This script was written and developed by ABKGroup students at UCSD; however, the underlying commands and reports are copyrighted by Cadence. We thank Cadence for granting permission to share our research to help promote and foster the next generation of innovators.
...
...
@@ -100,5 +100,5 @@ Clone ORFS and build OpenROAD tools following the steps given [here](https://git
make DESIGN_CONFIG=./designs/<enablement>/<design>/config.mk
```
The screenshot of the Ariane 136 testcase using the ORFS (RTL-MP) on NanGate45 enablement is given below.
The screenshot of the Ariane 136 testcase using the ORFS (RTL-MP) on NanGate45 enablement is shown below.
- S. Yue, E. M. Songhori, J. W. Jiang, T. Boyd, A. Goldie, A. Mirhoseini and S. Guadarrama, "Scalability and Generalization of Circuit Training for Chip Floorplanning", *ISPD*, 2022. \[[paper](https://dl.acm.org/doi/abs/10.1145/3505170.3511478)\]\[[ppt](http://www.ispd.cc/slides/2021/protected/2_2_Goldie_Mirhoseini.pdf)\]
- R. Cheng and J. Yan, "On joint learning for solving placement and routing in chip design",
- S. Guadarrama, S. Yue, T. Boyd, J. Jiang, E. Songhori, et al.,
"Circuit training: an open-source framework for generating chip floor plans with distributed deep reinforcement learning", 2021. \[[code](https://github.com/google-research/circuit_training)\]
- A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, et al.,
...
...
@@ -207,7 +208,6 @@ while allowing soft macros (standard-cell clusters) to also find good locations.
- A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, et al.,
"Chip Placement with Deep Reinforcement Learning",
- S. Yue, E. M. Songhori, J. W. Jiang, T. Boyd, A. Goldie, A. Mirhoseini and S. Guadarrama, "Scalability and Generalization of Circuit Training for Chip Floorplanning", *ISPD*, 2022. \[[paper](https://dl.acm.org/doi/abs/10.1145/3505170.3511478)\]\[[ppt](http://www.ispd.cc/slides/2021/protected/2_2_Goldie_Mirhoseini.pdf)\]
- Z. Jiang, E. Songhori, S. Wang, A. Goldie, A. Mirhoseini, et al., "Delving into Macro Placement with Reinforcement Learning", *MLCAD*, 2021. \[[paper](https://arxiv.org/pdf/2109.02587)\]
- A Gentle Introduction to Graph Neural Networks. [[Link](https://distill.pub/2021/gnn-intro/)]
- TILOS AI Institute. \[[link](https://tilos.ai/)\]