axi_iw_converter.sv 16.2 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Copyright (c) 2014-2020 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Andreas Kurth <akurth@iis.ee.ethz.ch>
// Florian Zaruba <zarubaf@iis.ee.ethz.ch>
// Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>

`include "axi/typedef.svh"

/// Convert between any two AXI ID widths.
///
/// Any combination of slave and master port ID width is valid.  When the master port ID width is
/// larger than or equal to the slave port ID width, slave port IDs are simply prepended with zeros
/// to the width of master port IDs.  For *reducing* the ID width, i.e., when the master port ID
/// width is smaller than the slave port ID width, there are two options.
///
/// ## Options for reducing the ID width
///
/// The two options for reducing ID widths differ in the maximum number of different IDs that can be
/// in flight at the slave port of this module, given in the `AxiSlvPortMaxUniqIds` parameter.
///
/// ### Fewer unique slave port IDs than master port IDs
///
/// If `AxiSlvPortMaxUniqIds <= 2**AxiMstPortIdWidth`, there are fewer unique slave port IDs than
/// master port IDs.  Therefore, IDs that are different at the slave port of this module can remain
/// different at the reduced-ID-width master port and thus remain *independently reorderable*.
/// Since the IDs are master port are nonetheless shorter than at the slave port, they need to be
/// *remapped*.  An instance of [`axi_id_remap`](module.axi_id_remap) handles this case.
///
/// ### More unique slave port IDs than master port IDs
///
/// If `AxiSlvPortMaxUniqIds > 2**AxiMstPortIdWidth`, there are more unique slave port IDs than
/// master port IDs.  Therefore, some IDs that are different at the slave port need to be assigned
/// to the same master port ID and thus become ordered with respect to each other.  An instance of
/// [`axi_id_serialize`](module.axi_id_serialize) handles this case.
module axi_iw_converter #(
  /// ID width of the AXI4+ATOP slave port
  parameter int unsigned AxiSlvPortIdWidth = 32'd0,
  /// ID width of the AXI4+ATOP master port
  parameter int unsigned AxiMstPortIdWidth = 32'd0,
  /// Maximum number of different IDs that can be in flight at the slave port.  Reads and writes are
  /// counted separately (except for ATOPs, which count as both read and write).
  ///
  /// It is legal for upstream to have transactions with more unique IDs than the maximum given by
  /// this parameter in flight, but a transaction exceeding the maximum will be stalled until all
  /// transactions of another ID complete.
  parameter int unsigned AxiSlvPortMaxUniqIds = 32'd0,
  /// Maximum number of in-flight transactions with the same ID at the slave port.
  ///
  /// This parameter is only relevant if `AxiSlvPortMaxUniqIds <= 2**AxiMstPortIdWidth`.  In that
  /// case, this parameter is passed to [`axi_id_remap` as `AxiMaxTxnsPerId`
  /// parameter](module.axi_id_remap#parameter.AxiMaxTxnsPerId).
  parameter int unsigned AxiSlvPortMaxTxnsPerId = 32'd0,
  /// Maximum number of in-flight transactions at the slave port.  Reads and writes are counted
  /// separately (except for ATOPs, which count as both read and write).
  ///
  /// This parameter is only relevant if `AxiSlvPortMaxUniqIds > 2**AxiMstPortIdWidth`.  In that
  /// case, this parameter is passed to
  /// [`axi_id_serialize`](module.axi_id_serialize#parameter.AxiSlvPortMaxTxns).
  parameter int unsigned AxiSlvPortMaxTxns = 32'd0,
  /// Maximum number of different IDs that can be in flight at the master port.  Reads and writes
  /// are counted separately (except for ATOPs, which count as both read and write).
  ///
  /// This parameter is only relevant if `AxiSlvPortMaxUniqIds > 2**AxiMstPortIdWidth`.  In that
  /// case, this parameter is passed to
  /// [`axi_id_serialize`](module.axi_id_serialize#parameter.AxiMstPortMaxUniqIds).
  parameter int unsigned AxiMstPortMaxUniqIds = 32'd0,
  /// Maximum number of in-flight transactions with the same ID at the master port.
  ///
  /// This parameter is only relevant if `AxiSlvPortMaxUniqIds > 2**AxiMstPortIdWidth`.  In that
  /// case, this parameter is passed to
  /// [`axi_id_serialize`](module.axi_id_serialize#parameter.AxiMstPortMaxTxnsPerId).
  parameter int unsigned AxiMstPortMaxTxnsPerId = 32'd0,
  /// Address width of both AXI4+ATOP ports
  parameter int unsigned AxiAddrWidth = 32'd0,
  /// Data width of both AXI4+ATOP ports
  parameter int unsigned AxiDataWidth = 32'd0,
  /// User signal width of both AXI4+ATOP ports
  parameter int unsigned AxiUserWidth = 32'd0,
  /// Request struct type of the AXI4+ATOP slave port
  parameter type slv_req_t = logic,
  /// Response struct type of the AXI4+ATOP slave port
  parameter type slv_resp_t = logic,
  /// Request struct type of the AXI4+ATOP master port
  parameter type mst_req_t = logic,
  /// Response struct type of the AXI4+ATOP master port
  parameter type mst_resp_t = logic
) (
  /// Rising-edge clock of both ports
  input  logic      clk_i,
  /// Asynchronous reset, active low
  input  logic      rst_ni,
  /// Slave port request
  input  slv_req_t  slv_req_i,
  /// Slave port response
  output slv_resp_t slv_resp_o,
  /// Master port request
  output mst_req_t  mst_req_o,
  /// Master port response
  input  mst_resp_t mst_resp_i
);

