIter<K> {
            public K next() {
                Node<K,V> n = next;
                advance();
                return n.key;
            }
        }

        final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
            public Map.Entry<K,V> next() {
                Node<K,V> n = next;
                V v = nextValue;
                advance();
                return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
            }
        }
    }
}