  typedef logic [AxiAddrWidth-1:0]      addr_t;
  typedef logic [AxiDataWidth-1:0]      data_t;
  typedef logic [AxiSlvPortIdWidth-1:0] slv_id_t;
  typedef logic [AxiMstPortIdWidth-1:0] mst_id_t;
  typedef logic [AxiDataWidth/8-1:0]    strb_t;
  typedef logic [AxiUserWidth-1:0]      user_t;
  `AXI_TYPEDEF_AW_CHAN_T(slv_aw_t, addr_t, slv_id_t, user_t)
  `AXI_TYPEDEF_AW_CHAN_T(mst_aw_t, addr_t, mst_id_t, user_t)
  `AXI_TYPEDEF_W_CHAN_T(w_t, data_t, strb_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(slv_b_t, slv_id_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(mst_b_t, mst_id_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(slv_ar_t, addr_t, slv_id_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(mst_ar_t, addr_t, mst_id_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(slv_r_t, data_t, slv_id_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(mst_r_t, data_t, mst_id_t, user_t)

  if (AxiMstPortIdWidth < AxiSlvPortIdWidth) begin : gen_downsize
    if (AxiSlvPortMaxUniqIds <= 2**AxiMstPortIdWidth) begin : gen_remap
      axi_id_remap #(
        .AxiSlvPortIdWidth    ( AxiSlvPortIdWidth       ),
        .AxiMstPortIdWidth    ( AxiMstPortIdWidth       ),
        .AxiSlvPortMaxUniqIds ( AxiSlvPortMaxUniqIds    ),
        .AxiMaxTxnsPerId      ( AxiSlvPortMaxTxnsPerId  ),
        .slv_req_t            ( slv_req_t               ),
        .slv_resp_t           ( slv_resp_t              ),
        .mst_req_t            ( mst_req_t               ),
        .mst_resp_t           ( mst_resp_t              )
      ) i_axi_id_remap (
        .clk_i,
        .rst_ni,
        .slv_req_i  ( slv_req_i  ),
        .slv_resp_o ( slv_resp_o ),
        .mst_req_o  ( mst_req_o  ),
        .mst_resp_i ( mst_resp_i )
      );
    end else begin : gen_serialize
      axi_id_serialize #(
        .AxiSlvPortIdWidth      ( AxiSlvPortIdWidth       ),
        .AxiSlvPortMaxTxns      ( AxiSlvPortMaxTxns       ),
        .AxiMstPortIdWidth      ( AxiMstPortIdWidth       ),
        .AxiMstPortMaxUniqIds   ( AxiMstPortMaxUniqIds    ),
        .AxiMstPortMaxTxnsPerId ( AxiMstPortMaxTxnsPerId  ),
        .AxiAddrWidth           ( AxiAddrWidth            ),
        .AxiDataWidth           ( AxiDataWidth            ),
        .AxiUserWidth           ( AxiUserWidth            ),
        .slv_req_t              ( slv_req_t               ),
        .slv_resp_t             ( slv_resp_t              ),
        .mst_req_t              ( mst_req_t               ),
        .mst_resp_t             ( mst_resp_t              )
      ) i_axi_id_serialize (
        .clk_i,
        .rst_ni,
        .slv_req_i  ( slv_req_i  ),
        .slv_resp_o ( slv_resp_o ),
        .mst_req_o  ( mst_req_o  ),
        .mst_resp_i ( mst_resp_i )
      );
      end
  end else if (AxiMstPortIdWidth > AxiSlvPortIdWidth) begin : gen_upsize
    axi_id_prepend #(
      .NoBus             ( 32'd1              ),
      .AxiIdWidthSlvPort ( AxiSlvPortIdWidth  ),
      .AxiIdWidthMstPort ( AxiMstPortIdWidth  ),
      .slv_aw_chan_t     ( slv_aw_t           ),
      .slv_w_chan_t      ( w_t                ),
      .slv_b_chan_t      ( slv_b_t            ),
      .slv_ar_chan_t     ( slv_ar_t           ),
      .slv_r_chan_t      ( slv_r_t            ),
      .mst_aw_chan_t     ( mst_aw_t           ),
      .mst_w_chan_t      ( w_t                ),
      .mst_b_chan_t      ( mst_b_t            ),
      .mst_ar_chan_t     ( mst_ar_t           ),
      .mst_r_chan_t      ( mst_r_t            )
    ) i_axi_id_prepend (
      .pre_id_i         ( '0                  ),
      .slv_aw_chans_i   ( slv_req_i.aw        ),
      .slv_aw_valids_i  ( slv_req_i.aw_valid  ),
      .slv_aw_readies_o ( slv_resp_o.aw_ready ),
      .slv_w_chans_i    ( slv_req_i.w         ),
      .slv_w_valids_i   ( slv_req_i.w_valid   ),
      .slv_w_readies_o  ( slv_resp_o.w_ready  ),
      .slv_b_chans_o    ( slv_resp_o.b        ),
      .slv_b_valids_o   ( slv_resp_o.b_valid  ),
      .slv_b_readies_i  ( slv_req_i.b_ready   ),
      .slv_ar_chans_i   ( slv_req_i.ar        ),
      .slv_ar_valids_i  ( slv_req_i.ar_valid  ),
      .slv_ar_readies_o ( slv_resp_o.ar_ready ),
      .slv_r_chans_o    ( slv_resp_o.r        ),
      .slv_r_valids_o   ( slv_resp_o.r_valid  ),
      .slv_r_readies_i  ( slv_req_i.r_ready   ),
      .mst_aw_chans_o   ( mst_req_o.aw        ),
      .mst_aw_valids_o  ( mst_req_o.aw_valid  ),
      .mst_aw_readies_i ( mst_resp_i.aw_ready ),
      .mst_w_chans_o    ( mst_req_o.w         ),
      .mst_w_valids_o   ( mst_req_o.w_valid   ),
      .mst_w_readies_i  ( mst_resp_i.w_ready  ),
      .mst_b_chans_i    ( mst_resp_i.b        ),
      .mst_b_valids_i   ( mst_resp_i.b_valid  ),
      .mst_b_readies_o  ( mst_req_o.b_ready   ),
      .mst_ar_chans_o   ( mst_req_o.ar        ),
      .mst_ar_valids_o  ( mst_req_o.ar_valid  ),
      .mst_ar_readies_i ( mst_resp_i.ar_ready ),
      .mst_r_chans_i    ( mst_resp_i.r        ),
      .mst_r_valids_i   ( mst_resp_i.r_valid  ),
      .mst_r_readies_o  ( mst_req_o.r_ready   )
    );
  end else begin : gen_passthrough
    assign mst_req_o  = slv_req_i;
    assign slv_resp_o = mst_resp_i;
  end

  // pragma translate_off
  `ifndef VERILATOR
  initial begin : p_assert
    assert(AxiAddrWidth > 32'd0)
      else $fatal(1, "Parameter AxiAddrWidth has to be larger than 0!");
    assert(AxiDataWidth > 32'd0)
      else $fatal(1, "Parameter AxiDataWidth has to be larger than 0!");
    assert(AxiUserWidth > 32'd0)
      else $fatal(1, "Parameter AxiUserWidth has to be larger than 0!");
    assert(AxiSlvPortIdWidth > 32'd0)
      else $fatal(1, "Parameter AxiSlvPortIdWidth has to be larger than 0!");
    assert(AxiMstPortIdWidth > 32'd0)
      else $fatal(1, "Parameter AxiMstPortIdWidth has to be larger than 0!");
    if (AxiSlvPortMaxUniqIds <= 2**AxiMstPortIdWidth) begin
      assert(AxiSlvPortMaxTxnsPerId > 32'd0)
        else $fatal(1, "Parameter AxiSlvPortMaxTxnsPerId has to be larger than 0!");
    end else begin
      assert(AxiMstPortMaxUniqIds > 32'd0)
        else $fatal(1, "Parameter AxiMstPortMaxUniqIds has to be larger than 0!");
      assert(AxiMstPortMaxTxnsPerId > 32'd0)
        else $fatal(1, "Parameter AxiMstPortMaxTxnsPerId has to be larger than 0!");
    end
    assert($bits(slv_req_i.aw.addr) == $bits(mst_req_o.aw.addr))
      else $fatal(1, "AXI AW address widths are not equal!");
    assert($bits(slv_req_i.w.data) == $bits(mst_req_o.w.data))
      else $fatal(1, "AXI W data widths are not equal!");
    assert($bits(slv_req_i.ar.addr) == $bits(mst_req_o.ar.addr))
      else $fatal(1, "AXI AR address widths are not equal!");
    assert($bits(slv_resp_o.r.data) == $bits(mst_resp_i.r.data))
      else $fatal(1, "AXI R data widths are not equal!");
  end
  `endif
  // pragma translate_on
endmodule


`include "axi/assign.svh"

/// Interface variant of [`axi_iw_converter`](module.axi_iw_converter).
///
/// See the documentation of the main module for the definition of ports and parameters.
module axi_iw_converter_intf #(
  parameter int unsigned AXI_SLV_PORT_ID_WIDTH = 32'd0,
  parameter int unsigned AXI_MST_PORT_ID_WIDTH = 32'd0,
  parameter int unsigned AXI_SLV_PORT_MAX_UNIQ_IDS = 32'd0,
  parameter int unsigned AXI_SLV_PORT_MAX_TXNS_PER_ID = 32'd0,
  parameter int unsigned AXI_SLV_PORT_MAX_TXNS = 32'd0,
  parameter int unsigned AXI_MST_PORT_MAX_UNIQ_IDS = 32'd0,
  parameter int unsigned AXI_MST_PORT_MAX_TXNS_PER_ID = 32'd0,
  parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
  parameter int unsigned AXI_DATA_WIDTH = 32'd0,
  parameter int unsigned AXI_USER_WIDTH = 32'd0
) (
  input  logic   clk_i,
  input  logic   rst_ni,
  AXI_BUS.Slave  slv,
  AXI_BUS.Master mst
);
  typedef logic [AXI_SLV_PORT_ID_WIDTH-1:0] slv_id_t;
  typedef logic [AXI_MST_PORT_ID_WIDTH-1:0] mst_id_t;
  typedef logic [AXI_ADDR_WIDTH-1:0]        axi_addr_t;
  typedef logic [AXI_DATA_WIDTH-1:0]        axi_data_t;
  typedef logic [AXI_DATA_WIDTH/8-1:0]      axi_strb_t;
  typedef logic [AXI_USER_WIDTH-1:0]        axi_user_t;

  `AXI_TYPEDEF_AW_CHAN_T(slv_aw_chan_t, axi_addr_t, slv_id_t, axi_user_t)
  `AXI_TYPEDEF_W_CHAN_T(slv_w_chan_t, axi_data_t, axi_strb_t, axi_user_t)
  `AXI_TYPEDEF_B_CHAN_T(slv_b_chan_t, slv_id_t, axi_user_t)
  `AXI_TYPEDEF_AR_CHAN_T(slv_ar_chan_t, axi_addr_t, slv_id_t, axi_user_t)
  `AXI_TYPEDEF_R_CHAN_T(slv_r_chan_t, axi_data_t, slv_id_t, axi_user_t)
  `AXI_TYPEDEF_REQ_T(slv_req_t, slv_aw_chan_t, slv_w_chan_t, slv_ar_chan_t)
  `AXI_TYPEDEF_RESP_T(slv_resp_t, slv_b_chan_t, slv_r_chan_t)

  `AXI_TYPEDEF_AW_CHAN_T(mst_aw_chan_t, axi_addr_t, mst_id_t, axi_user_t)
  `AXI_TYPEDEF_W_CHAN_T(mst_w_chan_t, axi_data_t, axi_strb_t, axi_user_t)
  `AXI_TYPEDEF_B_CHAN_T(mst_b_chan_t, mst_id_t, axi_user_t)
  `AXI_TYPEDEF_AR_CHAN_T(mst_ar_chan_t, axi_addr_t, mst_id_t, axi_user_t)
  `AXI_TYPEDEF_R_CHAN_T(mst_r_chan_t, axi_data_t, mst_id_t, axi_user_t)
  `AXI_TYPEDEF_REQ_T(mst_req_t, mst_aw_chan_t, mst_w_chan_t, mst_ar_chan_t)
  `AXI_TYPEDEF_RESP_T(mst_resp_t, mst_b_chan_t, mst_r_chan_t)

  slv_req_t  slv_req;
  slv_resp_t slv_resp;
  mst_req_t  mst_req;
  mst_resp_t mst_resp;

  `AXI_ASSIGN_TO_REQ(slv_req, slv)
  `AXI_ASSIGN_FROM_RESP(slv, slv_resp)
  `AXI_ASSIGN_FROM_REQ(mst, mst_req)
  `AXI_ASSIGN_TO_RESP(mst_resp, mst)

  axi_iw_converter #(
    .AxiSlvPortIdWidth      ( AXI_SLV_PORT_ID_WIDTH         ),
    .AxiMstPortIdWidth      ( AXI_MST_PORT_ID_WIDTH         ),
    .AxiSlvPortMaxUniqIds   ( AXI_SLV_PORT_MAX_UNIQ_IDS     ),
    .AxiSlvPortMaxTxnsPerId ( AXI_SLV_PORT_MAX_TXNS_PER_ID  ),
    .AxiSlvPortMaxTxns      ( AXI_SLV_PORT_MAX_TXNS         ),
    .AxiMstPortMaxUniqIds   ( AXI_MST_PORT_MAX_UNIQ_IDS     ),
    .AxiMstPortMaxTxnsPerId ( AXI_MST_PORT_MAX_TXNS_PER_ID  ),
    .AxiAddrWidth           ( AXI_ADDR_WIDTH                ),
    .AxiDataWidth           ( AXI_DATA_WIDTH                ),
    .AxiUserWidth           ( AXI_USER_WIDTH                ),
    .slv_req_t              ( slv_req_t                     ),
    .slv_resp_t             ( slv_resp_t                    ),
    .mst_req_t              ( mst_req_t                     ),
    .mst_resp_t             ( mst_resp_t                    )
  ) i_axi_iw_converter (
    .clk_i,
    .rst_ni,
    .slv_req_i  ( slv_req  ),
    .slv_resp_o ( slv_resp ),
    .mst_req_o  ( mst_req  ),
    .mst_resp_i ( mst_resp )
  );
  // pragma translate_off
  `ifndef VERILATOR
    initial begin
      assert (slv.AXI_ID_WIDTH   == AXI_SLV_PORT_ID_WIDTH);
      assert (slv.AXI_ADDR_WIDTH == AXI_ADDR_WIDTH);
      assert (slv.AXI_DATA_WIDTH == AXI_DATA_WIDTH);
      assert (slv.AXI_USER_WIDTH == AXI_USER_WIDTH);
      assert (mst.AXI_ID_WIDTH   == AXI_MST_PORT_ID_WIDTH);
      assert (mst.AXI_ADDR_WIDTH == AXI_ADDR_WIDTH);
      assert (mst.AXI_DATA_WIDTH == AXI_DATA_WIDTH);
      assert (mst.AXI_USER_WIDTH == AXI_USER_WIDTH);
    end
  `endif
  // pragma translate_on
endmodule